
Surface integral

A revision of Riemann integral of one variable

Let f : [a, b] → R be bounded function and P = {xo, x1, . . . , xn} is a partition of [a, b], where

{a = xo < x1 < · · · < xn = b}. Let ∆xi = xi − xi−1. Define mi = inf{f(x) : xi−1 ≤ x ≤ xi}
and Mi = sup{f(x) : xi−1 ≤ x ≤ xi} Write

L(P, f) =
n
∑

i=1

mi∆xi and U(P, f) =
n
∑

i=1

Mi∆xi.

Since f is bounded, there exist m,M ≥ 0 such that m ≤ f(x) ≤ M for all x ∈ [a, b]. Hence

m(b− a) ≤ L(P, f) ≤ U(P, f) ≤M(b − a).

It is easy to see that if P1 ⊆ P2, then U(P1, f) ≥ U(P2, f) and L(P1, f) ≤ L(P2, f). It is clear

that L(P, f) is an increasing function over the set of all finer partitions while U(P, f) is a

decreasing function of P.

Definition 1. The function f is said to be Riemann integrable (or f ∈ R[a, b]) if

inf
P
U(P, f) = sup

P
L(P, f).

Let ω(P, f) = U(P, f)− L(P, f). From the definition, it follows that

inf
P
ω(P, f) = inf

P
{U(P, f)− L(P, f)} = 0, (1)

where ω(P, f) is known as oscillatory sum of f over the partition P. Hence, if f ∈ R[a, b],

then for each ε > 0, there exists a partition P such that ω(P, f) < ε. On the other hand, for

ε = 1
n
, n ∈ N, there exists a partition Pn such that ω(Pn, f) <

1
n
. Thus, lim

n→∞
ω(Pn, f) = 0.

Theorem 2. Let f : [a, b] → R be bounded. Then f ∈ R[a, b] if and only if there exists a

sequence {Pn} of partitions of [a, b] such that lim
n→∞

ω(Pn, f) = 0.

Proof. We have already seen the forward implication. For the other one, if lim
n→∞

ω(Pn, f) = 0,

then for each ε > 0, there exists no ∈ N such that ω(Pn, f) < ε, whenever n ≥ no. But, then

inf
P
ω(P, f) ≤ ω(Pno

, f) < ε for all ε > 0. Since f is bounded, both inf
P
U(P, f) and sup

P
L(P, f)

exist, and from (4) it follows that inf
P
U(P, f) = sup

P
L(P, f). Hence f ∈ R[a, b].

Example 3. Let f : [0, 1] → R is given by

f(x) =











1 if x = 1
2
,

0 otherwise.
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Then f is bounded and for Pn = { i
n
: i = 0, 1, . . . , n}, we have

ω(Pn, f) =

n
∑

i=1

(Mi −mi)∆xi ≤ 2.
1

n
→ 0,

since 1
2
can belong to two consecutive subintervals. Hence f ∈ R[0, 1].

Recall that if P1 ⊆ P2, then U(P1, f) ≥ U(P2, f) and L(P1, f) ≤ L(P2, f). Hence

ω(P1, f) ≥ ω(P2, f). Using this fact, it is enough to workout lim
n→∞

ω(Pn, f) = 0, while {Pn} is

an increasing sequence of partitions.

Theorem 4. Let f : [a, b] → R be bounded. Then f ∈ R[a, b] if and only if there exists an

increasing sequence of partitions {Pn} of [a, b] such that lim
n→∞

ω(Pn, f) = 0.

Proof. Since f ∈ R[a, b], by Theorem 45, there exists a sequence of partition {Pn} such that

lim
n→∞

ω(Pn, f) = 0. Let Q1 = P1 and Qn = P1 ∪P2 ∪ · · · ∪Pn. Then ω(Qn, f) ≤ ω(Pn, f) → 0.

The converse part is obvious from Theorem 45.

Remark 5. From Theorem 4 it follows that lim
n→∞

U(Pn, f) = lim
n→∞

L(Pn, f) =
∫ b

a
f(x)dx.

Theorem 6. If f : [a, b] → R is continuous, then f ∈ R[a, b].

Proof. Since f is continuous on the closed interval [a, b], f is bounded and uniformly contin-

uous. For each ε > 0, there exists δ > 0 such that |x− y| < δ implies |f(x)− f(y)| < ε
2(b−a) .

Choose a partition P of [a, b] such that ∆xi < δ. Since f attains its infimum and supremum

on each subinterval, we get Mi −mi ≤ ε
2(b−a) . Hence

ω(P, f) =
n
∑

i=1

(Mi −mi)∆xi ≤
n
∑

i=1

ε

2(b− a)
∆xi < ε.

Example 7. Every monotone function f on [a, b] is Riemann integrable. Assume f is mono-

tone increasing. Let Pn =
{

xi = a+ (b−a)i
n

: i = 0, 1, . . . , n
}

. Then the oscillatory sum

ω(Pn, f) =

n
∑

i=1

(Mi −mi)∆xi =

n
∑

i=1

{f(xi)− f(xi−1)}
b− a

n
= {f(b)− f(a)} b− a

n
→ 0.

Hence by Theorem 4 we conclude that f ∈ R[a, b].

Continuity like condition for Riemann integrability on [a, b].
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We know that the oscillatory sum ω(P, f) decreases over the set of finer partitions. And

f is Riemann integrable if and only if there is a sequence of partitions {Pn} such that

ω(Pn, f) → 0. Using this fact, we derive a continuity like condition for Riemann integrability

of bounded function on [a, b]. For a given partition P = {xo, x1, . . . , xn} of [a, b], we define

|P | = max
1≤i≤n

∆xi, where ∆xi = xi − xi−1.

Theorem 8. Let f : [a, b] → R be a bounded function. Then f ∈ R([a, b]) if and only if for

each ε > 0, there exists δ > 0 such that for each partition P with |P | < δ implies ω(P, f) < ε.

Proof. Since f is Riemann integrable, for each ε > 0 there exists a partition P of [a, b] such

that ω(P, f) < ε. Let δ > 0 be small enough and P ′ be a refinement of P such that |P ′| < δ.

As P ⊆ P ′, it follows that ω(P ′, f) ≤ ω(P, f) < ε. The other implication is obvious by

definition of R([a, b]).

Corollary 9. Let f : [a, b] → R be a bounded function. Then f ∈ R([a, b]) if and only if for

each sequence of partitions {Pn} with |Pn| → 0 implies ω(Pn, f) → 0.

Question*. Think about, how far can be a Riemann integrable function from continuous

function.

Double integrals

We know that the Riemann integral of a non-negative function of one variable on a finite

interval is the area of the region under the graph of the function. In a similar way, the double

integral of a non-negative function f(x, y) defined on a region in the plane is the volume of

the region under the graph of f(x, y).

First, we discuss double integral on the rectangular region, and later we consider more

general region with curvilinear boundary.

