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Example
A farmer has 2400 m of fencing and wants to fence off a rectangular field that
borders a straight river. He needs no fence along the river. What are the 
dimensions of the field that has the largest area?
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Maximize 𝑓 = 𝑥𝑦

Subject to 𝑔 = 𝑥 + 2𝑦 = 2400



A manufacturer needs to make a cylindrical can that will hold 1.5 liters of liquid.

Determine the dimensions of the can that will minimize the amount of material used

in its construction.

Constraint: πr2h = 1500

Minimize: A = 2πr2 + 2πrh

Example



An Example
Objectives

Topology: Optimal 
connectivity of the 
structure
Minimum cost of material: 
optimal cross section of all 
the members

We will consider the 
second objective only

The design variables are the cross 
sectional area of the members, 
i.e. A1 to A7

Using symmetry of the structure
A7=A1, A6=A2, A5=A3

You have only four design 
variables, i.e., A1 to A4



Optimization formulation

Objective

What are the constraints?
One essential constraint is non-negativity of design variables, i.e.
A1, A2, A3, A4  >= 0 

Is it complete now?



First set of constraints
Another constraint may be the 
minimization of deflection at C

Another constraint is buckling of 
compression members





An optimization problem

Minimize

Subject to
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Single variable optimization

Stationary points

For a continuous and differentiable function
f(x), a stationary point x* is a point at which
the slope of the function is zero, i.e. f ʹ(x) = 0
at x = x*,
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Relative minimum and maximum

• A function is said to have a relative or
local minimum at x = x* if f(x*)≤
f(x*+h) for all sufficiently small
positive and negative values of h, i.e.
in the near vicinity of the point x*.

• Similarly, a point x* is called a relative
or local maximum if f(x*) ≥ f(x*+h) for
all values of h sufficiently close to
zero.

• A point x* is said to be an inflection
point if the function value increases
locally as x* increases and decreases
locally as x* reduces
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Global minimum and maximum 

• A function is said to have
a global or absolute
minimum at x = x* if f
(x* ) ≤ f(x) for all x in the
domain over which f(x) is
defined.

• A function is said to have
a global or absolute
maximum at x = x* if f
(x* ) ≥ f(x) for all x in the
domain over which f(x) is
defined.
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Necessary and sufficient conditions for optimality
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Necessary condition 

If a function 𝑓(𝑥) is defined in the interval 𝑎 ≤ 𝑥 ≤ 𝑏 and has a relative minimum 
at 𝑥 = 𝑥∗, Where 𝑎 ≤ 𝑥∗ ≤ 𝑏 and if 𝑓/ 𝑥 exists as a finite number at 𝑥 = 𝑥∗, 
then 𝑓/ 𝑥∗ = 0

Proof

𝑓/ 𝑥∗ = lim
ℎ→0

𝑓 𝑥∗ + ℎ − 𝑓(𝑥∗)

ℎ

Since 𝑥∗ is a relative minimum                     𝑓(𝑥∗) ≤ 𝑓 𝑥∗ + ℎ

For all values of ℎ sufficiently close to zero, hence

𝑓 𝑥∗ + ℎ − 𝑓(𝑥∗)

ℎ
≥ 0

𝑓 𝑥∗ + ℎ − 𝑓(𝑥∗)

ℎ
≤ 0

if ℎ ≥ 0

if ℎ ≤ 0



Thus

𝑓/ 𝑥∗ ≥ 0 If ℎ tends to zero through +ve value  

𝑓/ 𝑥∗ ≤ 0 If ℎ tends to zero through -ve value  

The only way to satisfy both the conditions is to have 

𝑓/ 𝑥∗ = 0

Note:
• This theorem can be proved if 𝑥∗ is a relative maximum
• Derivative must exist at 𝑥∗

• The theorem does not say what happens if a minimum or 
maximum occurs at an end point of the interval of the 
function

• It may be an inflection point also.   



