Evaluation of integrals - I

Type I: Consider the integrals of the form

$$\int_0^{2\pi} F(\cos\theta, \sin\theta) \, d\theta.$$

- If we take $z=e^{i\theta}$, then $\cos\theta=\frac{1}{2}(z+\frac{1}{z})$, $\sin\theta=\frac{1}{2i}(z-\frac{1}{z})$ and $d\theta=\frac{dz}{iz}$.
- Substituting for $\sin \theta$, $\cos \theta$ and $d\theta$ the definite integral transforms into the following contour integral

$$\int_0^{2\pi} F(\cos\theta, \sin\theta) d\theta = \int_{|z|=1} f(z) dz,$$

where
$$f(z) = \frac{1}{iz} [F(\frac{1}{2}(z + \frac{1}{z}), \frac{1}{2i}(z - \frac{1}{z}))]$$

Apply the residue theorem to the integral

$$\int_{|z|=1} f(z) dz.$$

Example of type I

Consider

$$\int_{0}^{2\pi} \frac{1}{1+3(\cos t)^{2}} dt.$$

$$\int_{0}^{2\pi} \frac{1}{1+3(\cos t)^{2}} dt = \int_{|z|=1}^{2\pi} \frac{1}{1+3(\frac{1}{2}(z+\frac{1}{z}))^{2}} \frac{dz}{iz}$$

$$= -4i \int_{|z|=1}^{2\pi} \frac{z}{3z^{4}+10z^{2}+3} dz$$

$$= -4i \int_{|z|=1}^{2\pi} \frac{z}{3(z+\sqrt{3}i)\left(z-\sqrt{3}i\right)\left(z+\frac{i}{\sqrt{3}}\right)\left(z-\frac{i}{\sqrt{3}}\right)} dz$$

$$= -\frac{4}{3}i \int_{|z|=1}^{2\pi} \frac{z}{(z+\sqrt{3}i)(z-\sqrt{3}i)\left(z+\frac{i}{\sqrt{3}}\right)\left(z-\frac{i}{\sqrt{3}}\right)} dz$$

$$= -\frac{4}{3}i \times 2\pi i \{Res(f, \frac{i}{\sqrt{3}}) + Res(f, -\frac{i}{\sqrt{3}})\}.$$

Improper integrals of rational functions

• A function f on $[0,\infty)$ is said to be improperly integrable if $\int_0^b f(x)dx$ exists for each b>0, and $\lim_{b\to\infty}\int_0^b f(x)dx$ exists. In this case, we write

$$\int_0^\infty f(x)dx := \lim_{b \to \infty} \int_0^b f(x)dx.$$

• If f is defined for all real x, then the improper integral of f over $(-\infty,\infty)$ is defined by

$$\int_{-\infty}^{\infty} f(x)dx = \lim_{a \to -\infty} \int_{a}^{0} f(x)dx + \lim_{b \to \infty} \int_{0}^{b} f(x)dx$$

provided both limits exist.

• There is another value associated with $\int_{-\infty}^{\infty} f(x)dx$, namely the Cauchy's principal value(P.V.), and it is given by

P. V.
$$\int_{-\infty}^{\infty} f(x)dx := \lim_{R \to \infty} \int_{-R}^{R} f(x)dx$$

provided the limit exists.

• If the function f is improperly integrable on $(-\infty, \infty)$, Cauchy's principle value integral exists and is equal to improper integral. That is,

$$\int_{-\infty}^{\infty} f(x)dx = P. V. \int_{-\infty}^{\infty} f(x)dx.$$

- However, the existence of Cauchy's principle value integral does not imply the existence of the improper integral. Take f(x) = x.
- However, if f is an even function (i.e. f(x) = f(-x) for all $x \in \mathbb{R}$), then both forms of integral exist and are equal.

Consider the rational function $f(z) = \frac{P(z)}{Q(z)}$, where P(z) and Q(z) are polynomials with real coefficients such that

- Q(z) has no zeros in the real line
- degree of Q(z) > 1+ degree of P(z).

Then Cauchy's principle value integral can be evaluated using Cauchy's residue theorem.

Type II Consider the integral

$$\int_{-\infty}^{\infty} \frac{1}{(x^2+1)^2} dx,$$

To evaluate this integral, we consider the complex-valued function

$$f(z) = \frac{1}{(z^2+1)^2},$$

which has singularities at i and -i. Consider the contour C like semicircle as shown below.

Note that:

$$\int_{C} f(z) dz = \int_{-a}^{a} f(z) dz + \int_{Arc} f(z) dz$$
$$\int_{-a}^{a} f(z) dz = \int_{C} f(z) dz - \int_{Arc} f(z) dz$$

Furthermore, observe that

$$f(z) = \frac{1}{(z^2+1)^2} = \frac{1}{(z+i)^2(z-i)^2}.$$

Then, by using Residue Theorem,

$$\int_{C} f(z) dz = \int_{C} \frac{\frac{1}{(z+i)^{2}}}{(z-i)^{2}} dz = 2\pi i \frac{d}{dz} \left(\frac{1}{(z+i)^{2}} \right) \bigg|_{z=i} = \frac{\pi}{2}$$

