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Question: Let v be a simple closed contour in a simply connected domain D,
Y p ply

and suppose z, doesn’t lie on . If f has singularity only at z, what could be
the value for [ f(z)dz?

@ Recall: Laurent’s Theorem: Let 0 < r < R, and f be analytic in the
annulus Ann(z, r, R). Then

e}

fz)= Y anlz—2)",

n=—o00

where the convergence is absolute and uniform in Ann(zo, r1, Ry) if
r < n < Ri < R. The coefficients are given by

1 f(z)

" 2mi

a
! |z—z|=s (Z - ZO)n+1

forany r <s < R.

Moreover, this series is unique.

@ Put n= —1. The answer to the above question is 27 a_j.
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Definition: Let z = z be an isolated singularity of f, and let

oo

f(z) = Z an(z — 20)"

n=—o0o

be the Laurent series expansion of f about zp, then the residue of f at z is the
coefficient a_;.

@ We denote Res(f, z) = a_1.

@ If f has a removable singularity at z = z, then Res(f, z) = 0.

sinz

@ If f(z) = then Res(f,0) = 0.

’
z

@ Let f(z) = e? and g(z) = e? . Then Res(f,0) = 2, and Res(g,0) = 0.
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Residue at poles

@ If f has a simple pole (pole of order one) at z = z, then

f(z) = Wz —
(2) z—zoJrZa z—z)"

n=0

In this case, we have Res(f, z) = lim (z — z)f(z).
Z—}ZO

@ If f has a pole of order m(m > 1) at z = z, then f(z) = £Z_ where

(z—z9)™ >

g(2z0) # 0. Since g is analytic at zp, we can write
g(z) = bo + bi(z — 20) + bo(z — 20)* + - .
Hence,

. 8@ b by ' .
) = e = o T G b )

m—1
This implies that Res(f, zp) = bm—1 = z“jlo ﬁ%g(z)
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Residue at poles

@ Thus, we summarize that if f has a pole of order m(> 1) at z = z, then

dmfl

1 m
ﬁw[f(z)(z —20)"].

Res(f,z0) = z||_>r‘r;0 (m

@ Let f(z) = m, then

Res(f, 1) = lim f(2)(z — 1) = %

and J 1
— m 9 o _ 1
Res(f,—1) = z|_|}rT_H dz[f(z)(z +1)7] 7
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Cauchy's residue theorem

Cauchy residue theorem: Let f be analytic in the interior enclosed by a simple
closed contour v (positively orientated) except for finitely many isolated
singularities a1, az, ..., a, in the interior. If the points a1, a2, ..., a, do not lie
on -, then
n
/ f(z)dz = 271'1'2 Res(f, ax).
v k=1

Proof. Apply Cauchy’s theorem for multiply connected domain.

° fW f(z)dz = (2mwi)x sum of the residues of f at singular points that are in

the interior enclosed by ~.

1
° / ————dz = 27i x Res(f,0). (The point z = 2 does not lie in the
|z]=1 z(z - 2)

interior enclosed by the unit circle.)
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Argument Princeple

Definition: A function f is said to be meromorphic in a domain D if f is
analytic throughout on D, except possibly on the poles of f in D.

Suppose f is meromorphic in the interior enclosed by a closed contour +,
and analytic on ~, without zero on . Let ' = f(7), then I is a closed
contour (not necessarily be simple).

As z traverses « in the positive direction, its image by w = f(z) traverses
I in a particular direction (may be different than ) that determines the
orientation of I,

Fix f(z0) = wo € T. Let ¢o = argwp. Take w € T and run arg w
continuously, starting with the value ¢o.

When w returns to the point wy (in this case, z traverses from z to z),
arg w assumes a particular value, say ¢;.

The change in arg w (independent of the point wy) is ¢1 — ¢o, which is
an integral multiple of 27.

The integer %(qh — ¢o) represents orientation, and the number of times
the point w rotates around the origin is called the winding number.
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Argument principle

Question: Can we determine the winding number by counting the zeros and
poles of f lying in the interior enclosed by a closed contour y?

The argument principle gives an answer.
Argument principle: Suppose a function f(z) is meromorphic in the interior
enclosed by a positively oriented simple closed contour ~ such that

@ f(z) is analytic on vy and f(z) # 0 on 7,

@ Z = Number of zeros of f counted according to multiplicity, and

@ P = Number of poles of f counted according to multiplicity.

Then
1

dz =27 —P.
2mi /., f(z) ‘
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Argument principle

/
The contour integral / Fz) dz can be interpreted in the following (informal)

- f(2)

ways:

@ as the total change in the argument of f(z) as z travels on v,
exhibiting the name of the theorem. Suppose (!)

7 log(f(2)) =

f'(2)
f(z)

0
log f|,, = IIE)TF i arg £(2)].

holds on ~, then the integration of over vy gives

@ as 27/ times the winding number of the path f(y) around the origin. By
substituting w = f(z), we get

[ e oo
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Argument principle

Proof. If f is analytic and has a zero of order m(m > 1) at z = a, then
f(z) = (z — a)"g(z), where g(a) # 0. Hence, ff((zz)) =
theorem, we get

EOR By residue

/ f(z) dz =2mim.
5 f(2)
If f has a pole of order n(> 1) at z = a, then f(z ) (z—2a)""g(z), where
g(a) # 0. Hence, ';((ZZ)) =+ g
f’(z) .
dz = 2wi(—n).
/W f(z)

Combining the above two results, we obtain

f(2) =2mi(Z —
Af(z) dz =2wi(Z — P).

@ Evaluate: tanz dz.

L

@ Evaluate: [Hint. f(z) = tan(z/2)]

Jos
for:
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Rouché’s theorem

Theorem: (Rouché’s theorem) Let f and g be two analytic functions in the
interior enclosed by a simple closed contour « and on « such that

lg(z)] < |f(2)] holds for each point z on . Then f(z) and f(z) + g(z) have
same number of zeros, counted according to their multiplicity in the interior
enclosed by 7.

Proof: Since |g(z)| < |f(z)| holds on =, if f(z) = 0 for some z on =, then
|g(z)| < 0, which is impossible. Hence f will never vanish on . Now,

f+g="f (1 + %) on . Therefore, arg(f + g) = arg(f) + arg (1 + %) )

Notice that ’%’ < 1, we conclude that 1 + % lies in the RHP. Also, change in

the argument of 1 + % around ~ is zero. Thus, arg(f + g) = arg(f). By

argument principle, f(z) and f(z) + g(z) have same number of zeros, counted
according to their multiplicity.

Example: Determine the number of zeros of the equation z’ —4z°4+z—-1=0
in the unit disc |z] < 1.

Take f(z) = —42%; g(z) = 2" +z— 1. Then |[f(z)| = 4 and |g(z)| < 3 when
|z| = 1. Since f has three zeros inside |z| = 1, by Rouché’s theorem, the
equation z' — 42> + z — 1 = 0 has three zeros in the unit disc |z| < 1.

Lecture 16 Residue theorem and its applications



