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Are you using optimization?

The word “optimization” may be very familiar or may be quite new to 
you. 

……. but whether you know about optimization or not, you are using
optimization in many occasions of your day to day life …….

…………….Examples………………
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Cooking

Ant colony

Newspaper 

hawker

Forensic 

artist

Optimization in real life
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Example

A farmer has 2400 m of fencing and wants to fence off a rectangular field that borders 

a straight river. He needs no fence along the river. What are the dimensions of the 

field that has the largest area?

100100

2200

1000

700700

400

1600

400

x

yy

RIVER

Maximize 𝑓 = 𝑥𝑦

Subject to 𝑔 𝑥, 𝑦 = 𝑥 + 2𝑦 = 2400
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A manufacturer needs to make a cylindrical can that will hold 1.5 liters of liquid.

Determine the dimensions of the can that will minimize the amount of material used in

its construction.

Constraint: πr2h = 1500

Minimize: A = 2πr2 + 2πrh

Example

Dimension is in cm
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Objectives

Topology: Optimal connectivity of the 

structure

Minimum cost of material: optimal cross 

section of all the members

We will consider the second objective only

The design variables are the cross sectional area 

of the members, i.e. A1 to A7

Using symmetry of the structure

A7=A1, A6=A2, A5=A3

You have only four design variables, i.e., A1 to A4

Example
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Optimization formulation

Objective

One essential constraint is non-negativity of design variables, i.e.

A1, A2, A3, A4  >= 0 

Is it complete now?

What are the constraints?
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First set of constraints Another constraint may be the 

minimization of deflection at C
Another constraint is buckling 

of compression members

Optimization formulation
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Optimization formulation
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What is Optimization?

• Optimization is the act of obtaining the best result under a given
circumstances.

• Optimization is the mathematical discipline which is concerned with
finding the maxima and minima of functions, possibly subject to
constraints.
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Introduction to optimization
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Introduction to optimization

𝑓 𝑥, 𝑦 = − 𝑥2 + 𝑦2 + 4

Equation of the surface 

In this case, we can obtain the optimal 

solution by taking derivatives with respect 

to variable 𝑥 and 𝑦 and equating them to 

zero 

𝜕𝑓

𝜕𝑥
= −2𝑥 = 0 ⇒ 𝑥∗= 0

𝜕𝑓

𝜕𝑦
= −2𝑦 = 0 ⇒ 𝑦∗= 0Optimal solution is 0,0



Single variable optimization

Objective function is defined as

Minimization/Maximization f(x)
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Single variable optimization

Stationary points

For a continuous and differentiable function f(x), a stationary point x* is a
point at which the slope of the function is zero, i.e. f ʹ(x) = 0 at x = x*,

4/24/2015 15

Minima Maxima Inflection point
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Global minimum and maximum 
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A function is said to have a global or absolute

maximum at x = x* if f (x* ) ≥ f(x) for all x in the

domain over which f(x) is defined.

A function is said to have a global or absolute 

minimum at x = x*  if f (x* ) ≤ f(x) for all x in the 

domain over which f(x) is defined.
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Global optima
Local optima

Local optima

Local optima

Local optima

f

X 

Introduction to optimization
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Necessary and sufficient conditions for optimality
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Necessary condition 

If a function 𝑓(𝑥) is defined in the interval 𝑎 ≤ 𝑥 ≤ 𝑏 and has a relative minimum 

at 𝑥 = 𝑥∗, Where 𝑎 ≤ 𝑥∗ ≤ 𝑏 and if 𝑓/ 𝑥 exists as a finite number at 𝑥 = 𝑥∗, 
then 𝑓/ 𝑥∗ = 0

Proof

𝑓/ 𝑥∗ = lim
ℎ→0

𝑓 𝑥∗ + ℎ − 𝑓(𝑥∗)

ℎ

Since 𝑥∗ is a relative minimum                     𝑓(𝑥∗) ≤ 𝑓 𝑥∗ + ℎ

For all values of ℎ sufficiently close to zero, hence

𝑓 𝑥∗ + ℎ − 𝑓(𝑥∗)

