Real-time Logics Expressiveness and Decidability

Paritosh K. Pandya

Tata Institute of Fundamental Research

Mumbai

email: pandya@tifr.res.in

Timed Behaviours

- Observable propositions X_1, X_2, \dots, X_n .
- \blacksquare Time frame (T, <) a linear order.
- **Proof.** Behaviour M such that $M(X_i): T \to \{\top, \bot\}$.

Some commonly used notions of time and behaviour

- $(\Re, <)$ the standard set of real numbers. Continuous time, Canonical behaviors.
- \bullet (\mathcal{Q} , <) the set of rational numbers.
- \bullet (\aleph , <) the set of natural numbers. Discrete time.

Behaviours over $(\Re, <)$ are called canonical continous and over $(\aleph, <)$ canonical discrete.

Finite Variability

- M such that in any finite interval M(X) changes finitely often for any X are called Finitely variable behaviours. Interval based model $(s_0, I_0), (s_1, I_1), \ldots$
- (S, <) where S is countably infinite set of sampling points from R which is divergent Point based models $(s_0, t_0), (s_1, t_1), \ldots$

In this talk: Canonical Continuous Models and subclass Finitely Variable models.

Logics of Qualitative Time

Monadic First Order Logic MFO First order logic with equality over linear order (T,<) and monadic predicates (observable propositions) X_i .

Examples

Let $\phi(X_1,\ldots,X_n,y_1,\ldots,y_k)$ be a formula with given free variables. Its model has the form $M=(T,<,P_1,\ldots,P_n,t_1,\ldots,t_k)$. We can define $M\models\phi$ as usual.

Monadic Secondorder Logic (MSO)

Temporal Logics

Example $\Box(P \to QUR)$.

A temporal logic $TL(O_1, \ldots, O_k)$ with modalities O_1, \ldots, O_k .

Truth Table For each modality O_i of arity k we have a MFO formula $[O_i(X_1,\ldots,X_k)] \stackrel{\text{def}}{=} \phi(t_0,X_1,\ldots,X_k)$ giving its behaviour.

Examples

- $[XUY] \stackrel{\text{def}}{=} \exists t.t_0 < t \land Y(t) \land \forall z.((t_0 < z < y) \Rightarrow X(z)).$

A popular temporal logic $TL(\mathcal{U}, \mathcal{S})$ called TL.

Correspondences

Proposition If every modality of a temporal logic TL' has a truth table then for every $\phi(X_1,\ldots,X_n)\in TL'$ we can construct a MFO formula $\hat{\phi}(t_0,X_1,\ldots,X_n)$ such that $M\models\phi$ iff $M\models\hat{\phi}$.

Every such Temporal logic is a fragment of MFO!

Expressive Completeness

Definition A subset L_1 of logic L_2 is expressively complete for L_2 over class of models C provided for all $\phi \in L_2$ there exists $\hat{\phi}_2 \in L_1$ such that $C \models \phi \Leftrightarrow \hat{\phi}$.

Theorems ([Kamp68,GPSS80,GHR94]) Logic $TL(\mathcal{U}, \mathcal{S})$ is expressively complete for MFO over canonical models (discrete or continous).

There exists $TL(\mathcal{U}_s, \mathcal{S}_S)$ which is expressively complete for MFO over the class of all linear order.

Decidability

A logic L is decidable if there exists an algorithm for finding whether $\phi \in L$ is satisfiable (valid).

Results

- MSO over $(\aleph, <)$ is decidable. [Buchi60]
- MFO over $(\Re, <)$ is decidable. [BG85]
- MSO over $(\Re, <)$ is undecidable. MSO with quantification over monadic predicates restricted to countable subsets of reals is decidable. [Shelah75]
- MSO over (Q, <) is decidabe. [Rabin69]
- MSO over $(\Re, <)$ with finitely variable behaviours is decidable. [Rabin69][Rabinovich98].

Quantitative Realtime Logics

Logic MFO^+

Constructs of MFO, together with +1 function.

Example
$$(\forall t.((t_0 < t < t_0 + 1 \Rightarrow P(t))) \Rightarrow Q(t_0 + 1)$$

Theorem Logic MFO^+ is undecidable.

