PH101

Saurabh Basu
Class timings (Group Il): 9 am-10 am (Wednesdays)

10 am -11 am (Thursdays)

Class timings (Group IV): 4 pm- 5 pm (Wednesdays)
3 pm — 4 pm (Thursdays)

Special: 18" August and 15" September (Friday)
Class timings (Group I1): 11 am-12 noon
Class timings (Group IV): 2 pm- 3 pm



SYLLABUS upto Mid-Sem.

Classical Mechanics: Review of Newtonian Mechanics in rectilinear coordinate system. Motion in
plane polar coordinates. Conservation principles. Collision problem in laboratory and centre of mass
frame. Rotation about fixed axis. Non-inertial frames and pseudo forces. Rigid body dynamics.
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Tasel Depprer
.. Fobert Koler bow
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TG1 L1

TG2 L2
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VECTORS



MATHEMATICAL PRILIMINARIES

 Definition of vector:

A vector is defined by its invariance properties
under certain operations --

* Translation
* Rotation
 Inversion etc



Invariance Under Rotation

A, = A cosB
A, =Asinb

A, = A cosb
A, =Asing

A, = Acos(0 — ¢)=AcosBcosd + AsinBsingd
A, = Asin(6 — ) =A sinBcosd-AcosBsind
Simplifying
Ay =A, cosd +Asind
A,/ =-Asind +A cosd



* In a compact form

A’y qcosp sy /A,
(.4 .') (—simp cnscp} (ﬂ}.)

¥

Transformation equations for the components of
a vector can be written as,

A-=RA



GENERALISATION TO 3 DIMENSIONS

 Consider the Rotation Matrix in 3D,

cosd sing 0
R = | —sinf cos 0
0 0 1

Rotation about z-axis by an angle &

With the help of this we shall prove that A xB
IS a vector I.e. it IS Invariant under rotation.



N
* Since A is a vector its component transform as,

AL\ [ cosB sinb 0\ /a,
Ay | 7 | —sinf cos® 0] 4,
Az 0 0 1/ \4

A, = AcosB +A sinB

X

A, =-Asind + A cosb

A=A

4 Z

(because of rotation about z-axis, the z-component

remains invariant.)



Similarly

B, = B,cos6 + B, sinb,
B, = - B,sinB + B, cosb
B, = B,

Now, consider the vector,

C'— & x B
N xB = (A x

B'), + (A XB'), + (A X B,

Consider only x- component (for a moment)



(A xB), = (-sinBA, + cosBA, )B, -(-sinB B+ cosBB ) A,
Since Az’z A,

B, =B,

(A xB),=sinB(B A, —A,B,) +cos8(A B,-B, A)
(A4 xB'), =Ru(A xB)y

Similarly we can prove it for the other components also.
(71’ xE')y - RV(TLI xE)y;m, XE')z = RZ(TL1 xE)z

Hence, (7 xﬁ) IS Invariant under rotation and transforms
like a vector.



Vector Multiplication

» Scalar product or Dot product

A.B = |A||B|cosB
[Remember W = F. §]

 Vector Product or Cross Product

A X B = |A||B|sin®ii

[Remember L= 7 x p ]



Vector Calculus

« Gradient: To know the direction along which a
scalar function changes the fastest

* ¢(x,vy,z) Is scalar function in cartesian

i d¢ d¢ 09
coordinates TR S A
0x dy 0z

Gradient operator d d d

V=X—+yV—+Z—

dx y@y 0z

Find Vo foro (x,y,z) =7 =x?+y*+ 22



Divergence

* It quantifies how much a vector function
diverges.lt Iis scalar.




Curl

e Circulation of a vector field,
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Problem 1.11(K &K)

* Let A be an arbitrary vector and #i be a unit vector
in some fixed direction. Show A = (A.7)fi+ (i x 4) X #
B

Fromfig A= B+C
B =Acosd=(A.1)n
— —
c _ _
74 C=Asind=(AxA) X7
a B

Hence proved.



Problem 1.13(K &K)

* An elevator ascends from the ground with uniform
speed. At time T, a boy drops a marble through the
floor. The marble falls with uniform acceleration g =
9.8 m/ < and hits the ground T, sec later. Find the
height of the elevator at time T;

1
Z=h—I—VD[t—T1]—§g(t—lez

4 Y,
Q-,-}- At T, marble reaches ground
n r:::mu*:r—lgr:r?butv:c.zE
R 0fz 5 d02 T,
. 1
o 7 gT>°T,




Polar Coordinates



We are going to look at a new
coordinate system called the polar
coordinate system.

You are familiar with plotting with
a rectangular coordinate system.
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The center of the graph is Angles are measured
called the pole. from the positive x axis.

x
Fa —

O

AW,

Points are

represented by a
, 0)

To plot the point

o

First find the angle Tt/4

Then move out along
the terminal side 5

“ln

2

T

4

a|N

: .'i
; | W
T
:

olx

]

x -

s|§

17x

Jh

N

i
a‘ Rl
N
'\.
w|o
A

‘ -y
-
N

ix



Polar Coordinates

To define the Polar Coordinates of a plane we need first to fix a point

which will be called the Pole (or the origin) and a half-line starting
from the pole. This half-line is called the Polar Axis.

S0 s

r
9 The Polar Angle 6 of a point P, P # pole, is the angle
PoIa;\Axis between the Polar Axis and the line connecting the
point P to the pole. Positive values of the angle
A positive indicate angles measured in the counterclockwise
angle. direction from the Polar Axis.




More than one coordinate pair can refer to the same point.

: . (2,300)
2107300 o =(-2,210°)
s ~ (~2,-150°)

All of the polar coordinates of this point are:
(2,30° +n-360°)
(—2,-150° +n-360°) n

0, £1, £2 ...