ℎ
≥ 0

𝑓 𝑥∗ + ℎ − 𝑓(𝑥∗)

ℎ
≤ 0

if ℎ ≥ 0

if ℎ ≤ 0
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Thus

𝑓/ 𝑥∗ ≥ 0 If ℎ tends to zero through +ve value  

𝑓/ 𝑥∗ ≤ 0 If ℎ tends to zero through -ve value  

Thus only way to satisfy both the conditions is to have 

𝒇/ 𝒙∗ = 𝟎
Note:

• This theorem can be proved if 𝑥∗ is a relative maximum

• Derivative must exist at 𝑥∗

• The theorem does not say what happens if a minimum or maximum occurs at an end point of 

the interval of the function

• It may be an inflection point also.   

Necessary and sufficient conditions for optimality
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Sufficient conditions for optimality

Sufficient condition

Suppose at point x* , the first derivative is zero and first nonzero higher 
derivative is denoted by n, then

1. If n is odd, x*  is an inflection point

2. If n is even, x*  is a local optimum
1. If the derivative is positive, x*  is a local minimum

2. If the derivative is negative, x*  is a local maximum
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Sufficient conditions for optimality

Proof Apply Taylor’s 

series

𝑓 𝑥∗ + ℎ = 𝑓 𝑥∗ + ℎ𝑓′ 𝑥∗ +
ℎ2

2!
𝑓′′ 𝑥∗ +⋯+

ℎ𝑛−1

𝑛 − 1 !
𝑓𝑛−1 𝑥∗ +

ℎ𝑛

𝑛!
𝑓𝑛 𝑥∗

Since 𝑓′ 𝑥∗ = 𝑓′′ 𝑥∗ = ⋯ = 𝑓𝑛−1 𝑥∗ = 0

𝑓 𝑥∗ + ℎ − 𝑓 𝑥∗ =
ℎ𝑛

𝑛!
𝑓𝑛 𝑥∗

When 𝑛 is even    
ℎ𝑛

𝑛!
≥ 0

Thus if  𝑓′ 𝑥∗ is positive 𝑓 𝑥∗ + ℎ − 𝑓 𝑥∗ is positive Hence it is  local minimum

Thus if  𝑓′ 𝑥∗ negative 𝑓 𝑥∗ + ℎ − 𝑓 𝑥∗ is negative Hence it is  local maximum

When 𝑛 is odd    
ℎ𝑛

𝑛!
changes sign with the change in the sign of h. 

Hence it is an inflection point
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𝑓 𝑥 = 𝑥3 − 10𝑥 − 2𝑥2 − 10

Sufficient conditions for optimality

Take an example

𝑓′ 𝑥 = 3𝑥2 − 10 − 4𝑥 = 0

Solving for 𝑥 𝑥∗ = 2.61 𝑎𝑛𝑑 − 1.28 These two points are stationary points

Apply necessary condition

Apply sufficient condition 𝑓′′ 𝑥 = 6𝑥 − 4

𝑓′′ 2.61 = 11.66 positive and n is odd

𝑥∗ = 2.61 is a minimum point

𝑓′′ −1.28 = −11.68 negative and n is odd

𝑥∗ = −1.28 is a maximum point
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Multivariable optimization without constraints

Minimize 𝑓(𝑋) Where 𝑋 =

𝑥1
𝑥2
⋮
𝑥𝑛

Necessary condition for optimality 

If 𝑓(𝑋) has an extreme point (maximum or minimum) at 𝑋 = 𝑋∗ and if the first partial 

Derivatives of 𝑓(𝑋) exists at 𝑋∗, then 

𝜕𝑓 𝑋∗

𝜕𝑥1
=
𝜕𝑓 𝑋∗

𝜕𝑥2
= ⋯ =

𝜕𝑓 𝑋∗

𝜕𝑥𝑛
= 0
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Sufficient condition for optimality 

The sufficient condition for a stationary point 𝑋∗ to be an extreme point is that the 

matrix of second partial derivatives of 𝑓(𝑋) evaluated at 𝑋∗ is 

(1) positive definite when 𝑋∗ is a relative minimum

(2) negative definite when 𝑋∗ is a relative maximum

(3) neither positive nor negative definite when 𝑋∗ is neither a minimum nor a maximum