Proof Method We can encode accepting runs of a 2-counter machine by a formula.

- Encode each configuration within an interval of time length 1.
- Number of alternations of X_1, X_2 represent value of counters C_1, C_2 .
- The configuration can be copied from one unit interval to next.

Guarded Measurements

Logic *QMFO* [Hirschfeld-Rabinovich] *MFO* constructs together with two bounded quantifiers below.

- Let $\phi(t)$ be a QMFO formula with only variable t free.
- Define $(\exists t)^{< t_0 + 1}_{> t_0} \phi(t) \stackrel{\text{def}}{=} \exists t (t_0 < t < t_0 + 1 \land \phi(t))$.

 Dually, $(\forall t)^{< t_0 + 1}_{> t_0} \phi(t) \stackrel{\text{def}}{=} \forall t (t_0 < t < t_0 + 1 \Rightarrow \phi(t))$.
- Define $(\exists t)^{< t_0}_{> t_0 1} \phi(t) \stackrel{\text{def}}{=} \exists t (t < t_0 < t + 1 \land \phi(t))$.

 Dually $(\forall t)^{< t_0}_{> t_0 1} \phi(t) \stackrel{\text{def}}{=} \forall t (t < t_0 < t + 1 \Rightarrow \phi(t))$.

Example $Timer(X,Y) \stackrel{\text{def}}{=} \forall t(Y(t) \Leftrightarrow (\forall t_1)_{>t_0-1}^{< t_0} X(t_1))$.

Y is true at a time iff X has been invariantly true for the previous (open) unit interval.

Temporal Logic QTL

Logic QTL $TL(\mathcal{U}, \mathcal{S}, \overset{\leftarrow}{\Diamond}_1, \overset{\leftarrow}{\Diamond}_1)$ with two constrained modalities below.

- $ightharpoonup \overrightarrow{\Diamond}_1 X$ has truth table $(\exists t)^{< t_0 + 1}_{> t_0} X(t)$
- **●** Define duals $\overset{\rightarrow}{\Box}_1 \phi \overset{\text{def}}{=} \neg \overset{\rightarrow}{\Diamond}_1 \neg \phi$ and $\overset{\leftarrow}{\Box}_1 \phi \overset{\text{def}}{=} \neg \overset{\leftarrow}{\Diamond}_1 \neg \phi$.

Example: $\Box(Y\Rightarrow \overset{\leftarrow}{\Box}_1X)$.

Expressive Completeness

Theorem For any temporal logic $TL(\tau)$ which is expressively complete for MFO, the logic $TL(\tau, \diamondsuit_1, \diamondsuit_1)$ is expressively complete for QMFO. Specifically, QTL is expressively complete for QMFO.

Consequence: Any temporal modality which has a truth-table in QMFO can be expressed within QTL.

Notation Denote $\overset{\rightarrow}{\Diamond}_1 X$ by $\overset{\rightarrow}{\Diamond}_{(0,1)} X$ and $\overset{\leftarrow}{\Diamond}_1 X$ by $\overset{\rightarrow}{\Diamond}_{(-1,0)} X$.

Interval Bounded Modalities

- $(\exists t)_{\geq t_0}^{\leq t_0+1} X(t) \stackrel{\text{def}}{=} X(t_0) \lor (\exists t)_{\geq t_0}^{\leq t_0+1} X(t).$ $\Diamond_{[0,1)} X \stackrel{\text{def}}{=} X \lor \Diamond_{(0,1)} X$
- $(\exists t) \stackrel{\leq t_0 + 1}{>} X(t) \stackrel{\text{def}}{=} (\exists t) \stackrel{< t_0 + 1}{>} X(t) \vee I$ $First(t_0, X) \wedge (\forall t_1) \stackrel{< t_0 + 1}{>} (\exists t) \stackrel{< t_1 + 1}{>} X(t)$ $\diamondsuit_{(0,1)} X \stackrel{\text{def}}{=} \diamondsuit_{(0,1)} X \vee [(\neg X \mathcal{U} X) \wedge \square_{(0,1)} \diamondsuit_{(0,1)} X]$

A Variety of Modalities

Thus, we can define constrained modality \Diamond_I where I is non-singular

- interval I has integer end-point or infinity as end-points.
- Non-singular, i.e. not a singleton set or empty.
- Can be closed, open, partially closed.

