Variable Mass Problem



Momentum and the Flow of Mass

External force causes the momentum of a system to change
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What if the mass flows between constituent objects and not a constant?

We shall consider four examples of mass flow problems that are
characterized by the momentum transfer of the material of mass Am.



Example 1: Rain Falling on to cart
There is a transfer of material into the object but no transfer

of momentum in the direction of motion of the object.
Consider for example rain falling vertically downward into a
moving cart. A small amount of rain Am has no component
of momentum in the direction of motion of the cart.

Example 2: Leaky Sand Bag
The material continually leaves the object but it does not

transport any momentum away from the object in the
direction of motion of the object. For example, consider an
ice skater gliding on ice holding a bag of sand that is leaking
straight down with respect to the moving skater.
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Example 3: Rocket Motion
The material continually is ejected from the object, resulting in a recoil of the object. For
example when fuel is ejected from the back of a rocket, the rocket recoils forward.
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Example 4: Hose Pipe

The material continually hits the object providing an impulse resulting in a transfer of
momentum to the object in the direction of motion. For example, suppose a fire hose is used to
put out a fire on a boat. The incoming water continually hits the boat giving an impulse.
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Coal Car

An empty coal car of mass m, starts from rest under an applied force of magnitude
F . At the same time coal begins to pour vertically onto the car at a steady rate b
from a coal hopper at rest along the track. Find the speed when a mass m_ of coal
has been transferred.

Because the falling coal does not have any horizontal velocity, the
falling coal is not transferring any momentum in the x-direction to
the coal car.

Initial state at ¢ = 0is when the coal car is empty and at rest
before any coal has been transferred. Final state att = tf is when
all the coal of mass m, = btf has been transferred into the car
that is now moving at speed Vg

p.(0)=0. p(t.)=(my+m)v. = (my+bi v .
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Emptying a Freight Car:

A freight car of mass m_ contains a mass of sand m_.. Att = 0 a constant horizontal force
of magnitude F is applied in the direction of rolling and at the same time a port in the bottom is
opened to let the sand flow out at the constant rate b = dm_/dt . Find the speed of the freight
car when all the sand is gone. Assume that the freight caris atrestatt = 0.
l! _ P Our system is (i) the amount of sand of mass Am that leaves
“ —  the freight car during the time interval [t,t + t], and (ii) the
. freight car and whatever sand is initattime t.
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Rocket Propulsion

A rocket at time t = 0 is moving with speed v, ,in the positive x-direction in empty
space. The rocket burns fuel that is then ejected backward with velocity u relative to
the rocket. The rocket velocity is a function of time, v (1), and increases at a rate

dv /dt. Because fuel is leaving the rocket, the mass of the rocket is also a function of
time, m,(t) , and is decreasing at a rate dm, /dt . Determine a differential equation that
relates @v _/dt, dm /dt, w. ¥ (f),and E°", an equation to be called as the rocket

equation. .
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Rocket in Free Space

If there is no external force on a rocket, F = 0 and its motion is given by

dv dM dv u dif
M— =u—- or —_— = — —
dt dt dit M di

Generally the exhaust velocity u is constant,
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If v, =0, then v = —uln i,

The final velocity is independent of how the mass is released-the fuel can be
expended rapidly or slowly without affecting v.. The only important quantities are the
exhaust velocity and the ratio of initial to final mass.



Rocket in a Gravitational Field

If a rocket takes off in a constant gravitational field, the equation of motion becomes

wg = w2 _
M =M Ty

where u and g are directed down and are assumed to be constant.

dt M dt T

Integrating with respect to time, we obtain

M
vi — Vo =uln (A—f) + gty — to)-

0
Letv, = 0,to = 0, and take velocity positive upward.

vy = uln M, — gt
f M, gly.

Now there is a premium attached to burning the fuel rapidly. The shorter the burn
time, the greater the velocity. This is why the takeoff of a large rocket is so spectacular-
it is essential to burn the fuel as quickly as possible.



Stream Bouncing off Wall

A stream of particles each of mass m and separation | hits a perpendicular surface with speed v . The
stream rebounds along the original line of motion with speed v'. The mass per unit length of the incident
stream is A= m/l. What is the magnitude of the force on the surface?

Consider length L of the stream just
about to hit the surface. The number O
of particles in L is L/l, and since each
particle has momentum mv,, the total
momentum is
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Example: falling raindrop

Suppose that a raindrop falls through a cloud and accumulates mass at a rate kmwv where £ > 0
1s a constant, m 1s the mass of the raindrop, and v its velocity. What is the speed of the raindrop
at a given time if 1t starts from rest., and what is its mass?

Solution: We are taking x as distance fallen and v = . Then the external force is its weight

mg and so

d (mv) dv N dm dv + Emo?
mg = —(mv) = m— + v— = m— + kmuv~,
I i dt dt "

since we are told that dm/dt = kmuv. Cancelling the mass and rearranging

dv
dt

Y do t by
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so that



Now set V? = ¢/k and use partial fractions to get

C dv 1 vl 1 1 V 4+
t = — .2 + dv = log
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soV4+v=(V-v)e e v=V (W) = V tanh(Vkt), so that

v = \/% tanh(y/kgt).

Now we may find the mass: We have dﬂ = kmv = km\/_tanh Vkgt) = my/kgtanh(\/kgt).

Thus o
—ﬂd / v kg tanh(\/kgt) dt

o m dt

/
/ am_ / V kg tanh(y\/kgt) dt
mo T 0

logm — log mg = log cosh(+/ kgt)

m = mg cosh(\/kgt).

which gives



Problem 3.14 K & K

N men, each with mass m, stand on a railway flatcar of mass M.
They jump off one end of the flatcar with velocity u relative to the
car. The car rolls in the opposite direction without friction.

(a) what is the final velocity of the flatcar if all the men jump at the
same time?

(b) What is the final velocity of the of the flatcar if they jump one at a
time?

(c) Does case (a) or case (b) yield the largest velocity of the flatcar?