Let D = [a, b] × [c, d] and f : D → R be bounded. Let P1 = {x0, x1, . . . , xn} be a

partition of [a, b] and P2 = {y0, y1, . . . , ym} be a partition of [c, d]. Note that the partition

P = P1×P2 decomposes D into mn sub-rectangles (or cells). Let Dij = [xi−1, xi]× [yj−1, yj].

Let mij = inf{f(x, y) : (x, y) ∈ Dij}. Define

L(P, f) =
n
∑

i=1

m
∑

j=1

mij∆xi∆yj .
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Similarly, we can define

U(P, f) =

n
∑

i=1

m
∑

j=1

Mij∆xi∆yj,

where Mij = sup{f(x, y) : (x, y) ∈ Dij}. The lower integral of f is defined by sup
P
L(P, f).

The upper integral of f is defined by inf
P
U(P, f). Note that both the integrals exist because

f is bounded. We say that f is integrable on D (or f ∈ R(D)) if both lower and upper

integrals of f are equal. If the function f is integrable on D, then the double integral is

denoted by
∫∫

D

f(x, y)dxdy or

∫∫

D

f(x, y)dA.

Example 10. Let f : D = [0, 1]× [0, 1] → R is given by

f(x, y) =











1 if x, y ∈ Q ∩ [0, 1],

0 otherwise.

Then f is not integrable on D, because for any partition P of D defined as above, we get

U(P, f) = 1 6= 0 = L(P, f).

Theorem 11. Let f : D = [a, b]× [c, d] → R be bounded. Then f ∈ R(D) if and only if for

each ε > 0 there exists a partition P of D such that ω(P, f) = U(P, f)− L(P, f) < ε.

Theorem 12. Let f : D = [a, b] × [c, d] → R be bounded. Then f ∈ R(D) if and only if

there exists an increasing sequence of partitions {Pn} of D such that lim
n→∞

ω(Pn, f) = 0.

Since the proof of Theorem 12 is similar to Theorem 4, we omit here.

Example 13. Let f : D = [0, 1]× [0, 1] → R is given by

f(x, y) =











0 if x 6= y

1 if x = y.

Then
∫∫

D

f(x, y)dxdy = 0. Let Pn = { i
n
: i = 0, 1, . . . , n}×{ i

n
: i = 0, 1, . . . , n}. In this case,

∆xi = ∆yj =
1
n
. The oscillatory sum of the function f on D satisfies

ω(Pn, f) =

n
∑

i=1

n
∑

j=1

(Mij −mij)∆xi∆yj =

n
∑

i=1

n
∑

j=1

(Mij − 0)
1

n2
=

n
∑

i=j, j=1

1.
1

n2
=

1

n
→ 0.

Theorem 14. Let D = [a, b]× [c, d]. If f : D → R is continuous, then f is integrable on D.

Proof. Since f is continuous on the closed rectangle D, it follows that f is bounded and uni-

formly continuous on D. Hence for given ε > 0 there exists δ > such that for (x, y), (x′, y′) ∈
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D with
√

(x− x′)2 + (y − y′)2 < δ implies |f(x, y) − f(x′, y′)| < ε
2A
, where A is the area

of the rectangle D. Let P = {Dij : i = 1, 2, . . . , n and j = 1, 2, . . . , m}, where Dij =

[xi−1, xi] × [yj−1, yj]. Write d(Dij) =
√

(xi − xi−1)2 + (yi − yj−1)2. Now, suppose P satis-

fies d(Dij) < δ for all i = 1, 2, . . . , n and j = 1, 2, . . . , m. Since f attains its infimum and

supremum on each closed cell Dij , we get Mij −mij ≤ ε
2A
. Hence

ω(P, f) =
n
∑

i=1

m
∑

i=1

(Mij −mij)∆xi∆yi ≤
n
∑

i=1

m
∑

i=1

ε

2A
∆xi∆yj < ε.

Hence by Theorem 12, we conclude that f ∈ R(D).

Continuity like condition for Riemann integrability

Let P = {Dij : i = 1, 2, . . . , n and j = 1, 2, . . . , m} be a partition of D = [a, b] × [c, d],

where Dij = [xi−1, xi]× [yj−1, yj]. Write d(Dij) =
√

(xi − xi−1)2 + (yi − yj−1)2. Define |P | =
max{d(Dij) : i = 1, 2, . . . , n and j = 1, 2, . . . , m}.

Theorem 15. Let f : D = [a, b]× [c, d] → R be a bounded function. Then f ∈ R(D) if and

only if for each ε > 0 there exists δ > 0 such that for each partition P of D with |P | < δ

implies ω(P, f) < ε.

Since the proof of Theorem 15 is similar to Theorem 8, we omit here.

Corollary 16. Let f : D = [a, b]× [c, d] → R be a bounded function. Then f ∈ R(D) if and

only if for each sequence of partitions {Pn} of D with |Pn| → 0 implies ω(Pn, f) → 0.

Note that in order to show f 6∈ R(D), it is enough to show that there exists a sequence

of partitions {Pn} with |Pn| → 0 but ω(Pn, f) 6→ 0.

Geometric Interpretation

If f : D = [a, b] × [c, d] → [0,∞) is integrable. Then
∫∫

D

f(x, y)dxdy is the volume of the

region bounded by planes x = a, x = b, y = c, y = d and the surface z = f(x, y).

Repeated Integrals

The next result illustrates that the evaluation of the double integral can be reduced to the

repeated integrals. This result is known as Fubini’s Theorem. Before we come to the main

result let us have a look at the following examples.
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Example 17. Consider f : D = [0, 1]× [0, 1] → R, defined by

f(x, y) =











1, if x ∈ Q ∩ [0, 1]

2y, if x ∈ Qc ∩ [0, 1]

.

Then
∫ 1

0

(

∫ 1

0
f(x, y)dy

)

dx = 1. However f is not integrable on D. (Hint: Use Corollary 16

to deduce that f 6∈ R(D).)

Example 18. Consider f : D = [0, 1]× [0, 1] → R, defined by

f(x, y) =



























0 if x 6= 1
2

1 if x = 1
2
, y ∈ Q ∩ [0, 1]

−1 if x = 1
2
, y ∈ Qc ∩ [0, 1].

Note that for x = 1
2
,
∫ 1

0
f(x, y)dy does not exists. However,

∫∫

D

f(x, y)dxdy exists.

Theorem 19. (Fubini’s Theorem) Let f : D = [a, b]×[c, d] → [0,∞) be integrable. If for each

y ∈ [c, d], the function f(·, y) ∈ R[a, b], then the function F defined by F (y) =
b
∫

a

f(x, y)dx is

integrable on [c, d] and
∫∫

D

f(x, y)dxdy =

∫ d

c

(
∫ b

a

f(x, y)dx

)

dy.

