Elementary functions

The Exponential Function

Recall:

- Euler's Formula: For $y \in \mathbb{R}$, $e^{iy} = \cos y + i \sin y$
- and for any $x, y \in \mathbb{R}, e^{x+y} = e^x e^y$.

Definition: If z = x + iy, then e^z or exp(z) is defined by the formula

$$e^z = e^{(x+iy)} = e^x(\cos y + i\sin y).$$

Properties of Exponential Function

• $e^{z+w}=e^ze^w$, $\forall z,w\in\mathbb{C}$. Let $z=x+iy,\ w=s+it$. So

$$e^{z+w} = e^{(x+s)+i(y+t)} = e^{(x+s)}[\cos(y+t) + i\sin(y+t)]$$

$$= e^x e^s [(\cos y \cos t - \sin y \sin t) + i(\sin y \cos t + \cos y \sin t)]$$

$$= [e^x (\cos y + i \sin y)][e^s (\cos t + i \sin t)] = e^z e^w.$$

• $e^z \neq 0$, for all $z \in \mathbb{C}$. Look at $|e^z| = |e^x||e^{iy}| = e^x \neq 0$.

The Exponential Function

Properties of Exponential function

• $\frac{d}{dz}e^z = e^z$. By definition $e^z = e^x \cos y + ie^x \sin y$ satisfies C-R equation on $\mathbb C$ and has continuous first order partial derivatives. So e^z is entire and

$$\frac{\mathrm{d}}{\mathrm{d}z}\mathrm{e}^z = \frac{\mathrm{d}}{\mathrm{d}x}\mathrm{e}^x \cos y + i\frac{\mathrm{d}}{\mathrm{d}x}\mathrm{e}^x \sin y = \mathrm{e}^z.$$

- e^z is periodic with period $2\pi ni$ for some $n\in\mathbb{Z}$. (A function $f:\mathbb{C}\to\mathbb{C}$ is called **periodic** if there is a $w\in\mathbb{C}$ (called a **period**) such that f(z+w)=f(z) for all $z\in\mathbb{C}$.)
- If $w \in \mathbb{C}$ is a period of e^z then $e^{z+w} = e^z$ for all $z \in \mathbb{C}$. In particular for z = 0 we have $e^w = 1$. If w = s + it then $e^{it} = 1$, i.e. $t = 2\pi n$ for some $n \in \mathbb{N}$.
- e^z is not injective *unlike* real exponential.
- $\bullet \ \overline{e^z}=e^{\overline{z}}, \ e^0=1, |e^z|\leq e^{|z|}.$

The Exponential Function

Mapping Properties of Exponential function:

- $\bullet \ \{(x_0,y):y\in\mathbb{R}\}\longmapsto \{(r,\theta):r=e^{x_0},\theta\in\mathbb{R}\}.$
- $\{(x,y): a \le x \le b, c \le y \le d\} \longmapsto \{(r,\theta): e^a \le r \le e^b, c \le \theta \le d\}.$

Trigonometric Functions

Define

$$\sin z = \frac{1}{2i} (e^{iz} - e^{-iz}); \quad \cos z = \frac{1}{2} (e^{iz} + e^{-iz}).$$

Properties:

- $\sin^2 z + \cos^2 z = 1.$
- $\sin(z+w) = \sin z \cos w + \cos z \sin w$ and $\cos(z+w) = \cos z \cos w \sin z \sin w$
- $\sin(-z) = -\sin z$, $\cos(-z) = \cos z$, $\sin(z + 2k\pi) = \sin z$, $\cos(z + 2k\pi) = \cos z$,.
- $\sin z = 0 \iff z = n\pi \text{ and } \cos z = 0 \iff z = (n + \frac{1}{2})\pi, \ , \ n \in \mathbb{Z}.$
- sin z, cos z are entire functions.
- $\bullet \ \frac{d}{dz}(\sin z) = \cos z, \ \frac{d}{dz}(\cos z) = -\sin z.$
- **Prove/Disprove:** $\sin z$ is bounded $\forall z \in \mathbb{C}$.

Trigonometric functions

Define

$$\tan z = \frac{\sin z}{\cos z}, \quad \cot z = \frac{\cos z}{\sin z}, \quad \sec z = \frac{1}{\cos z}, \csc z = \frac{1}{\sin z}.$$

• Hyperbolic Trigonometric functions: Define $\sinh z = \frac{e^z - e^{-z}}{2} \cosh z = \frac{e^z + e^{-z}}{2}$.

- Properties:
 - sinh z, cosh z are **entire** functions.

