Rigid Body Dynamics



Angular Velocity as Vector

® angular velocity vector is defined for fixed axis motion.
® Generalize to instantaneous angular velocity vector.

® Define: w such that the instantaneous velocity v; of each particle can

be written as

If we know (J(t), the motion can be found.



Angular momentum of a rotating rigid body

Consider a rigid body composed of N particles with
masses my, My, ..., M, ..., M. One of the points O of
the body is fixed and the body is rotating about an
arbitrary axis passing through the fixed point with an
angular velocity o.

Take XYZ and xyz are the fixed and body frames
respectively with common origin at O. Then, the
coordinates of the jth point mass are same in the body
and fixed frames. Let us tale it as r;

The velocity v, of the jth particle in the fixed frame is
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Instantaneous Angular Momentum

At any instant 7, there is &, such that
L = ZI’@ X Pl
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Instantaneous Angular Momentum
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Calculation details

Let us compute one component of L, say L,. Temporarily dropping the subscript j,
0 Xt = (2w, — Yo )i + (Tw, — 2w.)] + (Y. — zw,)k.

[r X (@ X ]z = y(o X 1), — 2(w X I),.
= Y(Ywz — Twy) — 2(Tw, — Zwy)
= (y? + 2wz — TYwy — T2w,.
Hence, L, = Zmy;® + 2w, — ZM;T;Yjw,; — ZM;Xi2;jw,.
Let us introduce the following symbols:
L. = Zm(y;2 + 2,9 I, = —Zm;zy; I.. = —Zm;z;z;.

I« is the moment of inertia of the body about the x-axis of the body frame and /,, and
|, are called products of inertia. The products of inertia are symmetrical; for example,

I., = —2Zmxy; = —2Zmyix; = Ly



Instantaneous Angular Momentum

® [, = mi(r7 —x7))and I,, and I.. are called Moments of

Inertia.
® /., = (—> myyx;),l,.and [, are called Products of Inertia.

® Instantaneous Angular Momentum
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All the three components of angular momentum are given by:

o L:z: = Ia::cw:c + Ia:ywy + Ia:zwz
Details L Lot Lo 4 Lo

Lz = Iza:wa: + Izywy + Izzwz-

For fixed axis rotation about the z-direction, & = wk L, reduces to

However, angular velocity in the z-direction can produce angular momentum about
any of the three coordinate axes. For example, if w = wk thenl =/, ®and L =/, .

In fact, the angular momentum about one axis depends on the angular velocity about
all three axes.

Both L and ® are ordinary vectors, and L is proportional to @ in the sense that
doubling the components of ® doubles the components of L.

However, L does not necessarily point in the same direction as w.



Example
Moment of Inertia
2ml? cos? 6 0 —2ml?cosfsinb
I = 0 2mi? 0
—2ml?cosfsinfd 0 2mi? sin? @

By the time body turns and lies in YZ plane, Moment of Inertia becomes
2ml? 0 0
I = 0 2ml? cos® 6 —2ml? cos fsin d

0 —2ml%cosfsind 2ml? sin® 0

Iml? cos? 0 0
0 Iml?
—2ml?cosfsinfd 0

—2ml? cos A sin Hw.
0

2mi? sin® fw.

If the body is spinning about z axis @ = w. K then,

—2ml? cos B sin b
0

2mi? sin’ 6

o O



Principle Axes

Moment of Inertia

[ 2mi? cos? 6
[ = 0

\ 0

0
2ml?

0

0 )
0
2ml? sin® 6 }

The three axes are called the Principle Axes of the body.



An example: Rotating Skew Rod
LTD Consider a simple rigid body consisting of two particles of

i N mass m separated by a massless rod of length 2/. The
midpoint of the rod is attached to a vertical axis which
rotates at angular speed . The rod is skewed at angle a, as
shown in the sketch. The problem is to find the angular

momentum of the system.

» = wk
L=2(r; X pj) |p| = mwl cos «, Or
Either | = 1. IL| = 2mwl? cos a. w, = wcos «, and w| = w sin c.
lz L = Iw.L = 2ml2wL T
- ""‘"‘*’i‘/ ~_ =2ml*wcos a. 7
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® and L are not parallel.



Kinetic energy

Kot = 3Zm¥V; = 12mfo X 1) + (0 X ).

I

%Emj'&)'[r;X((Oxr;')] (AxB)-:C=A.-(BxC0C)
%(:) ‘ E’m,-r;- X ((:) X r;)

The sum in the last term is the angular momentum L. Therefore,

— 1
Krot — 2w * L.



