Cauchy's Integral Formula

Cauchy's Integral Formula

Theorem Let f be analytic on a simply connected domain D. Suppose $z_0 \in D$ and C is a simple closed curve oriented counterclockwise lies entirely in D that encloses z_0 . Then

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz$$
 (Cauchy's Integral Formula).

Proof. Let $C(z_0, r)$ denotes the circle of radius r around z_0 for a sufficiently small r > 0 then

$$\left| \frac{1}{2\pi i} \int_{C} \frac{f(z)}{z - z_{0}} dz - f(z_{0}) \right| = \left| \frac{1}{2\pi i} \int_{C(z_{0}, r)} \frac{f(z) - f(z_{0})}{z - z_{0}} dz \right|$$

$$= \left| \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(z_{0} + re^{i\theta}) - f(z_{0})}{re^{i\theta}} ire^{i\theta} d\theta \right|$$

$$\leq \frac{1}{2\pi} 2\pi \times \sup_{\theta \in [0, 2\pi]} |f(z_{0} + re^{i\theta}) - f(z_{0})|$$
(by ML inequality).

As f is continuous, it follows that the righthand side goes to zero as r tends to zero.

Cauchy's Integral Formula

• Can we use Cauchy's integral formula to evaluate the following?

$$I = \int_{|z|=2} \frac{e^z}{z(z-1)} dz$$

Yes! Write

$$I = \int_{C(0,2)} \frac{e^{z}}{z - 1} dz - \int_{C(0,2)} \frac{e^{z}}{z} dz.$$

Now, apply Cauchy's integral formula, then we get the value of the integral equal to $2\pi i(e-1)$.

Theorem If f is analytic on a simply connected domain D, then f has derivatives of all orders in D (which are then analytic in D). For any $z_0 \in D$, one has

$$f^{n}(z_{0}) = \frac{n!}{2\pi i} \int_{C} \frac{f(z)}{(z-z_{0})^{n+1}} dz,$$

where C is a simple closed contour (oriented counterclockwise) around z_0 in D.

Proof: By Cauchy's integral formula

$$f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$

$$= \lim_{h \to 0} \frac{1}{2\pi i h} \int_C \left(\frac{f(z)}{z - z_0 - h} - \frac{f(z)}{z - z_0} \right) dz$$
(C is so chosen that the point $z_0 + h$ is enclosed by C)
$$= \lim_{h \to 0} \frac{1}{2\pi i h} \int_C \frac{f(z)h}{(z - z_0 - h)(z - z_0)} dz.$$

So we need to prove that

$$\left| \int_{C} \frac{f(z)}{(z - z_0 - h)(z - z_0)} dz - \int_{C} \frac{f(z)}{(z - z_0)^2} dz \right|$$

$$= \left| \int_{C} \frac{f(z)h}{(z - z_0 - h)(z - z_0)^2} dz \right| \to 0, \text{ as } h \to 0.$$

We will use ML inequality to prove this. Now

- Let $|f(z)| \leq M$ for all $z \in C$.
- Let $\alpha = \min\{|z z_0| : z \in C\}$, then $|z z_0|^2 \ge \alpha^2$.
- $\alpha \leq |z-z_0| = |z-z_0-h+h| \leq |z-z_0-h| + |h|$.
- Hence for $|h| \leq \frac{\alpha}{2}$ we have $|z z_0 h| \geq \alpha |h| \geq \frac{\alpha}{2}$.

Therefore

$$\Big|\int_C \frac{f(z)h}{(z-z_0-h)(z-z_0)^2}dz\Big| \leq \frac{M|h|I}{\frac{\alpha}{2}\alpha^2} = \frac{2M|h|I}{\alpha^3} \to 0,$$

as $h \rightarrow 0$.

By repeating exactly the same technique, we get

$$f^{2}(z_{0}) = \frac{2!}{2\pi i} \int_{C} \frac{f(z)}{(z-z_{0})^{3}} dz$$

and so on.

Summary Let C be a simple closed curve contained in a simply connected domain D, and f is an analytic function defined on D. Then

$$\int_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \begin{cases} 2\pi i f(z_0), & \text{if } n=0 \text{ and } z_0 \text{ is enclosed by } C. \\ \frac{2\pi i}{n!} f^n(z_0), & \text{if } n \geq 1 \text{ and } z_0 \text{ is enclosed by } C. \\ 0, & z_0 \text{ lies outside the region enclosed by } C. \end{cases}$$

Cauchy's estimate

Cauchy's estimate: Suppose f is analytic on a simply connected domain D and $\overline{B(z_0,R)} \subset D$ for some R>0. If $|f(z)| \leq M$ for all $z \in B(z_0,R)$, then for all $n \geq 0$,

$$|f^n(z_0)|\leq \frac{n!M}{R^n},$$

where $\overline{B(z_0,R)} = \{z : |z-z_0| \leq R\}.$

Proof: From Cauchy's integral formula and *ML* inequality we have

$$|f^{n}(z_{0})| = \left| \frac{n!}{2\pi i} \int_{|z-z_{0}|=R} \frac{f(z)}{(z-z_{0})^{n+1}} dz \right|$$

$$\leq \frac{n!}{2\pi} M \frac{1}{R^{n+1}} 2\pi R = \frac{n! M}{R^{n}}.$$

Liouville's Theorem

Liouville's Theorem: If f is analytic and bounded on the whole complex plane \mathbb{C} , then f is a constant function.

Proof: By Cauchy's estimate for any $z_0 \in \mathbb{C}$, we have

$$|f'(z_0)|\leq \frac{M}{R}$$

for all R > 0. This implies that $f'(z_0) = 0$. Since z_0 is arbitrary and hence $f' \equiv 0$. Therefore f is a constant function.

 sin z, cos z, e^z etc., can not be bounded. If so, then by Liouville's theorem, they are constant.

Liouville's Theorem

- Does there exist a non-constant entire function f such that $e^{f(z)}$ is bounded?
- Does there exist a non-constant entire function f such that Re(f) is bounded?
- Does there exist a non-constant entire function f such that Im(f) is bounded?
- Does there exist a non-constant entire function f such that f(x) is bounded for all real x?
- Does there exist a non-constant entire function f such that |f(z)| > 1 for all z ∈ C?