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Residue

Question: Let γ be a simple closed contour in a simply connected domain D,
and suppose z0 doesn’t lie on γ. If f has singularity only at z0, what could be
the value for

∫
γ
f (z)dz?

Recall: Laurent’s Theorem: Let 0 ≤ r < R, and f be analytic in the
annulus Ann(z0, r ,R). Then

f (z) =
∞∑

n=−∞

an(z − z0)n,

where the convergence is absolute and uniform in Ann(z0, r1,R1) if
r < r1 < R1 < R. The coefficients are given by

an =
1

2πi

∫
|z−z0|=s

f (z)

(z − z0)n+1
dz

for any r < s < R.

Moreover, this series is unique.

Put n = −1. The answer to the above question is 2πi a−1.
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Residue

Definition: Let z = z0 be an isolated singularity of f , and let

f (z) =
∞∑

n=−∞

an(z − z0)n

be the Laurent series expansion of f about z0, then the residue of f at z0 is the
coefficient a−1.

We denote Res(f , z0) = a−1.

If f has a removable singularity at z = z0, then Res(f , z0) = 0.

If f (z) =
sin z

z
, then Res(f , 0) = 0.

Let f (z) = e
2
z and g(z) = e

1
z2 . Then Res(f , 0) = 2, and Res(g , 0) = 0.
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Residue at poles

If f has a simple pole (pole of order one) at z = z0, then

f (z) =
a−1

z − z0
+
∞∑
n=0

an(z − z0)n.

In this case, we have Res(f , z0) = lim
z→z0

(z − z0)f (z).

If f has a pole of order m (m > 1) at z = z0, then f (z) = g(z)
(z−z0)m

, where

g(z0) 6= 0. Since g is analytic at z0, we can write

g(z) = b0 + b1(z − z0) + b2(z − z0)2 + · · · .

Hence,

f (z) =
g(z)

(z − z0)m
=

b0
(z − z0)m

+
b1

(z − z0)m−1
+· · ·+ bm−1

(z − z0)
+
∞∑
k=0

bm+k(z−z0)k .

This implies that Res(f , z0) = bm−1 = lim
z→z0

1

(m − 1)!

dm−1

dzm−1
g(z).
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Residue at poles

Thus, we summarize that if f has a pole of order m (> 1) at z = z0, then

Res(f , z0) = lim
z→z0

1

(m − 1)!

dm−1

dzm−1
[f (z)(z − z0)m].

Let f (z) =
z

(z − 1)(z + 1)2
, then

Res(f , 1) = lim
z→1

f (z)(z − 1) =
1

4

and

Res(f ,−1) = lim
z→−1

d

dz
[f (z)(z + 1)2] = −1

4
.

Lecture 16 Residue theorem and its applications



Cauchy’s residue theorem

Cauchy residue theorem: Let f be analytic in the interior enclosed by a simple
closed contour γ (positively orientated) except for finitely many isolated
singularities a1, a2, . . . , an in the interior. If the points a1, a2, . . . , an do not lie
on γ, then ∫

γ

f (z)dz = 2πi
n∑

k=1

Res(f , ak).

Proof. Apply Cauchy’s theorem for multiply connected domain.∫
γ
f (z)dz = (2πi)× sum of the residues of f at singular points that are in

the interior enclosed by γ.∫
|z|=1

1

z(z − 2)
dz = 2πi × Res(f , 0). (The point z = 2 does not lie in the

interior enclosed by the unit circle.)
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Argument Princeple

Definition: A function f is said to be meromorphic in a domain D if f is
analytic throughout on D, except possibly on the poles of f in D.

Suppose f is meromorphic in the interior enclosed by a closed contour γ,
and analytic on γ, without zero on γ. Let Γ = f (γ), then Γ is a closed
contour (not necessarily be simple).

As z traverses γ in the positive direction, its image by w = f (z) traverses
Γ in a particular direction (may be different than γ) that determines the
orientation of Γ.

Fix f (z0) = w0 ∈ Γ. Let φ0 = argw0. Take w ∈ Γ and run argw
continuously, starting with the value φ0.