Summary so far....

The nine components of Ml can be tabulated Ina 3 X 3 array:

1, 1, I,

Xy Xz

-

yX yy yz
Klzx Izy Izz/

I is called the moment of inertia tensor.

L 1,y 1,,are the Ml about the x,y and z-axis of the body frame respectively. Off-

diagonal terms are the product of inertia.

Since I, =1,,, I,,= 1, and [, =1, , out of the nine components, only six at most are

different and the matrix is symmetric.

The angular momentum and the kinetic energy can be expressed as

L=1-& and Tzlc?)-[:%
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Rotation of a square plate

Consider rotation of a square plate of side a and mass M about an axis in the plane
of the plate and making an angle a with the x-axis. What is the angular moment L

about the origin?

A Consider a body fixed coordinate system (x,y,z) as shown in
the figure.
Z @wCOS
y L=1-® with &=|wsina
> 0
X o In order to estimate the moment of inertia tensor, one
a > needs to calculate the moments of inertia about x, y, and
w z-axis and the products of inertia.
a a
1 1 2
2 4 2 2
.= [ oy dxdy =Zoa’ =~ Ma’ =1, 1, =, +1, =~ Ma

x=0 y=0

x=0 y=0

l,



( Mazm(lcosa—lsin aj
(Ma?/3 -Ma?/4 0 \(wcosa 3 )
~Ma’/4  Ma?/3 0 wsina |= Mazco(—lcosowrlsinaj
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For a =45, y/L
/50/\/5 >

*:(—Maa)—Maa)Oj and o= co/\/i

124/2 122

For 8=45°, they are parallel to each other.




 For a rotation around a principal axis, a vanishing torque
means that if the object is pivoted at the origin and if
origin is the only place where any force is applied

(implying that there is zero torque about it), then the object

can undergo a rotation with constant angular velocity, w. If

you try it with a non-principal axis, it won’t work.



Principal axes and Moment of Inertia

If the symmetry axes of a uniform symmetric body coincide with the coordinate axes,
the products of inertia are zero. In this case the tensor of inertia takes a simple
diagonal form:

I.. 0 0
I={0 I, 0|
0 0 [Z.

For a body of any shape and mass distribution, it is always possible to find a set of
three orthogonal axes such that the products of inertia vanish. Such axes are called
principal axes. The tensor of inertia with respect to principal axes has a diagonal form.

Principal axes of different symmetric bodies:

¢ any
A Ny

In the principal axes system:
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Principal axes: Diagonalization of Inertia tensor:

Consider a rigid body with body axes x-y-z, Inertia tensor I is (in general) not diagonal.
But it can be made diagonal by | = RIR'

Rotate x-y-z by R to a new body axes x’-y’-z". ( L, 0 O )
@ =Ra, l,={0 1, 0
L'=RL=RI®#=RIR'R®, R'R=1 0 0 1,

=l,0

One can choose a set of body axes that make the inertia tensor diagonal. These body
axes are the Principal Axes.

How do one can find them?
Consider unit vectors e,, e,, e; along principal axes : 6 =46, 1=123
Express | in any body coordinates, and solve eigenvalue equation

T-21/=0, = 2=1,1,,1, (I isthe identity matrix). Eigenvectors corresponding to
each A point the principal axes

One can often find the principal axes by just looking at the object.



Finding eigenvectors

Example: Find the eigenvalues and associated eigenvectors of the matrix

70 -3
A=| -9 -2 3
18 0 -8 |

First we compute det(A — AI) via a cofactor expansion along the second column:

7T— A 0 —3 -y 3
-9 -2-X 3 = (=2=-N(=D8 g —R;A'
18 0 —8—2A ) )
= —(24+N[(7=A)(=8—=A) + 54]
= —(A+2)(A2+)N-2)
= —(A+2)*(A—1).
Thus A has two distinct eigenvalues, Ay = —2 and A3 = 1. (Note that we might
say Ao = —2, since, as a root, —2 has multiplicity two. This is why we labelled

the cigenvalue 1 as As.)



Now, to find the associated eigenvectors, we solve the equation (A — A1) x =0
for 1 = 1,2,3. Using the eigenvalue A3 = 1, we have

i 6;1’?1 — 3:1‘-3 | i 0 ]
(A — I)X = —911 — 379 + 313 = 0
] 18:1?1 — 9;1’?3 i i 0 )
= 13 = 214 and To9 = I3 — 311
— 13 = 211 and To = —I1.

So the eigenvectors associated with A3 = 1 are all scalar multiples of




Square lamina:

Mass M and side a.
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