Proof Taylor series of two variable function

𝑓 𝑥 + ∆𝑥, 𝑦 + ∆𝑦 = 𝑓 𝑥, 𝑦 + ∆𝑥
𝜕𝑓

𝜕𝑥
+ ∆𝑦

𝜕𝑓

𝜕𝑦
+
1

2!
∆𝑥2

𝜕2𝑓

𝜕𝑥2
+ 2∆𝑥∆𝑦

𝜕2𝑓

𝜕𝑥𝜕𝑦
+ ∆𝑦2

𝜕2𝑓

𝜕𝑦2
+⋯

𝑓 𝑥 + ∆𝑥, 𝑦 + ∆𝑦 = 𝑓 𝑥, 𝑦 + ∆𝑥 ∆𝑦

𝜕𝑓

𝜕𝑥
𝜕𝑓

𝜕𝑦

+
1

2!
∆𝑥 ∆𝑦

𝜕2𝑓

𝜕𝑥2
𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕2𝑓

𝜕𝑦2

∆𝑥
∆𝑦

+⋯

Multivariable optimization without constraints
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𝑓 𝑋∗ + ℎ = 𝑓 𝑋∗ + ℎ𝑇𝛻𝑓 𝑋∗ +
1

2!
ℎ𝑇𝐻ℎ +⋯

Since 𝑋∗ is a stationary point, the necessary condition gives that 𝛻𝑓 𝑋∗ = 0

Thus

𝑓 𝑋∗ + ℎ − 𝑓 𝑋∗ =
1

2!
ℎ𝑇𝐻ℎ +⋯

Now, 𝑋∗ will be a minima, if ℎ𝑇𝐻ℎ is positive  

𝑋∗ will be a maxima, if ℎ𝑇𝐻ℎ is negative  

ℎ𝑇𝐻ℎ will be positive if H is a positive definite matrix 

ℎ𝑇𝐻ℎ will be negative if H is a negative definite matrix 

A matrix H will be positive definite if all the eigenvalues are positive, i.e. all the 𝜆 values are positive which 

satisfies the following equation  

𝐴 − 𝜆𝐼 = 0

Multivariable optimization without constraints
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a b

This is the narrow region 

where optima exists

Line search techniques
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Minimization 𝑓 𝑥 = Maximization −𝑓 𝑥

Optimal solution 𝑥∗ = 0

Optimal solution 𝑥∗ = 0
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a bx1 x2

Quiz

For the unimodal function 

Optima is not  

a. Between 𝑎, 𝑋1
b. Between 𝑋1, 𝑋2
c. Between 𝑋2, 𝑏
d. Between 𝑎, 𝑏

Ans: a
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a bx1 x2

Quiz

For the unimodal function 

Optima is not  

a. Between 𝑎, 𝑋1
b. Between 𝑋1, 𝑋2
c. Between 𝑋2, 𝑏
d. Between 𝑎, 𝑏

Ans: c
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a bX1 X2

Quiz

For the unimodal function 

Optima is not  

a. Between 𝑎, 𝑋1
b. Between 𝑋1, 𝑋2
c. Between 𝑋2, 𝑏
d. Between 𝑎, 𝑏

Ans: a, c
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a bX1 X2Xm

Interval halving method
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a bx1 X2Xm

Interval halving method
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a bx1 X2Xm

Interval halving method
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a bx1 X2Xm

In this case

Interval halving method
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a b
x1 X2

Xm

CONTINUE

In this case

Interval halving method
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Golden ratio

4/24/2015 36

Golden ratio 0.618=1/1.618
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a bX

1

Golden Section Search Method

X

2

Apply region 

elimination rules

Suppose

L

1 − 𝜏 𝐿

1 − 𝜏 𝐿 𝜏𝐿

𝜏𝐿

𝑓 𝑋1 > 𝑓 𝑋2
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a bX

1

X

2

Apply region 

elimination rules

Suppose

1 − 𝜏 𝐿

1 − 𝜏 𝐿 𝜏𝐿

𝜏𝐿

L

X

2

Golden Section Search Method
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a bX