Proof. Since f ∈ R(D), for each ε > 0 there exists a partition

P = P1 × P2 = {Dij : i = 1, 2, . . . , n and j = 1, 2, . . . , m}
of D such that U(P, f) − L(P, f) < ε. Recall that mij = inf{f(x, y) : (x, y) ∈ Dij} and

Mij = sup{f(x, y) : (x, y) ∈ Dij}. Let us define kj = inf{F (y) : yj−1 ≤ y ≤ yj} and

Kj = sup{F (y) : yj−1 ≤ y ≤ yj}. Since mij ≤ f(x, y) ≤ Mij for each (x, y) ∈ Dij , it follows

that
n
∑

i=1

mij∆xi ≤ L(P1, f(·, y)) ≤
∫ b

a

f(x, y)dx = F (y) ≤
n
∑

i=1

Mij∆xi (2)

for each y ∈ [yj−1, yj]. Note the first inequality in (6) follows due to the fact that infimum

mij of f on Dij is smaller than the infimum of f over [xi−1, xi]× {y}.
From the above it follows that

L(P, f) =
n
∑

i=1

m
∑

j=1

mij∆xi∆yj ≤
n
∑

j=1

kj∆yj = L(P2, F ) ≤ U(P2, F )

and

U(P2, F ) =
n
∑

j=1

Kj∆yj ≤
n
∑

i=1

m
∑

j=1

Mij∆xi∆yj = U(P, f).
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Hence

L(P, f) ≤ L(P2, F ) ≤ U(P2, F ) ≤ U(P2, F ) ≤ U(P, f). (3)

Since U(P, f)− L(P, f) < ε, from (5) we get U(P2, F )− L(P2, F ) < ε. That is, F ∈ R[c, d],

and hence once again from (5) we infer that

L(P, f) ≤
∫ d

c

F (y)dy ≤ U(P, f) and L(P, f) ≤
∫∫

D

f(x, y)dxdy ≤ U(P, f).

Thus,

−ε <
∫∫

D

f(x, y)dxdy −
∫ d

c

F (y)dy ≤ ε

for each ε > 0. Hence
∫∫

D

f(x, y)dxdy =

∫ d

c

F (y)dy.

This completes the proof.

Note that if we define G(x) =
d
∫

c

f(x, y)dy, then the similar result holds.

Corollary 20. (Fubini’s Theorem) Let f : D = [a, b]× [c, d] → R be a continuous function.

Then
∫∫

D

f(x, y)dxdy =

∫ d

c

(
∫ b

a

f(x, y)dx

)

dy =

∫ b

a

(
∫ d

c

f(x, y)dy

)

dx.

Example 21. Let f(x, y) = xexy for (x, y) ∈ D = [0, 2] × [0, 1]. Then f is continuous and

hence by Fubini’s theorem
∫∫

D

f(x, y)dxdy =

∫ 2

0

(
∫ 1

0

xexydy

)

dx =

∫ 2

0

[exy]10 dx =

∫ 2

0

(ex − 1)dx = e2 − 3.

Bounded functions with discontinuities

We know from Theorem 14 that if f is continuous on D then f is integrable. In this section,

we discuss that the integral of a function f also exists if the set of discontinuities of f is not

too large. In order to measure discontinuities, we introduce the following concept.

Definition 22. Let A be a bounded subset of R2. Then A is said to be of content zero

if for each ε > 0 there exist finitely many rectangles {Ri}ni=1 such that A ⊆
n
⋃

i=1

Ri and

Area

(

n
⋃

i=1

Ri

)

< ε.

Example 23. (i) Any finite set of points in R2 has content zero.
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(ii) Every subset of a set of content zero has content zero.

(iii) The union of finite numbers of bounded sets of content zero is also of content zero.

(iv) Every line segment has content zero.

Exercise 24. Any bounded subset of R2 having non-empty interior cannot have content

zero.

Theorem 25. Let f : D = [a, b]× [c, d] → R be a bounded function. If the set of discontinu-

ities of f in D is a set of content zero, then f is integrable.

Proof. Let M > 0 be such that |f(x, y)| ≤ M for all (x, y) ∈ D. Suppose E is set of

discontinuities of f in D. In order to prove this result, we need to reorganize some symbols.

Let P = {Di : Di subrectangles in D} be a partition of D. Let mi = inf
Di

(f), Mi = sup
Di

(f)

and A(Di) = Area(Di). Now, choose a partition P of D such that

E ⊂
m
⋃

i=1

Di and
m
∑

i=1

A(Di) <
ε

4M
.

Note that f is uniformity continuous on each closed subrectangle Di : i = m + 1, . . . , n.

Hence f attains its infimum and supremum on each Di. Thus, as similar argument used in

the proof of Theorem 14, we can have selected the partition P such that Mi −mi ≤ ε
2A(D)

.

Hence

ω(P, f) =

n
∑

i=1

(Mi −mi)A(Di)

=

m
∑

i=1

(Mi −mi)A(Di) +

n
∑

i=m+1

(Mi −mi)A(Di)

≤
m
∑

i=1

2MA(Di) +

n
∑

i=m+1

ε

2A(D)
A(Di)

< 2M
ε

4M
+
ε

2

A(D)

A(D)
= ε.

Thus, for each ε > 0 we have constructed a partition P of D such that ω(P, f) < ε. This

implies f ∈ R(D).
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Double integral over general bounded regions

Let D be a bounded region in R2 and f : D → R be a bounded function defined on D. Let

Q be a rectangle such that D ⊆ Q. Extend f on Q as f̃ : Q→ R, where

f̃(x, y) =











f(x, y) if (x, y) ∈ D

0 if (x, y) ∈ Q \D.
If f̃ is integrable over Q, then we say that f is integrable over D and define

∫∫

D

f(x, y)dxdy =

∫∫

Q

f̃(x, y)dxdy.

Theorem 26. (Fubini’s Theorem) Let f be a bounded continuous function over a bounded

region D in R2.

(i) If D = {(x, y) : a ≤ x ≤ b and f1(x) ≤ y ≤ f2(x)} for some continuous functions f1, f2 :

[a, b] → R, then
∫∫

D

f(x, y)dxdy =

∫ b

a

(

∫ f2(x)

f1(x)

f(x, y)dy

)

dx.

(ii) If D = {(x, y) : c ≤ y ≤ d and g1(y) ≤ x ≤ g2(y)} for some continuous functions g1, g2 :

[c, d] → R, then
∫∫

D

f(x, y)dxdy =

∫ d

c

(

∫ g2(y)

g1(y)

f(x, y)dx

)

dy.

For a proof of Theorem 26, we refer to Chapter 11, Calculus Vol. II, by Apostol.

Example 27. (i) Let D be the region bounded by the lines joining the points (0, 0), (0, 1)

and (2, 2). Evaluate the integral
∫∫

D

(x+ y)2dxdy.

(ii) Evaluate the integral
2
∫

0

(

1
∫

y

2

ex
2

dx

)

dy.

