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Accelerating frame

Newton's second law F = ma holds true only in inertial coordinate systems. 

However, there are many noninertial (that is, accelerating) frames that one needs to

consider, such as elevators, merry-go-rounds, and so on.

Consideration of noninertial systems will enable us to explore some of the

conceptual difficulties of classical mechanics, and secondly it will provide deeper

insight into Newton's laws, the properties of space, and the meaning of inertia.

Is there any possible way to modify Newton’s laws so that they hold in noninertial

frames, or do we have to give up entirely on F = ma? It turns out that we can in fact

hold on to F = ma, provided that we introduce some new “fictitious” forces. These are

forces that a person in the accelerating frame thinks exist.



The Apparent Force of Gravity
A small weight of mass m hangs from a string in an automobile which accelerates at
rate A. What is the static angle of the string from the vertical, and what is its tension?

Let us analyze the problem both in an inertial 
frame and in a frame accelerating with the car. 

From the point of view of a passenger
in the accelerating car, the fictitious
force acts like a horizontal gravitational
force. The effective gravitational force
is the vector sum of the real and
fictitious forces.



Cylinder on an Accelerating Plank
A cylinder of mass M and radius R rolls without slipping on a plank which is
accelerated at the rate A. Find the acceleration of the cylinder.

The force diagram for the horizontal force on the
cylinder as viewed in a system accelerating with the
plank is shown in the figure. a' is the acceleration of the
cylinder as observed in a system fixed to the plank. f is
the friction, and Ffict = MA. with the direction shown.
The equations of motion in the system fixed to the
accelerating plank are

and

or



The Principle of Equivalence

There is no way to distinguish locally between a uniform gravitational acceleration g
and an acceleration of the coordinate system A = -g. This is known as the principle of
equivalence. However, such indistinguishable nature of two forces is valid only for
point objects .

Gravitational field does not extend uniformly through all of space. Real forces arise
from interactions between bodies, and for sufficiently large separations the forces
always decrease. Real forces are then local. An accelerating coordinate system is
nonlocal; the acceleration extends uniformly throughout space.

The tides on the earth exist because the gravitational force from a point mass like the
moon or the sun is not uniform.



• By 1905, Albert Einstein had created a new framework for the laws 

of  physics - his special theory of  relativity. However, one aspect of  

physics appeared to be incompatible with his new ideas: the 

gravitational force as described by Newton's law of  gravity. 

Special relativity provides a new framework for physics only when 

gravity is excluded. Years later, Einstein managed to unify gravity 

and his relativistic ideas of  space and time. The result was another 

revolutionary new theory, general relativity.

• Einstein's first step towards that theory was the realization that, 

even in a gravitational field, there are reference frames in which 

gravity is nearly absent; in consequence, physics is governed by 

the laws of  gravity-free special relativity - at least to a certain 

approximation, and only if  one confines any observations to a 

sufficiently small region of  space and time. This follows from what 

Einstein formulated as his equivalence principle which, in turn, is 

inspired by the consequences of  free fall.

http://www.einstein-online.info/en/navMeta/dictionary/s/index.html#SRT
http://www.einstein-online.info/en/navMeta/dictionary/n/index.html#Newtonian_gravity
http://www.einstein-online.info/en/navMeta/dictionary/g/index.html#GRT
http://www.einstein-online.info/en/navMeta/dictionary/r/index.html#reference_frames










Rotating Coordinate System 
The transformation from an inertial coordinate system to a rotating system is
fundamentally different from the transformation to a translating system.

A uniformly rotating system is intrinsically noninertial. 

If a particle of mass m is accelerating at rate a with respect to inertial coordinates and
at rate arot with respect to a rotating coordinate system, then the equation of motion
in the two systems are given by

and 

If the accelerations of m in the two systems are related by 

where A is the relative acceleration, then 

Thus the argument is identical to that in a translating system. Our task now is to find A
for a rotating system.



Time Derivatives and Rotating Coordinates 
Consider an inertial coordinate system x, y, z and a coordinate system x', y', z' which
rotates with respect to the inertial system at angular velocity . The origins coincide.
An arbitrary vector B can be described by components along base vectors of either
coordinate system as

where and are the base vectors along
the inertial axes and the rotating axes respectively.



In rotating system,

and hence,



Velocity and Acceleration in Rotating Coordinates

or

Since,



Apparent Force in Rotating Coordinates

The force observed in the rotating system is 

where

The first term is called the Coriolis force, a velocity dependent force and the second
term, radially outward from the axis of rotation, is called the centrifugal force.