1

X

2

Continue 

iteration

1 − 𝜏 𝐿

𝜏𝐿

Golden Section Search Method
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a bcd

𝜏 𝑏 − 𝑎

𝜏 𝑏 − 𝑎

a cd

𝜏 𝑐 − 𝑎

𝜏 𝑐 − 𝑎

e

𝑐 = 𝑎 + 𝜏 𝑏 − 𝑎 (1)

𝑑 = 𝑏 − 𝜏 𝑏 − 𝑎 (2)

If 𝑓 𝑑 < 𝑓(𝑐)

𝑑 = 𝑎 + 𝜏 𝑐 − 𝑎 (3)

Putting (1) in (3), we have

𝑑 = 𝑎 + 𝜏 𝑎 + 𝜏 𝑏 − 𝑎 − 𝑎

𝑑 = 𝑎 + 𝜏2 𝑏 − 𝑎 (4)

Equating (4) and (2), we have

𝑏 − 𝜏 𝑏 − 𝑎 = 𝑎 + 𝜏2 𝑏 − 𝑎

𝜏2 + 𝜏 − 1 = 0 Solving 𝜏=0.618, -1.618 0.618 is the golden

Golden Section Search Method
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Newton-Raphson method

𝑓 𝑥𝑛

𝑥𝑛𝑥𝑛+1

𝑓′ 𝑥𝑛 =
𝑓 𝑥𝑛 − 𝑓 𝑥𝑛+1

𝑥𝑛 − 𝑥𝑛+1

𝑥𝑛+1 = 𝑥𝑛 −
𝑓 𝑥𝑛
𝑓′ 𝑥𝑛

Rearranging and putting 

𝑓 𝑥𝑛+1 =0

𝑥𝑛+2

𝑓 𝑥

𝑥

Continue iteration
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F 𝑥𝑛

𝑥𝑛𝑥𝑛+1

𝑥𝑛+1 = 𝑥𝑛 −
𝐹 𝑥𝑛
𝐹′ 𝑥𝑛

𝑥𝑛+2

F 𝑥

𝑥

Continue 

iteration

Incase optimization problem, 𝑓′ 𝑥 = 0

Considering 𝐹 𝑥 = 𝑓′ 𝑥

𝑥𝑛+1 = 𝑥𝑛 −
𝑓′ 𝑥𝑛
𝑓′′ 𝑥𝑛

Newton-Raphson method
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1. If 𝑓 𝑥 is an unimodal convex function in the interval 𝑎, 𝑏 , then 𝑓′ 𝑎 × 𝑓′ 𝑏 is 

a) Positive

b) Negative

c) It may be negative or may be positive

d) None of the above

2. For the same function, take any point 𝑐 between 𝑎, 𝑏 . If𝑓′ 𝑐 is less than 0, then minima is not within the 

range

a) 𝑎, 𝑐
b) 𝑐, 𝑏
c) 𝑎, 𝑏
d) None of the above

2. For the same function, take any point 𝑐 between 𝑎, 𝑏 . If𝑓′ 𝑐 is greater than 0, then minima not within the 

range

a) 𝑎, 𝑐
b) 𝑐, 𝑏
c) 𝑎, 𝑏
d) None of the above

QUIZ

Ans. b

Ans. a

Ans. b
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Take a point

Bisection method

𝑎 𝑏𝑧

𝑧 =
𝑎 + 𝑏

2

𝑖𝑓𝑓′ 𝑧 < 0 then area between 𝑎, 𝑧 will be 

eliminated

𝑖𝑓𝑓′ 𝑧 > 0 then area between 𝑧, 𝑏 will be 

eliminated

Disadvantage 

 Magnitude of the derivatives 

is not considered 
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𝑥1 𝑥2𝑧

Considering similar triangle

𝑓′ 𝑥2

𝑓′ 𝑥1

𝑧

𝑥1

𝑥2

𝑧

𝑓′ 𝑥2
𝑥2 − 𝑧

=
𝑓′ 𝑥2 − 𝑓′ 𝑥1

𝑥2 − 𝑥1

𝑧 = 𝑥2 −
𝑓′ 𝑥2

𝑓′ 𝑥2 − 𝑓′ 𝑥1
𝑥2 − 𝑥1

In this case𝑓′ 𝑧 > 0

then area between 𝑧, 𝑥2 will be eliminated

Apply region elimination technique

Bisection method
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Multivariable problem