Riemann integrable functions on D satisfy the following algebraic relations.

Theorem 28. Let f and g be Riemann integrable functions on the region D in the plane and

c ∈ R. Then

(i) cf + g∈R(D),
∫∫

D

{cf(x, y) + g(x, y)}dxdy = c
∫∫

D

f(x, y)dxdy +
∫∫

D

g(x, y)dxdy.
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(ii) If f(x, y) ≤ g(x, y) for all (x, y) ∈ D, then
∫∫

D

f(x, y)dxdy ≤
∫∫

D

g(x, y)dxdy.

(iii) |f | ∈ R(D) and

∣

∣

∣

∣

∫∫

D

f(x, y)dxdy

∣

∣

∣

∣

≤
∫∫

D

|f(x, y)|dxdy.

We very often use a short notion for such function as f = χQ∩[0,1] and call characteristic

(or indicator) function of Q ∩ [0, 1].

Remark 29. I shall explain a bit in the class that every Riemann integrable function is

“eventually” continuous. This result is also true for higher dimensional integral. Proof of the

result is beyond the scope of the syllabus.

Change of variable

Change of variables formula is one of the most important results in multivariable calculus.

The reason that many problems have a natural coordinate system, and if we look from

the right perspective, the calculation gets considerably simplified. As an effect, making the

function and the domain of integration simpler.

Change of variable in single integral

Let f : [a, b] → R be an integrable function. Suppose g : [c, d] → [a, b] is continuously

differentiable function (C1 - function) such that g′(t) 6= 0 for all t ∈ (c, d). Then g is one to

one (by Mean Value Theorem) and hence monotone. We also assume that g is surjective.

Put x = g(t). Then dx = g′(t)dt. If g is monotone increasing, then
∫ b

a

f(x)dx =

∫ g−1(b)

g−1(a)

f(g(t))g′(t)dt =

∫ d

c

f(g(t))g′(t)dt.

In case, if g is monotone decreasing, then [c, d] = [g−1(b), g−1(a)]. Thus, we have the formula
∫ b

a

f(x)dx =

∫ d

c

f(g(t))|g′(t)|dt.

Change of variable in double integral

We shall try to imitate the idea developed in one variable to the case of double integral.

However, proof of the change of variable formula in higher dimension required some advanced

topic and hence we avoid presenting proof of the result here.
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Suppose S is a bounded region in the uv-plane which is transformed onto the bounded

region D in the xy-plane by x = ϕ(u, v) and y = ψ(u, v). Now, consider mapping T from D

to S which is bijective, continuously differentiable and it’s inverse T−1 : S → D is defined by

T−1(u, v) = (ϕ(u, v), ψ(u, v)). Please see Figure 1.

Let us assume T−1 is also continuously differentiable and it’s derivative (T−1)′

invertible (non-singular) on the interior of S. Hence

det(T−1)′ =

∣

∣

∣

∣

∣

∣

∂ϕ
∂u

∂ϕ
∂v

∂ψ
∂u

∂ψ
∂v

∣

∣

∣

∣

∣

∣

= J(u, v) 6= 0 ,

where function J is known as Jacobi of the transformation. In this way, the function f(x, y)

defined on D can be thought of as a function f(ϕ(u, v), ψ(u, v)) defined on S.

Theorem 30. Let f(x, y) : D → R be continuous function and J be as defined above. Then

the integral of f(x, y) over D and the integral of f(ϕ(u, v), ψ(u, v)) over S are related by
∫∫

D

f(x, y)dxdy =

∫∫

S

f [ϕ(u, v), ψ(u, v)] |J(u, v)|dudv.

Example 31. Find the area of the region D bounded by the hyperbolas xy = 1 and xy = 2

and the curves xy2 = 3 and xy2 = 4.

Note that the area of the region is given by
∫∫

D

dxdy. Let u = xy and v = xy2. Then x = u2

v

and y = v
u
. Also J(u, v) = 1

v
. Thus,

∫∫

D

dxdy =
2
∫

u=1

4
∫

v=3

1
v
dvdu = log(4

3
).

Example 32. Evaluate the double integral
∫∫

D

(x−y)
(x+y+2)2

dxdy over the region D bounded by

the lines x+ y = ±1 and x− y = ±1.

11



Let u = x+ y and v = x− y. Then x = u+v
2

and y = u−v
2
. Here J(u, v) = −1

2
. Also, u = ±1

and v = ±1. Hence we have
∫∫

D

(x− y)

(x+ y + 2)2
dxdy =

1

2

∫ 1

u=−1

∫ 1

v=−1

v

(u+ 2)2
dudv.

Polar coordinates: In this case the variables x and y are changed to r and θ by the following

two equations

x = r cos θ and y = r sin θ.

We assume that r > 0 and θ lies in [0, 2π) so that the mapping T−1(r, θ) = (r cos θ, r sin θ) is

bijective. Then

J(r, θ) =

∣

∣

∣

∣

∣

∣

cos θ −r sin θ
sin θ r cos θ

∣

∣

∣

∣

∣

∣

= r.

Hence the change of variable formula in this case is
∫∫

D

f(x, y)dxdy =

∫∫

S

f(r cos θ, r sin θ) r drdθ.

Example 33. Let D = {(x, y) : x2 + y2 ≤ a2} and f : D → R is given by f(x, y) =

2
√

a2 − x2 − y2. Then
∫∫

D

f(x, y)dxdy = 2

∫ a

0

∫ 2π

0

√
a2 − r2rdθdr

= 4π

∫ a

0

r
√
a2 − r2dr

= 4π
(a2 − r2)

3

2

−3

∣

∣

∣

∣

∣

a

0

=
4πa3

3
.

Triple integrals

The concept of double integrals can be extended to functions defined on D = [a, b]× [c, d]×
[e, f ]. Consider the partition P of D is of the form P = P1 × P2 × P3, where P1, P2 and P3

are partitions of [a, b], [b, c] and [e, f ], respectively. For a given partition P and a bounded

function f defined on D, we can define inf
P
L(P, f) and sup

P
U(P, f), lower integral and upper

integral of f. If lower and upper integrals are equal, then we say f is integrable and the

integral is known as triple integral. It is denoted by
∫∫∫

D

f(x, y, z)dxdydz or

∫∫∫

D

f(x, y, z)dV.

12



Remark 34. Note that most of the results related to the integrability test of the function of

two variables will analogously hold true in the case of the function of three variables. Hence

we avoid mentioning those results over here.

Theorem 35. (Fubini’s Theorem) Let R be a bounded region in R2 and let D be a bounded

domain in R3 given by D = {(x, y, z) : (x, y) ∈ R and f1(x, y) ≤ z ≤ f2(x, y)} , where
f1, f2 are continuous functions on R. If f is continuous on D, then

∫∫∫

D

f(x, y, z)dV =

∫∫

R

(

∫ f2(x,y)

f1(x,y)

f(x, y, z)dz

)

dA.