These are nonphysical forces; they arise from kinematics and are not due to physical
interactions. Centrifugal force increases with distance r, whereas real forces always
decrease with distance.

Coriolis and centrifugal forces seem quite real to an observer in a rotating frame.
Driving a car too fast around a curve, it skids outward as if pushed by the centrifugal
force. For an observer in an inertial frame, however, the sideward force exerted by the
road on the tires is not adequate to keep the car turning with the road.
A rock whirling on a string, centrifugal force is pulling the rock outward. In a coordinate
system rotating with the rock, this is correct; the rock is stationary and the centrifugal
force is in balance with the tension in the string. In an inertial system there is no
centrifugal force; the rock is accelerating radially due to the force exerted by the string.

Either system is valid for analyzing the problem. 



Apparent Force in Rotating Coordinates
The force in the rotating system is 

where

The first term is called the Coriolis force, a velocity dependent force and the second
term, radially outward from the axis of rotation, is called the centrifugal force.

Now we will discuss a few examples.



The bead sliding on a stick 

In a coordinate system rotating with the wire the
motion is purely radial. Fcent is the centrifugal force and
FCor is the Coriolis force. Since the wire is frictionless,
the contact force N is normal to the wire. In the
rotating system the equations of motion are

A bead slides without friction on a rigid wire rotating at constant angular speed . The 
problem is to find the force exerted by the wire on the bead. 

and

Since,

Hence,

where A and B are constants depending on the
initial conditions.

The other equation gives:

To complete the problem, apply the initial conditions which specify A and B. 

0( ) at 0, 0, 0; ( )at 0, 0, ;( )at 0, , 0.

 For (iii), cosh
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Consider the following initial conditions and find the final value of N. 



Newton’s bucket

A bucket half full of water is made to rotate with angular speed  about its axis of
symmetry, which is vertical. Find the pressure in the fluid. By considering the surfaces
of constant pressure, find the shape of the free surface of the water.
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In the rotating frame, the bucket is at rest.
Suppose that the water has come to rest
relative to the bucket. The equation of
‘hydrostatics’ in the rotating frame is
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Motion on the Rotating Earth 
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Fix an inertial frame at the center of the earth. Fix another coordinate system at some point on
the surface of the earth but rotating along with the earth with angular velocity . A particle P of
mass m is moving above the surface of the earth subject to a force F and acted upon by the
gravitational force mg.

v is the velocity of the
particle in the rotating frame.



Effective g  'effg g r     'r R r 

The gravitational acceleration measured at any point
will be this effective acceleration and it will be less than
the acceleration due to the earth if it were not rotating.

The centrifugal acceleration, always points
radially outward. It is zero at the pole and maximum at
the equator.
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So the effective acceleration due to gravity does not act to the center of the earth.
However, geff must be perpendicular to the surface of the earth. That is why the shape
of the earth is an oblate ellipsoid, flattened at the poles.

The maximum value of the centrifugal acceleration at the equator is: 
6 5

2 2 2

taking 6.4 10 m and 7.29 10 radian per sec,

3.4 10  m/s

R

R









   

 

2 .R

which is about 0.3 percent of the earth’s gravitational acceleration.



Effect of Coriolis force
Consider a particle in the northern hemisphere at latitude
 moving with velocity v towards north, i.e. ˆv vj

So the Coriolis acceleration is ˆ ˆ ˆ2 2 sink vj v i    

toward the east. In the southern hemisphere it will
toward west. It is maximum at the poles and zero at the
equator.

At the north pole, for a particle moving with a velocity of 
1 km/s, it is given by 5 3 22 2 7.29 10 10 0.15m/sv     

Although the magnitude of Coriolis acceleration is small, it plays important role in
many phenomena on the earth.

1. It is important to consider the effect of Coriolis acceleration in the flight of missile, 
for which velocity and time of flight are considerably large. The equation of motion is 
given by ˆ 2

dv
m mgk m v

dt
   

2. The sense of wind whirling in a cyclone in the northern and southern hemisphere. In
the northern hemisphere it is in the anticlockwise sense whereas in the southern
hemisphere it is in the clockwise sense.



Freely falling particle
Find the horizontal deflection d from the plumb line caused by the Coriolis force acting
on a particle in Earth’s gravitational field from a height h above the Earth’s surface.

Acceleration:

Components of :

Although, the Coriolis force produces small velocity
components along x and y directions, they can be
neglected in comparison to the vertical component.

The components of 
acceleration are:

After integration:

Since z0=h and

If h=100 m and =45 then the deflection would be 1.55 cm 

d=

Toward east


