Angular Momentum
&

Fixed Axis Rotation (contd)



Summary of rotational motion

All rigid body motion can be split into:
o A translation of one point of rigid body

# Rotation of rigid body about that point

A special case in which rigid body motion is combination of fixed axis
rotation + translation of fixed axis keeping it parallel to the some fixed

axis in space.

A general motion can always be split into a rotation + a translation



Example of pure rotation and rotation plus translation
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Pure Rotation Rotation plus translation

Each point of the rigid body performs a circular motion about (). The point shown moves long a straight line



Example of pure rotation: A rotating top

Spin angular ! Direction of
L = [ \ mementum precession

Direction
of spin

Gravitational
torque mgl produces
precession

All points of the top are restricted to a spherical surface.



Example of rotation + Translation: Tyre Rolling

shutterste.ck



Calculating Angular Momentum for rotation + translation
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wemotbosy Ry [ = S (Ra+7:) x (Va+ i)
P: A point of body 71 S . S .
= Z m;lRa X Vi + Z m;r’; X v';
+ Z m;Ra X U; + Z mir'; X Vi
O = (Z mi) Rax Vyi+ Z m;r’; X v';
ro= Ratr +R4 X (Z mm) + (Z m;r’i) X Vi

v = ‘7,4 -+ l_} o - .
~ = MRA X V4s+ Ly
Angular Momentum about O: L=> m;r; X IoLr
- = = = Lem 0
Angular Momentum about A: Lo=> m;r'; x v o
L = ) mifixT Angular Momentum splits nicely into two terms

_ Zm‘:‘ (fh un ;7’1) X (‘74 + 'L?i)



The angular momentum relative to the origin of a body can be

found by treating the body like a point mass located at CM

and

finding the angular momentum of this point mass relative to the

origin plus the angular momentum of the body relative to CM.



Kinetic energy

1 1
— 2 —Icm 2
K=-MV2 +-I"w

The Kinetic energy of the body can be found by treating the body like a
point mass located at the CM, and the (rotational) kinetic energy of the

body relative to CM.



Angular Momentum of a System of Particles

Consider a collection of Nparticles. The total angular momentum of the system is
N

y o L= Z r; X pi.
i i=1
The force acting on each particle is F' + Fi" = dp; /dt.

The internal forces come from the adjacent particles which are usually
central forces, so that the force between two particles is directed
along the line between them.
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= Z v; X (mv;) + Z r; x (F& + F;."t)
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S “The total external torque actmg on the body, which may come
Fit = —F from forces acting at many different points.

. - The particles may not be rigidly connected to each other, they
B P ij = might have relative motion .
27 ZZ“ ) x Fii'. = 0 ight have relative moti

i

ln the continuous case, the sums need to be replaced with integrals.



The Torque

T = Z (ﬁq + 7“_”3) % ﬁl Dynamical Equations
S RaxF+ Y X P _
dt
— R4 X (Z F;) + z'ﬂf X F; dLo |
— = 70
- _ dt
— RA X F' 4+ 70
Torque also appears as two terms. Compare with If a body moves such that the axis of rotation moves parallel to a fixed axis

then we need to consider only the z component of angular momentum.

dL L dVy  dL .
— = MR,y x — i
dt R TR T dlo:  _ 7
- dt
= ﬁA x F+ dﬁ o = 7.

dt



Conservation of L for a system of particles about a Point:

~ dL I N ~ N
7 =— whereL=) Fxp=> L and 7%= 7"
i=1

dt i1 i=1

If 7% =0, the net torque i.e. the sum of torque on individual particles is zero,
the total angular momentum L, the sum of angular momentum of individual
particles will be constant.

That IS
L

> (rxp)  =(rxp)

I initial =1 final

initial —



Example: Drum on Ice

DISC

ICE

No net force
V.m = const
No Net torque about C
w = const
Ang Mom about C
Lo = Mb*w/2
Ang Mom about O

L =M b‘/cm + LO

L=Fbt+ Ly

Tyre on road will have a friction acting opposite to the direction of motion.



The equations ( f < V)

ExampleTémTvre on the road

Ma., = F—f
]OOJ — bf

If f < puN then there is no slipping, a = .