Sufficient conditions for optimality

Sufficient condition

Suppose at point x* , the first derivative is zero 
and first nonzero higher derivative is denoted 
by n, then

1. If n is odd, x*  is an inflection point

2. If n is even, x*  is a local optimum
1. If the derivative is positive, x*  is a local minimum

2. If the derivative is negative, x*  is a local 
maximum
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Proof

Apply Taylor’s series

𝑓 𝑥∗ + ℎ = 𝑓 𝑥∗ + ℎ𝑓′ 𝑥∗ +
ℎ2

2!
𝑓′′ 𝑥∗ +⋯+

ℎ𝑛−1

𝑛 − 1 !
𝑓𝑛−1 𝑥∗ +

ℎ𝑛

𝑛!
𝑓𝑛 𝑥∗

Since 𝑓′ 𝑥∗ = 𝑓′′ 𝑥∗ = ⋯ = 𝑓𝑛−1 𝑥∗ = 0

𝑓 𝑥∗ + ℎ − 𝑓 𝑥∗ =
ℎ𝑛

𝑛!
𝑓𝑛 𝑥∗

When 𝑛 is even    
ℎ𝑛

𝑛!
≥ 0

Thus if  𝑓𝑛 𝑥∗ is positive 𝑓 𝑥∗ + ℎ − 𝑓 𝑥∗ is positive Hence it is  local minimum

Thus if  𝑓𝑛 𝑥∗ negative 𝑓 𝑥∗ + ℎ − 𝑓 𝑥∗ is negative Hence it is  local maximum

When 𝑛 is odd    
ℎ𝑛

𝑛!
changes sign with the change in the sign of h. 

Hence it is an inflection point



Multivariable optimization without constraints

Minimize 𝑓(𝑋) Where 𝑋 =

𝑥1
𝑥2
⋮
𝑥𝑛

Necessary condition for optimality 

If 𝑓(𝑋) has an extreme point (maximum or minimum) at 𝑋 = 𝑋∗ and if the first partial 
Derivatives of 𝑓(𝑋) exists at 𝑋∗, then 

𝜕𝑓 𝑋∗

𝜕𝑥1
=
𝜕𝑓 𝑋∗

𝜕𝑥2
= ⋯ =

𝜕𝑓 𝑋∗

𝜕𝑥𝑛
= 0



Sufficient condition for optimality 

The sufficient condition for a stationary point 𝑋∗ to be an extreme point is that the 
matrix of second partial derivatives of 𝑓(𝑋) evaluated at 𝑋∗ is 
(1) positive definite when 𝑋∗ is a relative minimum
(2) negative definite when 𝑋∗ is a relative maximum
(3) Neither positive nor negative definite when 𝑋∗ is neither a minimum nor a maximum

Proof

Taylor series of two variable function

𝑓 𝑥 + ∆𝑥, 𝑦 + ∆𝑦 = 𝑓 𝑥, 𝑦 + ∆𝑥
𝜕𝑓

𝜕𝑥
+ ∆𝑦

𝜕𝑓

𝜕𝑦
+
1

2!
∆𝑥2

𝜕2𝑓

𝜕𝑥2
+ 2∆𝑥∆𝑦

𝜕2𝑓

𝜕𝑥𝜕𝑦
+ ∆𝑦2

𝜕2𝑓

𝜕𝑦2
+⋯

𝑓 𝑥 + ∆𝑥, 𝑦 + ∆𝑦 = 𝑓 𝑥, 𝑦 + ∆𝑥 ∆𝑦

𝜕𝑓

𝜕𝑥
𝜕𝑓

𝜕𝑦

+
1

2!
∆𝑥 ∆𝑦

𝜕2𝑓

𝜕𝑥2
𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕2𝑓

𝜕𝑦2

∆𝑥
∆𝑦

+⋯



𝑓 𝑋∗ + ℎ = 𝑓 𝑋∗ + ℎ𝑇𝛻𝑓 𝑋∗ +
1

2!
ℎ𝑇𝐻ℎ +⋯

Since 𝑋∗ is a stationary point, the necessary condition gives that 𝛻𝑓 𝑋∗ = 0

Thus

𝑓 𝑋∗ + ℎ − 𝑓 𝑋∗ =
1

2!
ℎ𝑇𝐻ℎ +⋯

Now, 𝑋∗ will be a minima, if ℎ𝑇𝐻ℎ is positive  

𝑋∗ will be a maxima, if ℎ𝑇𝐻ℎ is negative  

ℎ𝑇𝐻ℎ will be positive if H is a positive definite matrix 

ℎ𝑇𝐻ℎ will be negative if H is a negative definite matrix 

A matrix H will be positive definite if all the eigenvalues are positive, i.e. all the 𝜆
values are positive which satisfies the following equation  

𝐴 − 𝜆𝐼 = 0



𝑓 𝑥 = 𝑥3 − 10𝑥 − 2𝑥2 + 10

Identify the optimal points of the function given below

𝑥∗ = 2.61 𝑀𝑖𝑛𝑖𝑚𝑎
−1.27 𝑀𝑎𝑥𝑖𝑚𝑎