OPTIMAL POINT
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Multivariable problem
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A multivariable problem can be converted to a single variable problem using the 

following equation

Multivariable problem

𝑥𝑡+1 = 𝑥𝑡 + 𝛼𝑑𝑡

Take an example 𝑓 𝑥, 𝑦 = − 𝑥2 − 𝑦2 + 4

𝑋0 =
1
1

𝑑 =
1
0

𝑋1 = 𝑋0 + 𝛼𝑑

𝑋1 =
1
1

+ 𝛼
1
0

=
1 + 𝛼
1

Putting in equation (1)

𝑓 𝛼 = − 1 + 𝛼 2 − 12 + 4

Taking first derivative

𝑓′ 𝛼 = −2 − 2𝛼 = 0

𝛼∗ = −1

𝑋2 = 𝑋1 + 𝛼𝑑

𝑋2 =
0
1

+ 𝛼
0
1

=
0

1 + 𝛼

Putting in equation (1)

𝑓 𝛼 = − 0 + 1 + 𝛼 2 + 4

Taking first derivative

𝑓′ 𝛼 = −2 − 2𝛼 = 0

𝛼∗ = −1

𝑋1 =
1 + 𝛼
1

=
0
1 𝑋2 =

0
1 + 𝛼

=
0
0

OPTIMAL 

SOLUTION
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X

Y
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Multivariable problem
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X

Y

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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𝑥𝑡𝛻𝑓 𝑥𝑡

−𝛻𝑓 𝑥𝑡

A search direction 𝑑𝑡is a descent 

direction at point 𝑥𝑡 if the condition 

𝛻𝑓 𝑥𝑡 . 𝑑𝑡 < 0 is satisfied in the 

vicinity of the point 𝑥𝑡.

𝑓 𝑥𝑡+1 = 𝑓 𝑥𝑡 + 𝛼𝑑𝑡

= 𝑓 𝑥𝑡 + 𝛼𝛻𝑇𝑓 𝑥𝑡 . 𝑑𝑡

The 𝑓 𝑥𝑡+1 < 𝑓 𝑥𝑡

When 𝛼𝛻𝑇𝑓 𝑥𝑡 . 𝑑𝑡 < 0
Or,         𝛻𝑇𝑓 𝑥𝑡 . 𝑑𝑡 < 0

Multivariable problem

Descent direction

Steepest descent direction
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Newton’s method for multi-variable problem

𝑓 𝑋 + ℎ = 𝑓 𝑋 + ℎ𝑇𝛻𝑓 𝑋 +
1

2!
ℎ𝑇𝐻ℎ +⋯Taylor series

𝑓 𝑋𝑖+1 = 𝑓 𝑋𝑖 + 𝛻𝑓 𝑋𝑖
𝑇 𝑋𝑖+1 − 𝑋𝑖 +

1

2!
𝑋𝑖+1 − 𝑋𝑖

𝑇𝐻 𝑋𝑖+1 − 𝑋𝑖 +⋯

By setting partial derivative of the equation to zero for minimization of 𝑓 𝑋 , we have  