Change of variable in a triple integral

The change of variable formula for a double integral can be extended to triple integrals.
∫∫∫

S

f(x, y, z)dxdydz =

∫∫∫

T

f [ϕ(u, v, w), ψ(u, v, w), η(u, v, w)]|J(u, v, w)|dudvdw,

where

J(u, v, w) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ϕ
∂u

∂ϕ
∂v

∂ϕ
∂w

∂ψ
∂u

∂ψ
∂v

∂ψ
∂w

∂η
∂u

∂η
∂v

∂η
∂w

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Example 36. Consider the integral
∫∫∫

D

x dxdydz, where D is the region in R3 bounded by

x = 0, y = 0, z = 2 and the surface z = x2+y2. HereD = {(x, y, z) : (x, y) ∈ R, x2 + y2 ≤ z ≤ 2}
and R =

{

(x, y) : 0 ≤ x ≤
√
2, 0 ≤ y ≤

√
2− x2

}

. Therefore
∫∫∫

D

xdxdydz =

∫∫

R

(
∫ 2

x2+y2
x dz

)

dA

=

∫

√
2

0

∫

√
2−x2

0

∫ 2

x2+y2
x dzdydx

=
8
√
2

15
.

Cylindrical co-ordinates: In this case the variables x, y and z are changed to r, θ and z

by the following three equations

x = r cos θ, y = r sin θ and z = z,
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where r > 0 and θ ∈ [0, 2π). The Jacobian is

J(r, θ, z) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

cos θ −r sin θ 0

sin θ r cos θ 0

0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= r.

Therefore the change of variable formula is
∫∫∫

S

f(x, y, z)dxdydz =

∫∫∫

T

f(r cos θ, r sin θ, z) r drdθdz.

Example 37. Consider
∫∫∫

D

(z2x2 + z2y2) dxdydz, where D is the region determined by x2+

y2 ≤ 1 and −1 ≤ z ≤ 1. We can describe D in cylindrical coordinates by 0 ≤ r ≤ 1,

0 ≤ θ ≤ 2π and −1 ≤ z ≤ 1. Therefore,
∫∫∫

D

(

z2x2 + z2y2
)

dxdydz =

∫ 1

−1

∫ 2π

0

∫ 1

0

(

z2r2
)

r drdθdz

=

∫ 1

−1

∫ 2π

0

z2
r4

4

∣

∣

∣

∣

1

r=0

dθdz

=

∫ 1

−1

2π

4
z2dz =

π

3
.

Spherical co-ordinates: In this case the variables x, y and z are changed to r, θ and φ by

the following three equations

x = r sinφ cos θ, y = r sinφ sin θ, z = r cosφ.

We assume r > 0, 0 ≤ θ < 2π and 0 ≤ φ < π to get mapping of transformation one-one. The

Jacobian is

J(r, θ, φ) = −r2 sinφ.
Hence the change of variable formula is

∫∫∫

S

f(x, y, z)dxdydz =

∫∫∫

T

f(r sinφ cos θ, r sinφ sin θ, r cos φ) r2 sinφ drdθdφ.

Surface area and surface integrals

A surface is the locus of two points moving in the space (R3) with two degrees of freedom.

A surface can be represented in several ways, however, we discuss some of them.

Parametric surface: A parametric surface is the graph of a continuous function of two

variables that taking values in R3. That is, given a continuous function r : T ⊆ R2 → R3,

defined by r(u, v) = f(u, v)i + g(u, v)j + h(u, v)k, the set r(T ) = {r(u, v) : (u, v) ∈ T} is

14



called parametric surface determined by r.We assume that the function r is one-one in the

interior of T so that the surface does not cross itself. The equations

x = f(u, v), y = g(u, v), z = h(u, v),where (u, v) ∈ T

are called parametric equations of the surface r(T ).

Example 38. (i). Let T = {(x, y) : x2 + y2 ≤ 1}. Consider the function r : T → R3 given

by r(x, y) = xi+ yj +
√

x2 + y2k. This represents a cone of height 1.

(ii). For fixed a > 0 with 0 ≤ θ < 2π and 0 ≤ φ < π, the equations

x = a sinφ cos θ, y = a sinφ sin θ, z = a cosφ

represent a sphere. Here the parameters are θ and φ.

Note that a parametric surface can degenerate to a point or curve. For instance, if

x = f(u, v), y = g(u, v), z = h(u, v) are constant, then r(T ) is a point. On the other hand

if x = u+ v, y = (u+ v)2 and z = (u+ v)3, by letting t = u+ v, r(T ) becomes a curve in R3.

If at (u, v) ∈ T, ∂r
∂u

and ∂r
∂v

are continuous and the fundamental product ∂r
∂u

× ∂r
∂v

6= 0, then

the point r(u, v) is called a regular point of the surface r(T ). If one of ∂r
∂u

and ∂r
∂u

is not

continuous or ∂r
∂u

× ∂r
∂v

= 0 at (u, v, ) we say (u, v) is a singular point. A surface r(T ) is

called smooth if each point of the surface is regular.

Area of a parametric surface

Let S = r(T ) be be a smooth parametric surface defined on the domain T. That is, ∂r
∂u

and

∂r
∂v

are continuous and ∂r
∂u

× ∂r
∂v

is never zero on T.

If we fix v and allow u to run, then the image of r reduces to a curve in R3. Hence the

distance travel along the curve r(·, v) in a small time interval ∆u is ‖ ∂r
∂u
‖∆u. Similarly, if we

fix u, then the graph of r is a curve in R3, and the distance traveled along this curve in a

small time interval ∆v is ‖ ∂r
∂v
‖∆v. Please see the Figure 2.

Thus, we see that a small rectangle in T of area ∆u∆v in the uv-plane is transferred to a

parallelogram on the surface r(T ) with area
∥

∥

∂r
∂u
∆u× ∂r

∂v
∆v
∥

∥ =
∥

∥

∂r
∂u

× ∂r
∂v

∥

∥∆u∆v.
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Note that the point, where ∂r
∂u

× ∂r
∂v

= 0, the parallelogram on r(T ) will collapse to a

curve or a point. Now at each regular point of r(T ), the vectors ∂r
∂u

and ∂r
∂v

determine a

plane having ∂r
∂u

× ∂r
∂v

as the normal vector to the surface at the point (u, v). We know that

∂r
∂u

× ∂r
∂v

=
∥

∥

∂r
∂u

∥

∥

∥

∥

∂r
∂v

∥

∥ sin θ n̂, where n̂ is the unit normal to the surface r(T ) at (u, v) ∈ T.

Hence, the plane determined by ∂r
∂u

and ∂r
∂v

is called tangent plane of the surface. Note that

the continuity of ∂r
∂u

and ∂r
∂v

implies the continuity of ∂r
∂u

× ∂r
∂v
. Hence the tangent plane varies

continuously on the smooth surface. Thus, the continuity of ∂r
∂u

and ∂r
∂v

prevent the occurrence

of sharp edges or corners on the surface.

