Conservation of Momentum



Momentum conservation for a system of particles

« So far we talked about point particles. There is a need to:
(a) generalize it to extended bodies
(b) to deal with variable mass problem

1.Momentum (p = mv) Is a more fundamental quantity than m & v separately.

2. Newton’s 2" law should be written as F = p instead of ‘ma’ (for variable m).

3. For a system of particles, an external Force causes change of total
momentum of the system. The internal forces cancel each other.

It will be useful to locate a point for a system of particles where all the mass

may be concentrated at. Then the single particle EOM will continue.



Center of Mass



A system has n particles with masses

and positions given by

My, M2, ..., My

'y, ro,..., I'

Define a Center of Mass as

1
Rov = M (Z; ’miri)

m?2

m3
ml
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/’. Example

Three masses are kept in a plane as shown
in the figure.

my = 2 Kg, my = 2Kgand mg = 1 Kg

ry = 2j,ry = 2iand ry = 21 + 2j

Total Mass is 5 Kg. Then Center of Mass is
given by

R., = (2ry + 2rg +r3)
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(i+])
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Center of mass

The center of mass vector. R__ . of the two-body system

—_ - body 2
R - T+, I
= My + M,
For a continuous rigid body, each point-like particle has mass J dmr’
dm and is located at the position . The center of mass is then R bed
defined as an integral over the body, - J dm

body



Planar Continuous bodies

The density is given by p(r). An element atr

and of area dxdy has a mass

dm = p(r)dxdy.

= i Z rdm

7 / r)dxdy
And

(1) M = /p(r)da:dy




Examples

The mass per unit length A of a rod of length L varies as A= Ay (x/L), where A, is a
constant and x is the distance from the end marked O. Find the center of mass.
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bodies can be found by treating each
body as a particle concentrated at its
center of mass.



Equations of Motion

What are CM coordinates good for?

Now, by definition,

MR., = Zmiri
>

MR, =

m;x;

But for each particle, labled by ¢,
m,t; = F; = F& 4 i

Hence,

MR, =) Fi + ) F

But by Newton’s third law, all internal forces appear in pairs and are equal

and opposite. Thus in the following summation all internal forces cancel

Y FM =0

Thus Equation of Motion for Center of Mass of any system

each other out.

MRCM — et — ZFS:EL

1

One point R,.,,, traces the same motion as that of a single particle of mass

M under the influence of a force F'¢*!



Translational Motion of the Center of Mass

1 i=N ﬁtﬂtﬂ
tatal mfi'!' - total
I - m

The total momentum is then expressed in terms of the velocity of the center of mass by

The velocity of the center of mass is givenby V_, =

— total

total - -
—

The total external force is equal to the change of the total momentum of the system,

— total _;r
Ft-’.:-td _ dl]' _ mt-:na; 'ﬂr".:m
et

dt dr

where im _is the acceleration of the center of mass.

—m™A_ =M R

The system behaves as if all the mass is concentrated at the center of mass and all the

external forces act at that point. This is an over simplification. The shape of the body and the
point of application of force matters.

The same force on the same mass with different shape may lead to different types of motion.

[ﬁet;ta' -m*™R_ Note EOM describes translational motion. }




Center of mass Theorem

The center of mass of a system of particles (rigid or non-
rigid) moves as if the entire mass were concentrated at that

point and all external forces act there.



An example

Two identical blocks a and b both of mass m slide without friction on a straight track. They are
attached by a spring of length /and spring constant 4. Initially they are at rest. At £= 0, block a
is hit sharply, giving it an instantaneous velocity vy, to the right. Find the velocities for

subsequent times.

v (0) = v,

———

wb{{?] =0

b VU a
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| a Laboratory
R coordinates

|
rL —t—r, —= {
Center of mass
coordinates

myr =—K(r,—ry+l), myr =—k(r,—r,-I).

mry + mry 1
R = = = (r. + m).

m 4+ m E( 1)
/
Fq = Ty - R= ‘% Te = Th)
’r"z:=?'b—R=-4£(?'n—?‘a) =—“r:;.
o —Tp — L =18 — 1y — 1,
miz = —k(rg — 15 — 1)

. EOM In CM frame
miy = +h(rg — 1y — 1),

ot L ' ’
mr, — #) = —2k(r, — r, — ).