Mae, = F — Iha/b
1
Ma,,, + 5 Mboa = F

2F
Qe = S77
3M
2F
Forces on the tyre YV
o Force F and f = F'/3. Clearlv F' < 3uN.
The equations (f > puN) thatis F' > 3uN
» Frictional Force f
Mae, = F —uN
Torque about C Iy = buN
o T —= bf In this case tyre slides on the road, there is no relationship between o and

a cm



Angular momentum for Fixed Axis Rotation

By fixed axis we mean that the direction of the axis of rotation is always along the same line;
the axis itself may translate.

For example, a car wheel attached to an axle undergoes fixed axis rotation as long as the car
drives straight ahead. If the car turns, the wheel must rotate about a vertical axis while
simultaneously spinning on the axle; the motion is no longer fixed axis rotation.
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/ We are usually concerned only with L,, the component of angular momentum
along the axis of rotation.

(I:j)Z:szzmjpjza), LZ=ZLjZ:(ijpf]a):la), I=Z:mj,0j2
[ i J

2 2 : .
For continuously distributed mass: 32 mip;* — [p* dm, I = moment of inertia



Moments of inertia of few symmetric objects:

A ring of mass M and
radius R, axis through
center, perpendicular
to plane.

———————

A ring of mass M and
radius R, axis through
center, in plane.

A disk of mass M and
radius R, axis through

A disk of mass M and
radius R, axis through

center, perpendicular i 1R center, in plane. %Mﬁg
to plane. -

A thin uniform rod of . A thin uniform rod of | : .

mass M and length L, : mass M and length L | :

axis through center, : axis through end,|:

. L mr? : Lyr?
perpendicular to rod. 12" perpendicular to rod. K
A spherical shell of : A solid sphere of :
mass M and radius R, & mass M and radius R, &
any axis through v any axis through '
center. . % vRr2 | | center. . % MR?

The parallel-axis theorem:
I. = MR* + I™M

The perpendicular-axis theorem:

=1+ *'r_r




Moment of Inertia Tensor

* Consider a rigid body rotating with a constaht angular velocity w about an axis
passing thru’ its origin.

* The velocity of the point i is given by  dr;

dr;
L= Z M FX— = Z M, 1% (W XT;) = Z m; [*rfr.u— [ri-m]ri],
i=1M =1 N i=1M

The above formula has a matrix form

L Lo Loy L\ / o
Ly | = Lix Ly Luz Wy |1,
L. Lo Ly L./ \ w,

Lo = Z [U{E+Ziz]“1i:[[yz+31] dm, I:q; — Iyx = _ Z xiyinli:__[xy dm,

i=1,N =LN

where

are the Moment of Inertia about the x-axis and the product of inertia respectively.



Rotational Kinetic energy

2,

] dr; :
The Kinetic energy is written as, K= Z mi( ) :

All points of the top are restricted to a spherical surface.

Z (W x ;) [wxri]:%w-zmnx[w}qri].

i=1,N

]
It follows that K= 5 W L.

With w having all the components, the kinetic energy is written as,

]
}{:E(Imm —|—Iyy{.u —|—Imw + 21, mxmy—l—lluzmyw,ﬂ—l—ZImwxmz).



The Physical Pendulum
r = la —[W sin ¢ = I,;,—,t;;';-.
= Making the small angle approximation,

Iu"i; _["' ﬂﬂgqﬁ — U
¢ = A coswt + Bsinwt, wherew =V Mig/I..

— Center
of mass

By the parallel axis theorem we have [, = I, + M

7 = M(k* + 1%),
k= Al — I, = Mk
M

a'! ! _ | Q‘E
l‘ﬁ =10 that w = ;32 _|_ tg

W The simple pendulum corresponds to k = 0, @ = V g/1,

ngﬂzzﬂ\/(k%lz)

@ gl

L% +b?

For a bar pendulum: k =
12




Angular Impulse and Change in Angular Momentum

If there 1s a total applied torque T; about a point S over an mterval of time Af =7, —1,. then the

torque applies an angular impulse about a point S, given by

35=J:f3dL

Because T, =dL™ /dt. the angular impulse about S is equal to the change in angular

momentum about S.

- Jo—- ! If--iTL —
7. =J: T, dt =J: R T A