When w returns to the point w0 (in this case, z traverses from z0 to z0),
argw assumes a particular value, say φ1.

The change in argw (independent of the point w0) is φ1 − φ0, which is
an integral multiple of 2π.

The integer 1
2π

(φ1 − φ0) represents orientation, and the number of times
the point w rotates around the origin is called the winding number.
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Argument principle

Question: Can we determine the winding number by counting the zeros and
poles of f lying in the interior enclosed by a closed contour γ?

The argument principle gives an answer.

Argument principle: Suppose a function f (z) is meromorphic in the interior
enclosed by a positively oriented simple closed contour γ such that

f (z) is analytic on γ and f (z) 6= 0 on γ,

Z = Number of zeros of f counted according to multiplicity, and

P = Number of poles of f counted according to multiplicity.

Then
1

2πi

∫
γ

f ′(z)

f (z)
dz = Z − P.
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Argument principle

The contour integral

∫
γ

f ′(z)

f (z)
dz can be interpreted in the following (informal)

ways:

as the total change in the argument of f (z) as z travels on γ,
exhibiting the name of the theorem. Suppose (!)

d

dz
log(f (z)) =

f ′(z)

f (z)

holds on γ, then the integration of f ′(z)
f (z)

over γ gives

log f |γ = [���
�:0

ln|f (z)|+ i arg f (z)]|γ .

as 2πi times the winding number of the path f (γ) around the origin. By
substituting w = f (z), we get∫

γ

f ′(z)

f (z)
dz =

∫
f (γ)

1

w
dw .
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Argument principle

Proof. If f is analytic and has a zero of order m (m > 1) at z = a, then

f (z) = (z − a)mg(z), where g(a) 6= 0. Hence, f ′(z)
f (z)

= m
z−a

+ g′(z)
g(z)

. By residue
theorem, we get ∫

γ

f ′(z)

f (z)
dz = 2πi m.

If f has a pole of order n (> 1) at z = a, then f (z) = (z − a)−ng(z), where

g(a) 6= 0. Hence, f ′(z)
f (z)

= −n
z−a

+ g′(z)
g(z)

. Again by residue theorem, we get∫
γ

f ′(z)

f (z)
dz = 2πi(−n).

Combining the above two results, we obtain∫
γ

f ′(z)

f (z)
dz = 2πi(Z − P).

Evaluate:

∫
|z−π

2
|=1

tan z dz .

Evaluate:

∫
|z|=1

dz

sin z
. [Hint. f (z) = tan(z/2)]
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Rouché’s theorem

Theorem: (Rouché’s theorem) Let f and g be two analytic functions in the
interior enclosed by a simple closed contour γ and on γ such that
|g(z)| < |f (z)| holds for each point z on γ. Then f (z) and f (z) + g(z) have
same number of zeros, counted according to their multiplicity in the interior
enclosed by γ.

Proof: Since |g(z)| < |f (z)| holds on γ, if f (z) = 0 for some z on γ, then
|g(z)| < 0, which is impossible. Hence f will never vanish on γ. Now,

f + g = f
(

1 +
g

f

)
on γ. Therefore, arg(f + g) = arg(f ) + arg

(
1 +

g

f

)
.

Notice that
∣∣∣g
f

∣∣∣ < 1, we conclude that 1 +
g

f
lies in the RHP. Also, change in

the argument of 1 +
g

f
around γ is zero. Thus, arg(f + g) = arg(f ). By

argument principle, f (z) and f (z) + g(z) have same number of zeros, counted
according to their multiplicity.

Example: Determine the number of zeros of the equation z7 − 4z3 + z − 1 = 0
in the unit disc |z | < 1.
Take f (z) = −4z3; g(z) = z7 + z − 1. Then |f (z)| = 4 and |g(z)| ≤ 3 when
|z | = 1. Since f has three zeros inside |z | = 1, by Rouché′s theorem, the
equation z7 − 4z3 + z − 1 = 0 has three zeros in the unit disc |z | < 1.
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