Difference in CM
coordinates
executes SHM

Letting u = r, — 1, — [, mit + 2ku =

= A sinwt + B cos wi, where w = vV 2k/m.



Applying initial conditions:

f=0ul0) =0 B =\.
Since u:y*;-—rg—i,':rﬂ—rb—f,
Att=0,  7(0) = 1,(0) — 14(0) = Aw cos (0) = vy, A =v/w

Therefore, u = (vy/w) sin wi.

. + f
Since v, — v, = 1, and v, = —1t,, we have o, = —v; = 31, cos wl.
The laboratory velocities are: v, = B + EJ; R = 1[v.00) + v,(0)]
ﬂb = R e E}.EI:' = '&'i‘.-"u.

(4
b, = Eﬂ(l + cos wl) v = ?{1 — cos wh).

The masses move to the right on the average, but they alternately come to restin a
push me-pull-you fashion.



Conservation of momentum

The total external force Facting on a system is related to the total momentum P of the

system by "
F=C" AP = = [ Fadr = Impulse

Consider the implications of this for an isolated system, that is, a system which does not
interact with its surroundings.

F =0, dP/dt = 0. The total momentum is constant.

* No matter how strong the interactions among an isolated system of particles.
* No matter how complicated the motion is.

The change in the total momentum of the systemis zero, Ap__, = 0;

_ . _ — total — = L.
Initial momentum: Po- =mv, , +m,v,, +---. Finalmomentum: Py~ =MV, +0,V, ¢+

Po~ =B; - Poxd +PoyJ+ PoK=Ppl + P J+ Pk
Component wise conserved



A few points about the conservation law

* Conservation of momentum holds true even in areas where Newtonian
mechanics proves inadequate, including the realms of quantum mechanics
and relativity. So it is more fundamental.

« Conservation of momentum can be generalized to apply to systems like the
electromagnetic field, which possess momentum but not mass.

The momentum of a system is conserved if the net external force on the

system is zero




Spring Gun Recoil

A loaded spring gun, initially at rest on a horizontal frictionless surface,

fires a marble at angle of elevation 6. The mass of the gun is M, the

mass of the marble is m, and the muzzle velocity of the marble is vg.
What is the final motion of the gun?

v sin @
Yo

Vg cOs 6 - Vf

M
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By conservation of momentum: Since there are no horizontal external forces,

dpP., _ _
P.iisa = 0, the system is initially atrest. 0 = g Painitial = Pz ginar
After the marble has left the muzzle, the gun recoils with some speed V;and its final horizontal momentum
is MV,, to the left. The final horizontal speed of the marble relative to the tableis v5 cos 6 — V.

Mmv, cos 0
Theretore 0 = m(ocos § — Vy) — MV, —V; = ———
M+ m




Exploding Projectile

An instrument-carrying projectile of mass M accidentally explodes at the top of its trajectory.
The horizontal distance between launch point and the explosion is [. The projectile breaks into
two pieces that fly apart horizontally. The larger piece, m,, has three times the mass of the
smaller piece, m,. The smaller piece returns to earth at the launching station. Neglect air
resistance and effects due to the earth’s curvature. How far away from the original launching

point does the larger piece land? 1 3
M=m+m,, m,=3m,m =—M,m, =—M
e’\m Momentum conservation: 4
= m}:}\ MV =—myv,+my,, v,=V, Vt=I
/ 3 5 5 5 8
\ V, ==V, X, =Vt ==, X; =1+ =1 ==
/ 1 \ 3 3 3 3
 — ,Q,-~-—-—>l 7('.5—
Center of mass method:
mx, . +m,x
R, = var F e _ o), X, =0, X, _aM_8
M m, 3

Is it always possible to reduce a many body problem to center of mass coordinate?