𝛻𝑓 = 0 + 𝛻𝑓 𝑋𝑖 + 𝐻 𝑋𝑖+1 − 𝑋𝑖 = 0

𝑿𝒊+𝟏 = 𝑿𝒊 −𝑯−𝟏𝜵𝒇

Since higher order derivative terms have been neglected, the above equation can be 

iteratively used to find the value of the optimal solution

𝜕 𝑋𝑇𝐴𝑋

𝜕𝑋
= 𝐴𝑋 + 𝐴𝑇𝑋

In this 

case 
𝜕 𝑋𝑇𝐴𝑋

𝜕𝑋
= 2𝐴𝑋

𝜕 𝐴𝑋

𝜕𝑋
= 𝐴𝑇

𝜕 𝑋𝑇𝐴

𝜕𝑋
= 𝐴

𝜕 𝐴𝑇𝑋

𝜕𝑋
= 𝐴
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x

𝑓 𝑥 = 𝑥3 − 10𝑥 − 2𝑥2 + 10

Minimize

Subject to 𝑔 𝑥 = 𝑥 ≥ 3

Or, 𝑔 𝑥 = 𝑥 − 3 ≥ 0

Infeasible 

region
Feasible 

region

The problem can be written 

as

F 𝑥, 𝑅 = 𝑓 𝑥 + 𝑅 𝑔 𝑥 2

Where,
𝑔 𝑥 = 0 if 𝑥 ≥ 3

𝑔 𝑥 = 𝑔 𝑥 otherwise

The bracket operator 

can be implemented using 

𝑚𝑖𝑛 𝑔, 0 function
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𝑓 𝑥 = 𝑥3 − 10𝑥 − 2𝑥2 + 10

Minimize

Subject to 𝑔 𝑥 = 𝑥 ≥ 3

Or, 𝑔 𝑥 = 𝑥 − 3 ≥ 0

Infeasible 

region
Feasible 

region

The problem can be written 

as

F 𝑥, 𝑅 = 𝑥3 − 10𝑥 − 2𝑥2 + 10 + 𝑅 𝑥 − 3 2

F 𝑥, 𝑅 = 𝑥3 − 10𝑥 − 2𝑥2 + 10 + 𝑅 𝑚𝑖𝑛 𝑥 − 3,0
2

-15

-10

-5

0

5

10

15

0 1 2 3 4 5

f(
x)

x
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F 𝑥, 𝑅 = 𝑥3 − 10𝑥 − 2𝑥2 + 10 + 𝑅 𝑚𝑖𝑛 𝑥 − 3,0
2

Minimize

By changing R value, it is 

possible to avoid the 

infeasible solution

The minimization of the 

transformed function will 

provide the optimal 

solution which is in the 

feasible region only



R.K. Bhattacharjya/CE/IITG

𝑓 𝑥 = 𝑥3 − 10𝑥 − 2𝑥2 + 10

Minimize

Subject to 𝑔 𝑥 = 𝑥 ≥ 3

Or, 𝑔 𝑥 = 𝑥 − 3 ≥ 0

Infeasible 

region
Feasible 

region

The problem can also be 

converted as

F 𝑥, 𝑅 = 𝑥3 − 10𝑥 − 2𝑥2 + 10 + 𝑅
1

𝑔 𝑥

F 𝑥, 𝑅 = 𝑥3 − 10𝑥 − 2𝑥2 + 10 + 𝑅
1

𝑥−3

-15

-10

-5

0

5

10

15

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

f(
x)

x

This term is 

added in 

feasible side 

only
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F 𝑥, 𝑅 = 𝑥3 − 10𝑥 − 2𝑥2 + 10 + 𝑅
1

𝑥−3
Minimize

By changing R value, it is 

possible to avoid the 

infeasible solution

The minimization of the 

transformed function will 

provide the optimal 

solution which is in the 

feasible region only
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Exterior penalty method Interior penalty method
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F 𝑋, 𝑅 = 𝑓 𝑋 +Ψ 𝑔 𝑋 , ℎ 𝑋

The transformation function can be written 

as 

This term is called Penalty 

term

𝑅 is called penalty parameter
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Penalty terms

