MA201: Complex Analysis

Assignment 5
(Morera’s theorem, Power series, and identity theorem)

July - November, 2024

. Suppose f is analytic on the open unit disc D and it satisfies | f(z)| < 1 for all z € D.
Show that |f(0)] < 1.

Answer: (Hint: Use Cauchy’s integral formula)

. If f: C — C is continuous and analytic on C ~\ [—1, 1], then show that f is entire.
Answer: (Hint: Use Morera’s theorem)

. Define F(z) = jsin t? e~ dt. Show that F is entire and satisfying |F(z)| < AePW for
z =x + iy and Ofor some positive constants A and B.

Answer: (Hint: Use Morera’s theorem)

. Find all the entire functions f such that f(z) = e* for all x in R.

Answer: (Hint: Use identity theorem)

. Let f and ¢ be analytic functions on a domain D in C. If f ¢ is analytic, then show
that either f is constant or g = 0.

Answer: Suppose g Z 0. Then there exists zp € D and 6 > 0 such that g # 0 on

B(z,9). Since fg is analytic, it follows that (fg): = f is analytic on B(z,d). So
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f and f both are analytic B(zp,d). By Cauchy-Riemann equations, f is constant on
B(zp,0). Hence, by identity theorem, f is constant on D.

. Let f be an entire function such that lim ’@ = 0. Show that f is constant.
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= 0. For every € > 0, there exists a M > 0 such that
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< €, whenever |z| > M. That is,

|f(2)] < €|z|, whenever |z| > M = f(z) =az+b

for some constants a,b € C. Once again
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So a = 0 and hence f is constant.
. Find the radius of convergence of the following power series:
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8. Find the power series expansion of the function f(z) = cos? z about 0.

Answer: We know that f(z) = cos? z = (1 + cos 2z)/2 and

2" if n is odd
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3" if n is even.
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for z € C. Therefore,
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