 - sinh(-z) = sinh z, cosh(-z) = cosh z,
 - $\sinh(z + 2k\pi i) = \sinh z$, $\cosh(z + 2k\pi i) = \cosh z$, $k \in \mathbb{Z}$.
 - sinh(iz) = i sin z and cos(iz) = cos z
 - $\sin z = \sin(x + iy) = \sin x \cosh y + i \cos x \sinh y$, and $\cos z = \cos(x + iy) = \cos x \cosh y i \sin x \sinh y$ where $\sinh x = \frac{e^x e^{-x}}{2}$, $\cosh x = \frac{e^x + e^{-x}}{2}$.

Recall:

- e^z is not an **injective** function as $e^{z+2\pi ik}=e^z$, $k\in\mathbb{Z}$.
- e^z is an **onto** function from $\mathbb C$ to $\mathbb C^*=\mathbb C\setminus\{0\}$. Take $w\in\mathbb C^*$ then $w=|w|e^{i\theta}$ where $\theta\in(-\pi,\pi]$. If we define $z=\log|w|+i\theta$ then

$$e^z = e^{\log|w|+i\theta} = e^{\log|w|}e^{i\theta} = w.$$

• If we restrict the domain of the exponential then it becomes injective. If $H = \{z = x + iy : x \in \mathbb{R}, -\pi < y \le \pi\}$ then $z \to e^z$ is a bijective function from H to $\mathbb{C} \setminus \{0\}$.

Question: What is the inverse of this function?

Definition: For $z \in \mathbb{C}^*$, **define** $\log z = \ln |z| + i$ arg z.

- $\ln |z|$ stands for the real logarithm of |z|.
- Since arg $z = \text{Arg}z + 2k\pi$, $k \in \mathbb{Z}$ it follows that $\log z$ is not well defined as a function. (multivalued)
- For $z \in \mathbb{C}^*$, the **principal value** of the logarithm is defined as Log $z = \ln |z| + i$ Argz.
- Log : $\mathbb{C}^* \to \{z = x + iy : x \in \mathbb{R}, -\pi < y \le \pi\}$ is well defined (single valued).
- Log $z + 2k\pi i = \log z$ for some $k \in \mathbb{Z}$.

- If $z \neq 0$ then $e^{\text{Log}} z = e^{\ln|z|+i} \text{Arg} z = z$ (What about Log (e^z)?).
- Suppose x is a positive real number then Log $x = \ln x + i \operatorname{Arg} x = \ln x$.
- Log $i = \ln |i| + i\frac{\pi}{2} = \frac{i\pi}{2}$, Log $(-1) = \ln |-1| + i\pi = i\pi$, Log $(-i) = \ln |-i| + i\frac{-\pi}{2} = -\frac{i\pi}{2}$, Log $(-e) = 1 + i\pi$ (check!))
- The function Log z is not continuous on the negative real axis $\mathbb{R}^- = \{z = x + iy : x < 0, y = 0\}.$

To see this consider the point $z=-\alpha,\ \alpha>0$. Consider the sequences $\{a_n=\alpha e^{i(\pi-\frac{1}{n})}\}$ and $\{b_n=\alpha e^{i(-\pi+\frac{1}{n})}\}$. Then $\lim_{n\to\infty}a_n=z=\lim_{n\to\infty}b_n$ but $\lim_{n\to\infty}\log a_n=\lim_{n\to\infty}\ln\alpha+i(\pi-\frac{1}{n})=\ln\alpha+i\pi$ and $\lim_{n\to\infty}\log b_n=\ln\alpha-i\pi$.

- $z \to \text{Log } z$ is **analytic** on the set $\mathbb{C}^* \setminus \mathbb{R}^-$. Let $z = re^{i\theta} \neq 0$ and $\theta \in (-\pi, \pi)$. Then $\text{Log } z = \ln r + i\theta = u(r, \theta) + iv(r, \theta)$ with $u(r, \theta) = \ln r$ and $v(r, \theta) = \theta$. Then $u_r = \frac{1}{r}v_\theta = \frac{1}{r}$ and $v_r = -\frac{1}{r}u_\theta$.
- The identity Log $(z_1z_2) = \text{Log } z_1 + \text{Log } z_2$ is not always valid. However, the above identity is true if and only if Arg $z_1 + \text{Arg } z_2 \in (-\pi, \pi]$ (why?).
- Branch of a multiple valued function: Let F be a multiple valued function defined on a domain D. A function f is said to be a branch of the multiple valued function F if in a domain $D_0 \subset D$ if f(z) is single valued and analytic in D_0 .
- Branch Cut: The portion of a line or a curve introduced in order to define a branch of a multiple valued function is called branch cut.
- Branch Point: Any point that is common to all branch cuts is called a branch point.

Complex Exponents

Let $w \in \mathbb{C}$. For any $z \neq 0$, define

$$z^w = exp(w \log z),$$

where "exp" is the exponential function and log is the multiple valued logarithmic function.

- z^w is a multiple valued function.
- $i^i = \exp[i \log i] = \exp[i(\log 1 + i\frac{\pi}{2})] = \exp(-\frac{\pi}{2}).$