Parabolic penalty

Ψ = 𝑅 ℎ 𝑥

0

5

10

15

20

25

-5 0 5

Ψ

h(x)
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Penalty terms

Log penalty

Ψ = −𝑅𝑙𝑛 𝑔 𝑥

-2

-1

0

1

2

3

-1 1 3 5
f(

x)

g(x)
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Penalty terms

Inverse penalty

Ψ = −𝑅
1

𝑔 𝑥

-10
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0

5
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-5 0 5

f(
x)

g(x)
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Penalty terms

Bracket operator 

Ψ = 𝑅 𝑔 𝑥

0

5

10

15

20

25

-5 0 5

f(
x)

g(x)
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Take an example 

Minimize 𝑓 = 𝑥1 − 4 2 + 𝑥2 − 4 2

Subject to 𝑔 = 𝑥1 + 𝑥2 − 5

The transform function can be written as

Minimize F = 𝑥1 − 4 2 + 𝑥2 − 4 2 + 𝑅 𝑥1 + 𝑥2 − 5 2



R.K. Bhattacharjya/CE/IITG
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Minimize 𝑓 = 𝑥1 − 4 2 + 𝑥2 − 4 2

Subject to 𝑔 = 𝑥1 + 𝑥2 − 5
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Minimize F = 𝑥1 − 4 2 + 𝑥2 − 4 2 + 𝑅 𝑥1 + 𝑥2 − 5 2

𝑅 = 0.5

Optimal solution is 

3.250 3.250

X

Y

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5
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2.5
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4.5
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X

Y

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

𝑅 = 1

Optimal solution is 

3.000 3.000
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R x1 x2 f(x) h(x) F

0 4.000 4.000 0.000 3.000 0.000

0.5 3.250 3.250 1.125 1.500 2.250

1 3.000 3.000 2.000 1.000 3.000

5 2.636 2.636 3.719 0.273 4.091

10 2.571 2.571 4.082 0.143 4.286

20 2.537 2.537 4.283 0.073 4.390

30 2.525 2.525 4.354 0.049 4.426

50 2.515 2.515 4.411 0.030 4.455

100 2.507 2.507 4.455 0.015 4.478

200 2.504 2.504 4.478 0.007 4.489

500 2.501 2.501 4.491 0.003 4.496

1000 2.501 2.501 4.496 0.001 4.498

10000 2.500 2.500 4.500 0.000 4.500
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𝑅 = 1000
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f(
X

)

𝑓 𝑥 = 2𝑥4 − 𝑥3 + 5𝑥2 − 12𝑥 + 1

𝑓/ 𝑥 = 8𝑥3 − 3𝑥2 + 10𝑥 − 12 = 0

Solving for 𝑥

𝑥∗ = 0.8831 and 𝑓 𝑥∗ = −5.1702
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-1 -0.5 0 0.5 1 1.5 2 2.5
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40
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70

X

f(
X

)

𝑓 𝑥 = 2𝑥4 − 𝑥3 + 5𝑥2 − 12𝑥 + 1

Solution is  

𝑥∗ = 1.2 and 𝑓 𝑥∗ = −3.7808and 𝑓/ 𝑥∗ = 9.5040

Quadratic approximation of the 

function at 𝑥𝑜can be written as 

𝑓 𝑥 = 𝑓 𝑥𝑜 + 𝑓/ 𝑥𝑜 𝑥 − 𝑥𝑜 +0.5*𝑓// 𝑥𝑜 𝑥 − 𝑥𝑜
2

Now we can minimize the 

function
Minimize 𝑓/ 𝑥𝑜 𝑥 − 𝑥𝑜 +0.5*𝑓// 𝑥𝑜 𝑥 − 𝑥𝑜

2

Approximate function  for 𝑥𝑜 = 0

This is the solution of the approximate 

function: First trial
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-1 -0.5 0 0.5 1 1.5 2 2.5
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X

f(
X

)

𝑓 𝑥 = 2𝑥4 − 𝑥3 + 5𝑥2 − 12𝑥 + 1

Solution is  

𝑥∗ = 0.9456, 𝑓 𝑥∗ = −5.1229 and 𝑓/ 𝑥∗ = 1.5377

Quadratic approximation of the 

function at 𝑥𝑜can be written as 

𝑓 𝑥 = 𝑓 𝑥𝑜 + 𝑓/ 𝑥𝑜 𝑥 − 𝑥𝑜 +0.5*𝑓// 𝑥𝑜 𝑥 − 𝑥𝑜
2

Now we can minimize the 

function
Minimize 𝑓/ 𝑥𝑜 𝑥 − 𝑥𝑜 +0.5*𝑓// 𝑥𝑜 𝑥 − 𝑥𝑜

2

Approximate function  for 𝑥𝑜 = 1.2

This is the solution of the approximate 

function: Second trial
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X

f(
X

)