Logic MITL $TL(\mathcal{U}_I, \mathcal{S}_I)$ where I is non-singular interval.

Let
$$X \ \mathcal{U}(n, n+m) \ Y \stackrel{\text{def}}{=} (\square_{(0,n]}(X \wedge X\mathcal{U}Y)) \wedge \Diamond_{(n,n+m)}Y$$
.

Theorem MITL and QTL have same expressive power.

A Variety of Modalities (Cont)

Nearest Next [Wilke, Raskin]

$$\triangleright_{(n,n+m)} X \stackrel{\text{def}}{=} (\neg X \mathcal{U} X) \wedge \lozenge_{(m,m+n)} X \wedge \neg \lozenge_{(0,n])} X.$$

• Age Constraints [MP93] $Age(X) > n \stackrel{\text{def}}{=} \Diamond_{(-n,0)} X$.

$$Age(X) = n \stackrel{\text{def}}{=} \square_{(-n,0)} X \wedge \square_{(-n,-(n-1))} \lozenge_{(-1,0)} \neg X$$
.

Summary

- Logic QTL is expressively complete for QMSO.
- Modalities from most know decidable timed logics can be defined within QTL and QMSO
- Question Is QMSO decidable?

Decidability of QMFO

Overview

- **■** Timer Normal Form $TNF \subset QMFO$
- Transform $QMFO \rightarrow TNF$ (equivalent formula)
- Transform $TNF \rightarrow MFO$ (equisatisfiable formula)
- Decidability of MFO

Timer Normal Form (TNF)

• In QTL, define $TIMER(X,Y) \stackrel{\text{def}}{=} \Box(Y \Leftrightarrow \overset{\leftarrow}{\Box}_1 X)$. In QMFO define

$$TIMER(X,Y) \stackrel{\text{def}}{=} \forall t(Y(t) \Leftrightarrow (\forall t_1)^{< t_0}_{>t_0-1} X(t_1))$$

 $Timer_n(X_1, \dots, X_n, Y_1, \dots, Y_n) \stackrel{\text{def}}{=} \bigwedge_i Timer(X_i, Y_i)$

Timer Normal Form (TNF)

• In QTL, define $TIMER(X,Y) \stackrel{\text{def}}{=} \Box(Y \Leftrightarrow \Box_1 X)$. In QMFO define

$$TIMER(X,Y) \stackrel{\text{def}}{=} \forall t(Y(t) \Leftrightarrow (\forall t_1)^{< t_0}_{>t_0-1}X(t_1))$$

- Formula is in first order TNF if it has the following form where $\phi \in MFO$ and \overline{W} is list of monadic predicates.

$$\exists \overline{W}.(Timer_n(X_1,\ldots,X_n,Y_1,\ldots,Y_n) \land \phi)$$

Timer Normal Form (TNF)

• In QTL, define $TIMER(X,Y) \stackrel{\text{def}}{=} \Box(Y \Leftrightarrow \Box_1 X)$. In QMFO define

$$TIMER(X,Y) \stackrel{\text{def}}{=} \forall t(Y(t) \Leftrightarrow (\forall t_1)^{< t_0}_{>t_0-1}X(t_1))$$

- Formula is in first order TNF if it has the following form where $\phi \in MFO$ and \overline{W} is list of monadic predicates.

$$\exists \overline{W}.(Timer_n(X_1,\ldots,X_n,Y_1,\ldots,Y_n) \land \phi)$$

• If in above definition, if $\phi \in MSO$ we have second order TNF. If $\phi \in TL$ we have TL TNF.

Aim: To represent $\overset{\rightarrow}{\Diamond}_1$ by $\overset{\leftarrow}{\Box}_1$ (using \mathcal{U}, \mathcal{S}).

Aim: To represent $\overset{\rightarrow}{\Diamond}_1$ by $\overset{\leftarrow}{\Box}_1$ (using \mathcal{U}, \mathcal{S}).

