
MA201: Complex Analysis
Assignment 6: Hint/ model solutions

(Taylor and Laurent expansions, identity theorem, and maximum modulus theorem)

July - November 2024

1. Is there a polynomial P (z) such that P (z)e
1
z is an entire function? Justify your answer.

Answer: No. Notice that there are infinitely many terms in the principal part of e
1
z

in the Laurent series expansion about 0.

If we multiply it with any polynomial P (z). then also P (z)e
1
z has infinitely many

terms in the principal part of the Laurent series about 0.

2. Find the Laurent series of the function f(z) = exp
(
z + 1

z

)
around 0. Further, show

that for all n ≥ 0

1

2π

∫ 2π

0

e2 cos θ cosnθdθ =
∞∑
k=0

1

(n+ k)!k!
.

Answer: Laurent Series of f(z) = exp
(
z + 1

z

)
around 0 is given by

exp

(
z +

1

z

)
=

(
∞∑
m=0

zm

m!

)(
∞∑
k=0

1

k!zk

)

=
∞∑

n=−∞

 ∑
m−k=n(k,m≥0)

1

k!m!

 zn

=
∞∑

n=−∞

 ∑
k≥max(0,−n)

1

(n+ k)!k!

 zn.

It follows from the above expression and the uniqueness of the Laurent series that if

f(z) =
∞∑

n=−∞

anz
n then

an =
∑

k≥max(0,−n)

1

(n+ k)!k!
=

1

2πi

∫
C

f(w)

wn+1
dw

where C is the unit circle. Since the imaginary part of a′ns is 0 thus,

an = <
(

1

2πi

∫
C

f(w)

wn+1
dw

)
=

1

2π

∫ 2π

0

e2 cos θ cosnθdθ.

For n ≥ 0
1

2π

∫ 2π

0

e2 cos θ cosnθdθ =
∞∑
k=0

1

(n+ k)!k!
.

3. If f and g are entire functions such that gf̄ is entire, then either f is constant or g ≡ 0.

Answer: Let g 6≡ 0. That means there is a point a ∈ C such that g(a) 6= 0. So there

is a r > 0 such that g(z) 6= 0 for every z ∈ B(a, r) (as g is continuous at a). Then

f̄(z) = f̄(z)g(z) 1
g(z)

is analytic on B(a, r). But f is analytic on B(a, r). Then f must

be a constant on B(a, r). By the identity theorem f is constant on C.



4. Find the Laurent series expansion of the following functions about the given points

z = z0 or in the given region (specify the region where the expansion is valid wherever

necessary).

(a) z2 exp(1/z) in the neighborhood of z = 0

(b)
1

z2 + 1
in the neighborhood of z = −i

(c) f(z) =
z + 3

z(z2 − z − 2)
for 0 < |z| < 1 and for 1 < |z| < 2.

Answer: (a) f(z) = z2 exp(1/z)

About z = 0:

z2e
1
z = z2 ×

(
1 +

1

1!

1

z
+

1

2!

1

z2
+

1

3!

1

z3
+

1

4!

1

z4
+ · · ·

)
= z2 +

1

1!
z +

1

2!
+

1

3!

1

z
+

1

4!

1

z2
+ · · · for |z| > 0 .

(b)
1

z2 + 1
About z = −i:

f(z) =
1

z2 + 1
=

1

(z + i)(z − i)
=

1

(z − (−i))(z + i− 2i)
=

1

(z − (−i))(−2i)
(
1−

(
z+i
2i

))
1

z2 + 1
=

1

(z + i)(−2i)

[
1−

(
z + i

2i

)]−1
=

1

(z + i)(−2i)

[
∞∑
n=0

(
z + i

2i

)n]

= (−1)

[
1

(z + i)(2i)
+
∞∑
n=1

(z + i)n−1

(2i)n+1

]
The above series converges for 0 < |z + i| < 2.

(c) f(z) =
z + 3

z(z2 − z − 2)
In the domain 0 < |z| < 1:

f(z) =
z + 3

z(z2 − z − 2)
=
−3

2z
+

2

3(z + 1)
+

5

6(z − 2)
.

z + 3

z(z2 − z − 2)
=
−3

2z
+

2

3
[1 + z]−1 − 5

12

[
1−

(z
2

)]−1
=
−3

2z
+

2

3

[
∞∑
n=0

(−1)nzn

]
− 5

12

[
∞∑
n=0

(z
2

)n]

=
−3

2z
+
∞∑
n=0

(
(−1)n2

3
+

(−5)

(12)(2)n

)
zn

The above series converges in the domain 0 < |z| < 1.
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In the domain 1 < |z| < 2:

z + 3

z(z2 − z − 2)
=
−3

2z
+

2

3z

[
1 +

(
1

z

)]−1
− 5

12

[
1−

(z
2

)]−1
=
−3

2z
+

2

3z

[
∞∑
n=0

(
−1

z

)n]
− 5

12

[
∞∑
n=0

(z
2

)n]
The above series converges in the domain 1 < |z| < 2.

5. Use the maximum modulus theorem (MMT) to prove the fundamental theorem of

algebra.

Answer: If P (z) 6= 0 for all z ∈ C, then f(z) = 1
p(z)

is entire and by the maximum

modulus theorem, sup
|z|≤R

|f(z)| = |f(z0)| = M, where |z0| = R. On the other hand,

|f(z)| → 0 when z → ∞. Hence, for 0 < ε < M, we can choose R1 > R such

that |f(z)| < ε whenever |z| ≥ R1. Again, applying the MMT on B(0, R1), we get

sup
|z|≤R1

|f(z)| = |f(z1)| ≤ ε < M, where |z1| = R1. This implies that the maximum

modulus is attained the interior point z0 of B(0, R1). By MMT, it turns out that f is

constant.

6. Let f be a bounded analytic function on the (open) right half-plane (RHP). If f is

continuous on the imaginary axis and satisfies sup
y∈R
|f(iy)| ≤M , then show that |f(z)| ≤

M on the RHP. (Hint: Use maximum modulus theorem to gε(z) = (z+ 1)−εf(z) on an

appropriate semi-disc.)

Answer: Let |f(z)| ≤ K for z ∈ RHP. For ε > 0, write gε(z) = (z + 1)−εf(z). On the

half circle S(0, R) = {z ∈ RHP : |z| = R}, we get |gε(z)| ≤ (R − 1)−εK → 0, when

R→∞. On the other hand, when z ∈ [−iR, iR], we have |gε(z)| ≤ (R− 1)−εM, which

is holds true for each ε > 0. Hence |f(z)| ≤ M for all z ∈ [−iR, iR] ∪ S(0, R). By the

maximum modulus theorem, |f(z)| ≤M on the region [−iR, iR]∪{z ∈ RHP : |z| ≤ R}
for sufficiently large R. Letting R→∞, we get |f(z)| ≤M for all z in the RHP.

Remark: One can apply MMT in the case when |f(z)| ≤ |f(z0)| for some z0 in the

domain. Only then we can think of the location of z0 either in the domain or on the

boundary of the domain.

Let’s focus on the right half-plane (RHP). It’s evident that f(z) =
z

1 + z
meets all

the conditions of Q6. Clearly |f(z)| < 1 on the RHP. However, the value 1 is not

attended by |f(z)| at any point on the RHP. Thus, it is necessary to utilize a technique

like the one mentioned above.
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