Let us denote the area of small parallelogram obtained by transferring the small rectangle

of areas ∆u∆v in the domain T by dσ. Let ru =
∂r
∂u

and rv =
∂r
∂v
. Then dσ = ‖ru × rv‖∆u∆v.

Hence the surface area of r(T ) denoted by a(S) is given by

a(S) =

∫∫

T

‖ru × rv‖ dudv.

Area of a surface defined by a graph: Suppose a surface S is given by

z = f(x, y), for (x, y) ∈ T.

That is, S is the graph of the function f(x, y). Then S can be considered as a parametric

surface defined by:

r(x, y) = xi+ yj + f(x, y)k, (x, y) ∈ T.

In this case, rx = i+ fxk, ry = j + fyk. Further, rx × ry =

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

1 0 fx

0 1 fy

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −fxi− fyj + k.

Hence the surface area becomes

a(S) =

∫∫

T

√

1 + f 2
x + f 2

y dxdy.

Example 39. Let us find the area of the surface of the portion of the sphere x2+y2+z2 = 4a2
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that lies inside the cylinder x2 + y2 = 2ax. Consider f(x, y) =
√

4a2 − x2 − y2, then

fx =
−x

√

4a2 − x2 − y2
, fy =

−y
√

4a2 − x2 − y2

and
√

1 + f 2
x + f 2

y =

√

4a2

4a2 − x2 − y2
.

Then

a(S) =2

∫∫

T

√

4a2

4a2 − x2 − y2
dxdy

=2× 2

∫ π
2

0

∫ 2a cos θ

0

2ar√
4a2 − r2

drdθ.

Remark 40. Note that

‖ru × rv‖2 = ‖ru‖2 ‖rv‖2 sin2 θ

= ‖ru‖2 ‖rv‖2
(

1− cos2 θ
)

= ‖ru‖2 ‖rv‖2 − (ru · rv)2 .
Let E = ru · ru, G = rv · rv and F = ru · rv, then

a(S) =

∫∫

T

√
EG− F 2dudv.

Surface integrals

Let S be a parametric surface defined by r(u, v) over T. Suppose ru and rv are continuous.

Let g : S → R be bounded. The surface integral of g over S, denoted by
∫∫

S

gdσ, is defined

by
∫∫

S

gdσ =

∫∫

T

g(r(u, v)) ‖ru × rv‖ dudv =
∫∫

T

g(r(u, v))
√
EG− F 2dudv

provided double integral in the RHS exists.

Remark 41. (i).
∫∫

S

gdσ =

∫∫

T

g(r(u, v))
√
EG− F 2dudv.

(ii). If S is defined by z = f(x, y), then
∫∫

S

gdσ =

∫∫

T

g[x, y, f(x, y)]
√

1 + f 2
x + f 2

y dxdy,

where T is the projection of the surface S over the xy-plane.
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Example 42. Let S be the hemispherical surface z = (a2 − x2 − y2)
1/2

. Evaluate
∫∫

S

dσ

[x2 + y2 + (z + a)2]1/2
.

Consider

S := r(θ, φ) = (a sinφ cos θ, a sinφ sin θ, a cosφ),

where 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π
2
. Note that

√
EG− F 2 = a2 sin φ and

[

x2 + y2 + (z + a)2
]1/2

= 2a cos
φ

2
.

Hence
∫∫

S

dσ

[x2 + y2 + (z + a)2]1/2
=

∫ 2π

0

∫ π/2

0

a2 sinφ

2a cos φ
2

dφdθ.

Line Integrals

Let R : [a, b] → R3 be a differentiable function and the curve C is parameterized by R(t).

Suppose f : C → R3 is a bounded function. The line integral of f along C is denoted by the

symbol
∫

C

f · dR and is defined by

∫

C

f · dR =

∫ b

a

f(R(t)) ·R′(t)dt

provided the integral in the right-hand side exists. Please see Figure 1.

Remark 43. Suppose f = (f1, f2, f3) and R(t) = (x(t), y(t), z(t)). Then the line integral
∫

C
f · dR is also written as

∫

C

f1dx+ f2dy + f3dz or

∫

C

f1(x, y, z)dx+ f2(x, y, z)dy + f3(x, y, z)dz.

Example 44. Let f = x2i + yj+ (xz − y)k. Compute the line integral
∫

C
f · dR, along the

curve C joining (0, 0, 0) with (1, 2, 4).
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(i) C is the straight line joining theses points,

(ii) C is the curve given by R(t) = (t2, 2t, 4t2).

The second FTC for line integral: We know that if f : [a, b] → R is continuously

differentiable on [a, b], then
∫ b

a
f(t)′dt = f(b)−f(a). Since f is continuous, F (x) =

∫ x

α
f(t)dt is

differentiable and by FTC it follows that F (x)′ = f(x), where α ∈ [a, b]. Hence
∫ b

a
F ′(x)dx =

∫ b

a
f(x)dx =

∫ b

α
f(x)dx −

∫ a

α
f(x)dx = F (b) − F (a). This says that the value of integral of

continuously differentiable function depends only on end points and not on the points inside

the interval.

We generalize the above second FTC to the line integral.

Theorem 45. Let D be a solid domain in R3, and f : D → R be continuously differentiable.

Suppose A,B are two points in D. Let C = {R(t) : t ∈ [a, b]} be a curve lying in D and

joining the points A and B. If R(t) is continuously differentiable on [a, b], then
∫

C

∇f · dR = f(B)− f(A).

Proof. Let h(t) = f(R(t)). Then by chain rule, we get h′(t) = (f ◦ R)′ = ∇f(R(t)).R′(t).

Hence
∫

C

∇f · dR =

∫ b

a

∇f(R(t)).R′(t)dt =

∫ b

a

h′(t)dt = h(b)− h(a) = f(B)− f(A).

Remark 46. Line integral of gradient of a function is independent of the choice of path

joining the points A and B in the domain D.

Definition 47. Let R : [a, b] → R3 be a continuous function that represents a curve C. The

curve C is said to be

(i) simple if R is one-one on (a, b].

(ii) Closed if R(a) = R(b).

(iii) Smooth if R′ exists and continuous.

(iv) Piecewise smooth if the interval [a, b] can be partitioned into a finite number of

subintervals and in each of which the curve is smooth.
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Theorem 48. (Green’s Theorem) Let C be a piecewise smooth simple closed curve in the

xy-plane and let D denote the closed region enclosed by C. Suppose M,N, ∂N
∂x

and ∂M
∂y

are

real valued continuous functions in an open set containing D. Then
∫∫

D

(

∂N

∂x
− ∂M

∂y

)

dxdy =

∮

C

(Mi+Nj)dR =

∮

C

Mdx+Ndy, (4)

where the line integral is taken around C in the counterclockwise direction.