•
$$\psi_1 \stackrel{\text{def}}{=} \Box (Y \Rightarrow Y \mathcal{U} X)$$
.

Aim: To represent $\overset{\rightarrow}{\Diamond}_1$ by $\overset{\leftarrow}{\Box}_1$ (using \mathcal{U}, \mathcal{S}).

•
$$\psi_1 \stackrel{\text{def}}{=} \Box(Y \Rightarrow Y\mathcal{U}X)$$
.

•
$$\psi_2 \stackrel{\text{def}}{=} \Box(X \Rightarrow \Box_1 Y)$$
.

Aim: To represent $\overset{\rightarrow}{\Diamond}_1$ by $\overset{\leftarrow}{\Box}_1$ (using \mathcal{U}, \mathcal{S}).

•
$$\psi_1 \stackrel{\text{def}}{=} \Box(Y \Rightarrow Y\mathcal{U}X)$$
.

•
$$\psi_2 \stackrel{\text{def}}{=} \Box(X \Rightarrow \Box_1 Y)$$
.

• Let
$$\psi \stackrel{\text{def}}{=} \psi_1 \wedge \psi_2 \wedge \psi_3$$
.

Aim: To represent $\overset{\rightarrow}{\Diamond}_1$ by $\overset{\leftarrow}{\Box}_1$ (using \mathcal{U}, \mathcal{S}).

•
$$\psi_1 \stackrel{\text{def}}{=} \Box(Y \Rightarrow Y\mathcal{U}X)$$
.

•
$$\psi_2 \stackrel{\text{def}}{=} \Box(X \Rightarrow \Box_1 Y)$$
.

•
$$\psi_3 \stackrel{\text{def}}{=} \Box((\stackrel{\leftarrow}{\Box}_1 \neg X) \Rightarrow \Diamond_{[-1,0)} \neg Y)$$

• Let
$$\psi \stackrel{\mathrm{def}}{=} \psi_1 \wedge \psi_2 \wedge \psi_3$$
.

Also,
$$\psi_1 \wedge \psi_3 \Rightarrow (Y \Rightarrow (\stackrel{\rightarrow}{\Diamond}_1 X)) \text{ and } \psi_2 \Rightarrow ((\stackrel{\rightarrow}{\Diamond}_1 X) \Rightarrow Y).$$

Aim: To represent $\overset{\rightarrow}{\Diamond}_1$ by $\overset{\leftarrow}{\Box}_1$ (using \mathcal{U}, \mathcal{S}).

Consider witness $\Box(Y \Leftrightarrow \stackrel{\rightarrow}{\Diamond}_1 Y)$. This implies

•
$$\psi_1 \stackrel{\text{def}}{=} \Box(Y \Rightarrow Y\mathcal{U}X)$$
.

•
$$\psi_2 \stackrel{\text{def}}{=} \Box(X \Rightarrow \Box_1 Y)$$
.

•
$$\psi_3 \stackrel{\text{def}}{=} \Box((\stackrel{\leftarrow}{\Box}_1 \neg X) \Rightarrow \Diamond_{[-1,0)} \neg Y)$$

• Let
$$\psi \stackrel{\text{def}}{=} \psi_1 \wedge \psi_2 \wedge \psi_3$$
.

Also, $\psi_1 \wedge \psi_3 \Rightarrow (Y \Rightarrow (\stackrel{\rightarrow}{\Diamond}_1 X))$ and $\psi_2 \Rightarrow ((\stackrel{\rightarrow}{\Diamond}_1 X) \Rightarrow Y)$.

• Hence,
$$\Box(Y \Leftrightarrow \stackrel{\rightarrow}{\Diamond}_1 Y) \Leftrightarrow \psi$$
.