If we call the arc of the semicircle 'Arc', we need to show that the integral over 'Arc' tends to zero as $a \to \infty$ using ML inequality

$$\left|\int_{\mathsf{Arc}} f(z)\,dz\right| \leq ML,$$

where M is an upper bound of |f(z)| along the Arc and L the length of Arc. Now, we have

$$\left| \int_{\operatorname{Arc}} f(z) \, dz \right| \leq \frac{a\pi}{(a^2 - 1)^2} \to 0 \text{ as } a \to \infty.$$

Thus,

$$\int_{-\infty}^{\infty} \frac{1}{(x^2+1)^2} \, dx = \int_{-\infty}^{\infty} f(z) \, dz = \lim_{a \to +\infty} \int_{-a}^{a} f(z) \, dz = \frac{\pi}{2}.$$

Type III Integrals of the form

P. V.
$$\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \cos mx \ dx \text{ or P. V.} \int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \sin mx \ dx,$$

where

- P(x), Q(x) are real polynomials and m > 0,
- Q(x) has no zeros in the real line,
- degree of Q(x) > degree of P(x).

Then

P. V.
$$\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \cos mx \ dx$$
 or P. V. $\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \sin mx \ dx$

can be evaluated using Cauchy's residue theorem.

• Jordan's Lemma: If $0 < \theta \le \frac{\pi}{2}$, then $\frac{2\theta}{\pi} \le \sin \theta \le \theta$.

Proof: Define $\phi(\theta) = \frac{\sin \theta}{\theta}$. Then $\phi'(\theta) = \frac{\psi(\theta)}{\theta^2}$, where $\psi(\theta) = \theta \cos \theta - \sin \theta$.

- ① Since $\psi(0)=0$ and $\psi'(\theta)=-\theta\sin\theta\leq 0$ for $0<\theta\leq\frac{\pi}{2}$, ψ decreases as θ increases i.e. $\psi(\theta)\leq\psi(0)=0$ for $0<\theta\leq\frac{\pi}{2}$.
- ② So $\phi'(\theta) = \frac{\psi(\theta)}{\theta^2} \le 0$ for $0 < \theta \le \frac{\pi}{2}$.
- **3** That means ϕ is decreasing and hence $\frac{2}{\pi} \leq \frac{\sin \theta}{\theta} \leq 1$ for $0 < \theta \leq \frac{\pi}{2}$.
- By Jordan's, lemma we have

$$\begin{split} \int_0^\pi e^{-a\sin\theta}d\theta &=& \int_0^{\frac{\pi}{2}} e^{-a\sin\theta}d\theta + \int_{\frac{\pi}{2}}^\pi e^{-a\sin\theta}d\theta \\ &\leq& \int_0^{\frac{\pi}{2}} e^{-a\frac{2\theta}{\pi}}d\theta + \int_{\frac{\pi}{2}}^\pi e^{-a\frac{2(\pi-\theta)}{\pi}}d\theta. \end{split}$$

Here both the integrals in the RHS goes to 0 as $a \to \infty$.

Evaluate:

$$\int_{-\infty}^{\infty} \frac{\cos tx}{x^2 + 1} dx \text{ or } \int_{-\infty}^{\infty} \frac{\sin tx}{x^2 + 1} dx$$

Consider the integral

$$\int_{-\infty}^{\infty} \frac{e^{itx}}{x^2 + 1} \, dx$$

We will evaluate it by expressing it as a limit of contour integrals along the contour C. This contour starts along the real line from -a to a, and then goes counterclockwise along a semicircle centered at 0 from a to -a. Let's assume that a>1 so that the point i is enclosed by the curve.

$$\operatorname{Res}\left(\frac{e^{itz}}{z^2+1},i\right) = \lim_{z \to i} (z-i) \frac{e^{itz}}{z^2+1} = \lim_{z \to i} \frac{e^{itz}}{z+i} = \frac{e^{-t}}{2i}.$$

So by residue theorem

$$\int_C f(z) dz = (2\pi i) \operatorname{Res}_{z=i} f(z) = 2\pi i \frac{e^{-t}}{2i} = \pi e^{-t}.$$

The contour C may be split into a "straight" part and a curved arc, so that

$$\int_{\mathsf{straight}} + \int_{\mathsf{arc}} = \pi e^{-t}.$$

Thus,

$$\int_{-a}^{a} \frac{e^{itx}}{x^2 + 1} dx = \pi e^{-t} - \int_{\text{arc}} \frac{e^{itz}}{z^2 + 1} dz.$$

$$\begin{split} \left| \int_{\mathsf{arc}} \frac{e^{itz}}{z^2 + 1} \, dz \right| & \leq & \int_0^\pi \left| a \frac{e^{ita(\cos\theta + i\sin\theta)}}{a^2 - 1} \right| \, d\theta \\ & \leq & \frac{a}{a^2 - 1} \int_0^\pi e^{-ta\sin\theta} d\theta. \end{split}$$

Hence,

$$\left| \int_{\mathsf{arc}} \frac{\mathrm{e}^{\mathrm{i}tz}}{\mathsf{z}^2 + 1} \; d\mathsf{z} \right| \to 0 \; \mathsf{as} \; \mathsf{a} \to \infty$$

and

P.V.
$$\int_{-\infty}^{\infty} \frac{\cos tx}{x^2 + 1} dx = \lim_{a \to \infty} \int_{-a}^{a} \frac{e^{itx}}{x^2 + 1} dx$$
$$= \lim_{a \to \infty} \left[\pi e^{-t} - \int_{\text{arc}} \frac{e^{itz}}{z^2 + 1} dz \right]$$
$$= \pi e^{-t}.$$