Since the identity (4) holds true for every choice of M and N ( satisfying the assumption

of Green’s Theorem), by letting M = 0 and N arbitrary and vice-versa, the identity (4)

is equivalent to two identities
∫∫

D

∂N
∂x
dxdy =

∮

C

Ndy and −
∫∫

D

∂M
∂y
dxdy =

∮

C

Mdy. We shall

present the proof of Green’s Theorem for two special cases I and II as shown in Figure 2.

Proof. (i) Let D = {(x, y) : a ≤ x ≤ b and f(x) ≤ y ≤ g(x)}, where f and g are continuous

functions on [a, b]. Since ∂M
∂y

is continuous, by Fubini’s Theorem, the double integral

−
∫∫

D

∂M

∂y
dxdy =

∫ b

a

[

∫ g(x)

f(x)

∂M

∂y
dy

]

dx =

∫ b

a

M [x, f(x)]dx −
∫ b

a

M [x, g(x)]dx. (5)

On the other hand, we can write
∫

C

Mdx =

∫

C1

Mdx+

∫

C2

Mdx, (6)

since the line integral along each of vertical segment is zero. Note that C1 and C2 can be

represented by r1(t) = ti+ f(t)j and r1(t) = ti+ g(t)j respectively. Hence
∫

C1

Mdx =

∫ b

a

M [t, f(t)]dt and

∫

C2

Mdx = −
∫ b

a

M [t, f(t)]dt. (7)

Negative sign appeared in the second equation since the carve C2 traverses in the reverse

direction. Thus, from (5-7) we conclude that the identity (4) holds for the type I region.

Similarly, we can obtain the result for the type II region. Further, we can obtain the result

for any region which an be decomposed into finitely many regions of the above two types.
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Area expressed as a line integral: Let C be a simple (piecewise smooth) closed curve

and D be the region enclosed by C. Let M(x, y) = −y
2
and N(x, y) = x

2
. Then by Green’s

Theorem the area of D is

a(D) =

∫∫

D

dxdy =

∫

D

(Nx −My) dxdy =

∫ b

a

Mdx+Ndy =
1

2

∫

C

−ydx+ xdy.

Example 49. Note that the integral
∫

C

xy2dx+
(

x2y + x
)

dy =

∫∫

D

dxdy = Area(D)

(By Green’s Theorem), where D is the region enclosed by C. Hence the integral is depending

only on the region enclosed by C but not its location.

Example 50. Find the area bounded by the ellipse C = {x2
a2

+ y2

b2
= 1}.

Consider the parametric form of C = {(a cos t, b sin t) : 0 ≤ t < 2π.} Then the area is
1

2

∫

C

−ydx+ xdy =
1

2

∫ 2π

0

−(b sin t)(−a sin t)dt+ (a cos t)(b cos t)dt =
1

2

∫ 2π

0

abdt = abπ.

Example 51. Let C1 and C2 be two simple (piecewise smooth) closed curves as shown in

Figure 3.

Consider the region D bounded by the curves C1 and C2. Note that D = D1 ∪D2 and D1 is

enclosed by the curves γi; i = 1, 2, 3, 4 and D2 is enclosed by curves γj; i = 1, 3, 5, 6.

∫∫

D

(

∂N

∂x
− ∂M

∂y

)

dxdy =

∫∫

D1

(

∂N

∂x
− ∂M

∂y

)

dxdy +

∫∫

D2

(

∂N

∂x
− ∂M

∂y

)

dxdy

=

(
∫

γ1

α +

∫

γ2

α +

∫

γ3

α +

∫

γ4

α

)

+

(
∫

γ6

α−
∫

γ3

α +

∫

γ5

α−
∫

γ1

α

)

=

∮

C2

α−
∮

C1

α,

where α =Mdx+Ndy.
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Example 52. Let C1 be unit circle and C2 be any simple closed curve as shown in Figure 4.

Find
∫

C2

xdy−ydx
x2+y2

. Let D be the domain lies between C1 and C2. A simple calculation shows

that Nx −My = 0 on D. By applying Green’s Theorem for multiply-connected domain D,

we get
∮

C2

(Mdx+Ndy)−
∮

C1

(Mdx+Ndy)

∫∫

D

(Nx −My) dxdy = 0.

Since C1 = {(cos t, sin t) : 0 ≤ t ≤ 2π}, we get
∫

C1

−ydx+ xdy

x2 + y2
=

∫ 2π

0

sin2 t+ cos2 t

sin2 t+ cos2 t
dt = 2π.

Hence,
∮

C2

(Mdx+Ndy) = 2π.

Exactness of the line integral

Let Q be a cube in R3. Suppose C is a curve in Q which is parameterized by R(t) =

(x(t), y(t), z(t)), where R : [a, b] → R3 is continuously differentiable. Now, does there exist a

function F : Q ⊂ R3 → R such that
∫

C

f · dR =
∫

C

dF for every curve C in Q? Suppose there

exists F such that
∫

C

f · dR =
∫

C

dF for every curve C in Q. Then by Theorem 45 (second

FTC for line integral), it follows that
∫

C

f · dR = F (R(b))− F (R(a)) = F (B)− F (A) =

∫

C

∇F · dR.
That is,

∫

C

(f −∇F ) · dR = 0

for all curves C in Q. It is easy to see that f = ∇F on Q.
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Remark 53. Note that it is difficult to prove that f = ∇F on a general domain D. However,

the following exercise can be done with small effort.

Exercise 54. Let D = {(x, y) : x2 + y2 < 1}. If f : D → R2 is a continuously differentiable

function such that
∫

Γ

f · dR = 0 for every curve Γ in D, then f constant.

Example 55. Show that the line integral
∫

C

2x sin y dx+ (x2 cos y − 3y2)dy

is path independent joining the points (−1, 0) and (5, 1).

Curl and Divergence

Let F : R3 → R3 be a vector field given by F (x, y, z) = P (x, y, z)i+Q(x, y, z)j+R(x, y, z)k.

Definition 56. (Curl of F ) The curl of F is another vector field denoted by curl F and

defined by the vector

curl F =

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂
∂x

∂
∂y

∂
∂z

P Q R

∣

∣

∣

∣

∣

∣

∣

∣

∣

= ∇× f,

where ∇ = ∂
∂x
i+ ∂

∂y
j + ∂

∂z
k.

Definition 57. (Divergence of F ) The divergence of F is a scalar valued function denoted

by div F and is defined by divF = ∂P
∂x

+ ∂Q
∂y

+ ∂R
∂z
.We can rewrite the div F as div F = ∇·F.