Reducing ψ

$$\Box(Y \Rightarrow Y\mathcal{U}X) \wedge \Box(X \Rightarrow \overset{\leftarrow}{\Box}_1 Y) \wedge \Box((\overset{\leftarrow}{\Box}_1 \neg X) \Rightarrow \diamondsuit_{[-1,0)} \neg Y).$$

Reducing ψ

$$\Box(Y \Rightarrow Y\mathcal{U}X) \wedge \Box(X \Rightarrow \overset{\leftarrow}{\Box}_1 Y) \wedge \Box((\overset{\leftarrow}{\Box}_1 \neg X) \Rightarrow \diamondsuit_{[-1,0)} \neg Y).$$

- $\bullet \ \lozenge_{[-1,0)} \neg Y \stackrel{\mathrm{def}}{=} \ (\stackrel{\longleftarrow}{\lozenge}_1 \ \neg Y \ \lor \ (Y\mathcal{S} \neg Y) \land \stackrel{\longleftarrow}{\square}_1 \stackrel{\longleftarrow}{\lozenge}_1 \ \neg Y) \ \mathsf{and}$
- $\diamondsuit_1 Z \Leftrightarrow \neg \Box_1 \neg Z$.

Reducing ψ

$$\Box(Y \Rightarrow Y\mathcal{U}X) \wedge \Box(X \Rightarrow \overset{\leftarrow}{\Box}_1 Y) \wedge \Box((\overset{\leftarrow}{\Box}_1 \neg X) \Rightarrow \diamondsuit_{[-1,0)} \neg Y).$$

- $\bullet \ \lozenge_{[-1,0)} \neg Y \stackrel{\mathrm{def}}{=} \ (\stackrel{\longleftarrow}{\lozenge}_1 \ \neg Y \ \lor \ (Y\mathcal{S} \neg Y) \land \stackrel{\longleftarrow}{\square}_1 \stackrel{\longleftarrow}{\lozenge}_1 \ \neg Y) \ \mathsf{and}$
- $\bullet \quad \stackrel{\leftarrow}{\Diamond}_1 Z \Leftrightarrow \neg \stackrel{\leftarrow}{\Box}_1 \neg Z.$

Hence,
$$\psi \Leftrightarrow$$

$$\Box(Y \Rightarrow Y\mathcal{U}X) \wedge \Box(X \Rightarrow \Box_1 Y) \wedge \\ \Box((\Box_1 \neg X) \Rightarrow (\neg\Box_1 Y \lor (Y\mathcal{S} \neg Y) \wedge \Box_1 \neg\Box_1 Y))$$

Eliminating $\stackrel{\leftarrow}{\square}_1 X$ using Timers

- Consider subformula $\Box_1 X$.
- Introduce $Timer(X, W) \stackrel{\text{def}}{=} \Box(W \Leftrightarrow \Box_1 X)$.
- Hence, $\psi \Leftrightarrow \exists W.(Timer(X,W) \land \psi[\stackrel{\leftarrow}{\Box}_1 X/W]$

Eliminating $\Box_1 X$ using Timers

- Consider subformula $\stackrel{\leftarrow}{\Box}_1 X$.
- Introduce $Timer(X, W) \stackrel{\text{def}}{=} \Box(W \Leftrightarrow \Box_1 X)$.
- Hence, $\psi \Leftrightarrow \exists W.(Timer(X,W) \land \psi[\stackrel{\leftarrow}{\Box}_1 X/W]$

We obtain, $\psi \Leftrightarrow$

$$\exists T_1, T_2, T_3. \ Timer(\neg X, T_1) \land Timer(Y, T_2) \land Timer(\neg T_2, T_3) \land \\ \Box(Y \Rightarrow Y \mathcal{U} X) \land \Box(X \Rightarrow T_2) \land \\ \Box(T_1 \Rightarrow (\neg T_2 \lor ((Y \mathcal{S} \neg Y) \land T_3)))$$

Eliminating $\Box_1 X$ using Timers

- Consider subformula $\stackrel{\leftarrow}{\Box}_1 X$.
- Introduce $Timer(X, W) \stackrel{\text{def}}{=} \Box(W \Leftrightarrow \Box_1 X)$.
- Hence, $\psi \Leftrightarrow \exists W.(Timer(X,W) \land \psi[\stackrel{\leftarrow}{\Box}_1 X/W]$