𝑓 𝑥 = 2𝑥4 − 𝑥3 + 5𝑥2 − 12𝑥 + 1

Solution is  

𝑥∗ = 0.8864 and 𝑓 𝑥∗ = −5.1701and 𝑓/ 𝑥∗ = 0.0785

Quadratic approximation of the 

function at 𝑥𝑜can be written as 

𝑓 𝑥 = 𝑓 𝑥𝑜 + 𝑓/ 𝑥𝑜 𝑥 − 𝑥𝑜 +0.5*𝑓// 𝑥𝑜 𝑥 − 𝑥𝑜
2

Now we can minimize the 

function
Minimize 𝑓/ 𝑥𝑜 𝑥 − 𝑥𝑜 +0.5*𝑓// 𝑥𝑜 𝑥 − 𝑥𝑜

2

Approximate function  for 𝑥𝑜 = 0.9456

This is the solution of the approximate 

function: Third trial
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f(
X

)

𝑓 𝑥 = 2𝑥4 − 𝑥3 + 5𝑥2 − 12𝑥 + 1

Solution is  

𝑥∗ = 0.8831 and 𝑓 𝑥∗ = −5.1702and 𝑓/ 𝑥∗ = 0.00099

Quadratic approximation of the 

function at 𝑥𝑜can be written as 

𝑓 𝑥 = 𝑓 𝑥𝑜 + 𝑓/ 𝑥𝑜 𝑥 − 𝑥𝑜 +0.5*𝑓// 𝑥𝑜 𝑥 − 𝑥𝑜
2

Now we can minimize the 

function
Minimize 𝑓/ 𝑥𝑜 𝑥 − 𝑥𝑜 +0.5*𝑓// 𝑥𝑜 𝑥 − 𝑥𝑜

2

Approximate function  for 𝑥𝑜 = 0.8864

This is the solution of the approximate 

function: Fourth trial Gradient is 
negligible 

STOP 
ITERATION
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Minimize 𝑓 𝑥1, 𝑥2 = 𝑥1
2 + 𝑥2 − 11

2
+ 𝑥1 + 𝑥2

2 ± 7
2

Now take an example of multivariable problem
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Minimize 𝑓 𝑥1, 𝑥2 = 𝑥1
2 + 𝑥2 − 11

2
+ 𝑥1 + 𝑥2

2 ± 7
2

𝑥𝑜 = 2 2 𝑇

The quadratic approximation of the function at 𝑥𝑜 = 2 2 𝑇 can be 

written as
𝑓 𝑋 = 𝑓 𝑋𝑜 + 𝑋 − 𝑋𝑜 𝛻𝑓 𝑋𝑜

𝑇 + 𝑋 − 𝑋𝑜 𝐻 𝑋𝑜 𝑋 − 𝑋𝑜
𝑇

For first approximation 

𝑓 𝑋 = 𝑋 − 𝑋𝑜 𝛻𝑓 𝑋𝑜
𝑇 + 𝑋 − 𝑋𝑜 𝐻 𝑋𝑜 𝑋 − 𝑋𝑜

𝑇Minimize

𝑓 𝑋 = 𝑥1 − 2 𝑥2 − 2 −42
−18

+ 𝑥1 − 2 𝑥2 − 2 14 16
16 30

𝑥1 − 2
𝑥2 − 2

Or,
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Solution

Trial

7.9268   -0.5610 -42   -18

5.7945   -4.4555 1628   99

4.4415   -3.1670 457 -296

113  -833.7952   -2.3927

3.6086   -1.9928 20  -22

1.5811   -4.56373.5858   -1.8623

0.0457   -0.41063.5844   -1.8483

-0.0042   -0.00533.5844   -1.8481

-0.0028    0.00063.5844   -1.8481

X value Gradient

1
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9

Optimal solution

X

Y

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

Gradient is almost negligible
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