Now, we recall Green’s Theorem to get a motivation for Stoke’s Theorem. Let C be the

piece-wise smooth curve which encloses the domain D in R2. Let F : D → R2 be a vector

field in the plane given by F (x, y) =M(x, y)i+N(x, y)j + 0k. By Green’s Theorem
∫∫

D

(Nx −My) dxdy =

∮

C

Mdx+Ndy,

where C = {R(t) : t ∈ [a, b]}. The above identity can be represented as
∫∫

D

curl F · k dxdy =
∮

C

F · dR, (8)

where curl F =
(

∂N
∂x

− ∂M
∂y

)

k. Stoke’s Theorem is a generalization of the identic (8) in R3.

Before we make a formal statement for Stoke’s Theorem, we discuss unit normal vector on

some special surfaces.
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(i) Suppose the surface S is given by f(x, y, z) = c, where f is differentiable function on some

domain D in R3. Please see Figure 5.

Consider a smooth curve C given by R : [a, b] → R3 which lies on the surface S and passes

through a point P on S. Then f(R(t)) = c. By the chain rule, we get f ′(R(t)).R′(t) = 0. That

is, ∇f(R(t)).R′(t) = 0. Since R′(t) is the tangent vector at point P, the vector ∇f(R(t)) is
the normal vector at P. Hence the unit normal vector n̂ is given by n̂ = ∇f

‖∇f‖ . Note that

n̂ : D ⊂ R3 → R3. If n̂ is continuous and never vanishes on D, then the surface S is called

orientable.

(ii) Let D be a domain in R2. Let F : D → R3 given by F (s, t) = x(s, t)i+ y(s, y)j+ z(s, t)k

is a parametrization of surface S, where F is smooth (continuously differentiable). Let

P = F (so, to) be a point on the surface S. Then F (s, to) and F (so, t) are curves on S passing

through P as shown in Figure 6.

Recall that the fundamental product Fs×Ft is the normal to the surface S at P. Hence unit

normal vector to the surface S, in this case, is given by n̂ = Fs×Ft

‖Fs×Ft‖ . Note that n̂ : D ⊂ R2 →
R3.

24



(iii) If the surface S is given by the graph of smooth function f : D ⊂ R2 → R3. That is,

F (x, y) = xi+ yj + f(x, y)k. Then unit normal vector is given by

n̂ =
Fx × Fy

‖Fx × Fy‖
=

−fxi− fyj + k

‖ − fxi− fyj + k‖ =
−fxi− fyj + k
√

1 + f 2
x + f 2

y

.

Definition 58. A surface S is called orientable if unit normal vector to the surface S is

continuous and never vanishes.

Hence orientable surface is a two-sided surface. Möbius strip is not an orientable

surface.

Theorem 59. (Stokes’ Theorem) Let S be a piecewise smooth orientable surface and C be

the piecewise smooth boundary of S. Let F (x, y, z) = P (x, y, z)i+Q(x, y, z)j+R(x, y, z)k be

a vector field such that P,Q and R are continuously differentiable on an open set containing

S. If n̂ is a unit normal vector to S, then
∫∫

S

curl F · n̂ dσ =

∮

C

F · dR, (9)

where the line integral is evaluated around C in the direction of the orientation of C with

respect to n̂.

Please see Figure 7.

(i) Note that the value of surface integral in (9) depends only on the boundary C and not to

the shape of the surface S.

(ii) If S is a plane surface, then identity (9) reduces to the identity (8). Thus, Stoke’s Theorem

can be considered as a direct extension of Green’s Theorem.
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(iii) For the closed smooth surface like sphere and donut, there is no boundary and in this

case
∫∫

S

curl F · n̂ dσ = 0.

(iv) Stoke’s Theorem can be extended to a smooth surface whose boundary contains more

than one simple smooth closed curve.

Remark 60. If a surface S is given by the graph of smooth function f defined on the domain

D ⊂ R2, then
∮

C

F · dR =

∫∫

D

(−fxi− fyj + k) · curl F dxdy.

Example 61. Let S be the part of the cylinder z = 1− x2, 0 ≤ x ≤ 1, − 2 ≤ y ≤ 2. Let C

be the boundary of the surface S and F (x, y, z) = yi+ yj + k. Use Stoke’s Theorem to find

the line integral
∫

C

F · dR.

Here curl F = −~k. Let z = f(x, y) = 1 − x2. The unit normal to the surface S will be

given by

n̂ =
−fx~i− fy~j + ~k
√

1 + fx + f 2
y

=
2x~i+ ~k√
1 + 4x2

.

Surface element dσ(x, y) =
√

1 + fx + f 2
y dxdy. Please refer to Figure 8.

By stoke’s Theorem as mentioned in Remark 60,
∮

C

F · dR =

∫∫

D

(−fxi− fyj + k) · curl F dxdy =

∫ 2

y=−2

∫ 1

x=0

(−1)dxdy = −4.

Once again let us look at the Green’s Theorem in the plane. Let F (x, y) = M(x, y)i +

N(x, y)j be smooth on the domain D ⊂ R2, where D is enclosed by the simple and smooth
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curve C = {R(t) : t ∈ [a, b]}. Then R′(t) = x′(t)i+ y′(t)j is the tangent vector to the curve.

Hence n = y′(t)i− x′(t)j is a normal vector to the curve C. By Green’s Theorem
∮

C

(F · n)dt =
∮

C

Mdy −Ndx =

∫∫

D

(

∂M

∂x
−
(

−∂N
∂y

))

dxdy =

∫∫

D

(

∂M

∂x
+
∂N

∂y

)

dxdy.

Hence
∫∫

D

div F dxdy =

∮

C

(F · n)ds. (10)

The generalization of the identity (10) is known as the divergence theorem.

Theorem 62. (Divergence Theorem) Let D be a solid domain in R3 bounded by piecewise

smooth and orientable surface S. Let F (x, y, z) = P (x, y, z)i + Q(x, y, z)j + R(x, y, z)k be

vector filed which is continuously differentiable on an open set that contains D. Let n̂ be the

unit outward normal to the surface S. Then
∫∫∫

D

divF dV =

∫∫

S

F · n̂ dσ.

Refer to Figure 9.

Example 63. Let F (x, y, z) = (x+ y)i+ z2j+x2k. Let n̂ be the unit outward normal to the

hemisphere S = {(x, y, z) : x2+y2 = z2 = 1 and z > 0}. Find the surface integral
∫∫

S

F · n̂ dσ
using divergence theorem.

Let F (x, y, z) = (x+ y, z2, x2). Then div F = 1. Note that S is not a closed surface. Let

S1 = {(x, y) : x2 + y2 ≤ 1}. Then S ∪ S1 is a closed surface and we can apply divergence

theorem for it. Please refer to Figure 10.
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By divergence theorem,
∫∫

S

F · n̂ dσ +

∫∫

S1

F · n̂1 dσ1 =

∫∫∫

D

div F dV =
2π

3
.

Here
∫∫

S1

F · n̂1 dσ1 =

∫∫

S1

(x+ y, z2, x2).(−k)dxdy =

∫∫

x2+y2≤1

x2dxdy.
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