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Example

A farmer has 2400 m of fencing and wants to fence off a rectangular field that
borders a straight river. He needs no fence along the river. What are the
dimensions of the field that has the largest area?

Maximize f = xy

Subjectto g = x + 2y = 2400



Example

A manufacturer needs to make a cylindrical can that will hold 1.5 liters of liquid.
Determine the dimensions of the can that will minimize the amount of material used
In its construction.
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Minimize: A = 2ntr? + 2mrh

Constraint: rr¢h = 1500



An Example

Objectives
Topology: Optimal
connectivity of the
structure
Minimum cost of material:
optimal cross section of all
the members

We will consider the
second objective only

The design variables are the cross
sectional area of the members,
i.e. Al to A7

Using symmetry of the structure
A7=A1, A6=A2, A5=A3

You have only four design
variables, i.e., Al to A4



Optimization formulation

Objective

What are the constraints?
One essential constraint is non-negativity of design variables, i.e.
Al, A2, A3,Ad4 >=0

Is it complete now?
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Another constraint may be the
minimization of deflection at C
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An optimization problem

Minimize F = (x—p)*+ (y—q)?

Subjectto aix + by <d;
a,x+ b,y <d,

x,y =0



Minimize F=(x—-p)*+ (y—q)?

Subject to ax+byy < d
a,x + b,y <d,
x,y=>0
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Single variable optimization

Stationary points

For a continuous and differentiable function
f(x), a stationary point x* is a point at which
the slope of the function is zero, i.e. f (x) = 0

at x = x*

Minima Maxima Inflection point




Relative minimum and maximum

A function is said to have a relative or
local minimum at x = x* if f(x*)<
f(x*+h) for all sufficiently small
positive and negative values of h, i.e.
in the near vicinity of the point x*.
Similarly, a point x* is called a relative
or local maximum if f(x*) 2 f(x*+h) for
all values of h sufficiently close to
zero.

A point x* is said to be an inflection
point if the function value increases
locally as x* increases and decreases
locally as x* reduces
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Global minimum and maximum

e A function is said to have
a global or absolute . . .iosi
minimum at x = x* if f BB~ Rl e
(x* ) < f(x) for all x in the U Relative minimum s aso
. . . Jfx) f(x)  global optimum (since only
domain over which f(x) is % 4 one minimum point s there)
defined.

e A function is said to have
a global or absolute
maximum at x = x* if f
(x* ) 2 f(x) for all x in the
domain over which f(x) is
defined.




Necessary and sufficient conditions for optimality

Necessary condition

If a function f(x) is defined in the interval a < x < b and has a relative minimum
at x = x*, Where a < x* < b and if f/(x) exists as a finite number at x = x*,
then f/(x*) = 0

Proof

fm+h) = f(x7)
h

Since x™ is a relative minimum fH) < f(x*+h)

/ * -_ 1
f/(x") = lim

For all values of h sufficiently close to zero, hence

f(x*+h)—f(x*)>0 £h >0
Y = =

h



Thus

fl(x*) =0 If h tends to zero through +ve value
fl(x*) <0 If h tends to zero through -ve value

The only way to satisfy both the conditions is to have
f/x)=0

Note:

* This theorem can be proved if x* is a relative maximum

* Derivative must exist at x*

* The theorem does not say what happens if a minimum or
maximum occurs at an end point of the interval of the
function

* |t may be an inflection point also.



Sufficient conditions for optimality

Sufficient condition

Suppose at point x*, the first derivative is zero
and first nonzero higher derivative is denoted
by n, then

1. If nis odd, x* is an inflection point

2. Ifniseven, x* is alocal optimum
1. If the derivative is positive, x* is a local minimum

2. If the derivative is negative, x* is a local
maximum



Proof

Apply Taylor’s series
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Since f'(x) = f"(x") = - = f"H(x") = 0

hn
FG+ ) = fx7) = = f7(x")

. hn
When n is even o >0

Thus if f™(x*) is positive f(x*+ h) — f(x*) is positive | Hence it is local minimum

Thus if f™(x*) negative f(x*+ h) — f(x*) is negative| Hence it is local maximum

n

When n is odd % changes sign with the change in the sign of h.
Hence it is an inflection point



Multivariable optimization without constraints

Minimize f(X) Where X =

Necessary condition for optimality

If £(X) has an extreme point (maximum or minimum) at X = X™ and if the first partial
Derivatives of f(X) exists at X, then

of X _of(x) _ | _of(x) _

dx;  Ox, o 0xy




Sufficient condition for optimality

The sufficient condition for a stationary point X* to be an extreme point is that the
matrix of second partial derivatives of f(X) evaluated at X" is

(1) positive definite when X™ is a relative minimum

(2) negative definite when X™ is a relative maximum

(3) Neither positive nor negative definite when X™ is neither a minimum nor a maximum

Proof

Taylor series of two variable function

_ of of 0°f 0°f 2f
f(x+ Ax,y + Ay) = f(x, y)+Axa +Ayay 5 Ax? 6x2+2AxAy6x6y+Ay 32
_af_ B 02]: 02]: y
_ x|, 1 dx%2 0x0y|[Ax
flx+Ax,y +Ay) = f(x,y) + [Ax Ay] g + Z[Ax Ay] 02f  92f Ay] 4.
10y |0xdy 0y? |




fX*+h)=fX)+h VX)) + %hTHh + -

Since X* is a stationary point, the necessary condition gives that Vf(X*) = 0

Thus

FOU + 1) = X = 5 KTHA + -

Now, X* will be a minima, if hT Hh is positive
X* will be a maxima, if hRT Hh is negative
hT Hh will be positive if H is a positive definite matrix

hT Hh will be negative if H is a negative definite matrix

A matrix H will be positive definite if all the eigenvalues are positive, i.e. all the 4
values are positive which satisfies the following equation

|JA—AIl =0



Identify the optimal points of the function given below

f(x) = x3—10x — 2x2 + 10
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