We obtain, $\psi \Leftrightarrow$

$$\exists T_1, T_2, T_3. \ Timer(\neg X, T_1) \land Timer(Y, T_2) \land Timer(\neg T_2, T_3) \land \\ \Box(Y \Rightarrow Y \mathcal{U} X) \land \Box(X \Rightarrow T_2) \land \\ \Box(T_1 \Rightarrow (\neg T_2 \lor ((Y \mathcal{S} \neg Y) \land T_3)))$$

Recall that $\diamondsuit_1 X \Leftrightarrow \exists Y.(Y \land \psi)$

Reduction to Timer Normal Form

Theorem For any $\phi(\overline{t}, \overline{Z})$ in QMFO, we can associate auxiliary monadic predicates $\overline{X}, \overline{Y}$ and formula $\overline{\phi}(\overline{t}, \overline{Z}, \overline{X}, \overline{Y})$ in MFO such that

$$\phi(\overline{t}, \overline{Z}) \iff \exists \overline{X}, \overline{Y}. (Timer_n(\overline{X}, \overline{Y}) \land \overline{\phi}(\overline{t}, \overline{Z}, \overline{X}, \overline{Y}))$$

- **●** The theorem is true even when $\phi \in QMSO$ and gives a reduction to MSO.
- The theorem is true ven when $\phi \in QTL$ and gives a reduction to $TL(\mathcal{U}, \mathcal{S})$.

Elimination of Metric

Let $\overline{X} = X_1, \dots, X_n$ and $\overline{Y} = Y_1, \dots, Y_n$. We transform $Timer(\overline{X}, overlineY)$ into $\overline{Timer}(\overline{X}, \overline{Y})$ in MFO such that satisfiability is preserved (equisatisfiable). MFO Properties of Timers Formula A_i is conjuction of

- Y_i is true at 0
- $ightharpoonup Y_i$ is finitely variable.
- Set of point where Y_i is true is closed. I.e. if Y_i holds for (a,b) it also holds for [a,b].

Formula B_i is conjuction of

• For t > 0 if $Y_i(t)$ then X_i is true is small left neighbourhood of t.

Metric Elimination (Cont)

- If X_i continuously true from t onwards then Y_i becomes continuously true from some future point t' > t.
- If $Y_i(t)$ and X_i holds in [t, t') then $Y_i(t')$.

Formula $C_{i,j}$ is conjunction of

- If $Y_i(t) \wedge \neg Y_j(t)$ then for some t' < t we have X_i holds invariantly for (t',t) but X_j does not hold invariantly in (t',t).
- If Y_i and Y_j become true at t then for every previous t' we have X_i is true over (t', t) iff X_j is true over (t', t).

Let
$$\overline{Timer}(\overline{X}, \overline{Y}) \stackrel{\text{def}}{=} \bigwedge_i A_i \wedge B_i \wedge \bigwedge_{i,j} C_{i,j}$$
.

Timer Elimination Theorem

Theorem [HR03] The predicates

 $P_1, \ldots, P_n, Q_1, \ldots, Q_n \models \overline{Timer}(\overline{X}, \overline{Y})$ iff there is an order preserving bijection $\rho : \Re rightarrow \Re$ such that $\rho(P_1), \ldots, \rho(P_n), \rho(Q_1), \ldots, \rho(Q_n) \models Timer(\overline{X}, \overline{Y})$

For $\phi \in MFO$, we have $M \models \phi$ iff $\rho(M) \models \phi$.

Decidability of QMFO

Theorem For evert $\phi \in QMFO$ (or QMSO, QTL) we can construct $\overline{(\phi)} \in MFO$ (or MSO, TL) which is equisatisfiable.

Corollary

- QMSO is decidable over finitiely variable models. (Alternative proof of MITL decidability.)
- ullet QTL is decidable over continuous canonical models.

References

- Y. Hirshfeld and A. Rabinovich, Logics for Real-Time: Decidability and Compleixty, Fundamenta Informatica (2004).
- Thomas A. Henzinger. It's about time: Real-time logics reviewed. (CONCUR 1998).
- Kamal Lodaya and P.K. Pandya, A dose of time, in guarded measures, to appear in Proc. FORMATS 2006.