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Timed Behaviours
=

#® Observable propositions X1, X, ..., X,,.
# Time frame (T, <) a linear order.
o Behaviour M such that M(X;):T — {T, L}.

Some commonly used notions of time and behaviour

# (R, <) the standard set of real numbers. Continuous
time, Canonical behaviors.

® (9, <) the set of rational numbers.
# (XN, <) the set of natural numbers. Discrete time.

Behaviours over (&, <) are called canonical continous and
over (N, <) canonical discrete.
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Finite Variability
B -

# M such that in any finite interval M (X) changes finitely
often for any X are called Finitely variable behaviours.
Interval based model (sg, Iy), (s1, 1), - .-

® (S, <) where S is countably infinite set of sampling
points from R which is divergent
Point based models (sg, t9), (s1,%1), - - .-

In this talk: Canonical Continuous Models and subclass
Finitely Variable models.
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L ogics of Qualitative Time

- N

Monadic First Order Logic M FO First order logic with
equality over linear order (7', <) and monadic predicates
(observable propositions) X;.

Examples

® Vrdy.(z <y Xi(y))
says that X, never stops occuring!

® VaVy.(r<y= (Fz.x<z<y))

Let ¢(X1,..., Xn,y1,...,yx) De aformula with given free
variables. Its model has the form

M= (T,<,P,...,Py,t1,...,t:). We can define M |= ¢ as
usual.

~ Monadic Secondorder Logic (MSO) o
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Temporal Logics

-

Example O(P — QUR). T

A temporal logic TL(Oq, ..., O) with modalities Oy, ..., Oy.

Truth Table For each modality O; of arity £ we have a M FO

formula [0:(X1,..., X:)] ¥ o(te, X1,..., Xz) giving its

behaviour.
Examples

o [OX] ¥ i<t X

o (XUY] Y Tt <t AY () AVE((t < 2 < y) = X(2)).

LA popular temporal logic TL(U, S) called T'L. J
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Correspondences

-

Proposition If every modality of a temporal logic 7L’ has a
truth table then for every ¢(X4, ..., X,,) € TL' we can

construct a M FO formula ¢(to, X1, ..., X,) such that M = ¢
iff M = .

-

Every such Temporal logic is a fragment of MFQO!
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Expressive Completeness

- N

Definition A subset L, of logic L Is expressively complete
for Lo over class of models C provided for all ¢ € L, there

exists ¢» € Ly such that C = ¢ < ¢.

Theorems ([Kamp68,GPSS80,GHR94]) Logic TL(U,S) Is
expressively complete for M FO over canonical models
(discrete or continous).

There exists T'L(Us, Ss) which is expressively complete for
M FO over the class of all linear order.
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-

A logic L is decidable if there exists an algorithm for finding

Decidability
-

whether ¢ € L Is satisfiable (valid).

Results

9o

9o

9o

M SO over (X, <) is decidable. [Buchi60]
MFO over (R, <) Is decidable. [BG85]

M SO over (R, <) is undecidable. M SO with
guantification over monadic predicates restricted to
countable subsets of reals is decidable. [Shelah75]

M SO over (Q, <) Is decidabe. [Rabin69]

M SO over (R, <) with finitely variable behaviours is
decidable. [Rabin69][Rabinovich98].

|
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Quantitative Realtime L ogics
- -

Logic MFOT
Constructs of M F'O, together with +1 function.
Example (Vt.((to <t <to+1 = P(t))) = Q(to+1)

Theorem Logic M FO™ is undecidable.
Proof Method We can encode accepting runs of a 2-counter
machine by a formula.

# Encode each configuration within an interval of time
length 1.

# Number of alternations of X, X, represent value of
counters C, (.

# The configuration can be copied from one unit interval

L to next. J
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Guarded M easurements

-

Logic QM FO [Hirschfeld-Rabinovich]
M FO constructs together with two bounded quantifiers
below.

-

® Let ¢(t) be a QMFO formula with only variable ¢ free.

» Define ()0t o (¢

) = 3
Dually, (vt )<t0+1 o (1) ©y Vi(to <t <tog+ 1= o(1)).
(

» Define (3t)3)°_, ¢(t) C ot <to<t+1A0(1)).
Dually (V£)S0  o(t)  Vi(t < to < t+1 = ¢(1)).

Example Timer(X,Y) < V(Y (1) < (V)0 X (t1)).

Y Is true at a time iff X has been invariantly true for the
Lprevious (open) unit interval. J
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Temporal Logic QTL
- L -

Logic QTLTL(U, S, O, O1) with two constrained modalities
below.

® O, X has truth table (3P X ()

® O, X has truth table (3)SP_ X (1)

® Define duals D1§Z5 L <_>>1 —¢ and DMb g <<_>1 —Q.

Example: O(Y = DlX).
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Expressive Completeness

-

Theorem For any temporal logic T'L(7) which is

expressively complete for M FO, the logic T'L(r, 51, 31) IS
expressively complete for QM FO.
Specifically, QT'L is expressively complete for QM FO.

-

Conseqguence: Any temporal modality which has a
truth-table in QM FO can be expressed within QT'L.

Notation Denote <_>>1 X by <_>>(071) X and <<_>1 X by 01,0 X.

o |
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| nterval Bounded M odalities

- N

® (3)SETX() E X(h) v (3)SETIX().
X V

O X < QX
o (A)ShHx@) € @nhtix@) v

First(to, X) A (Vt)SiH (31X (1)

Cro,11X déf CoonX V [(=XUX) AT 1)00,1)X]
® O(100)X e Hi0,110X.

def
® Uppnr)X = Hpe1.0)Q0, 00 nX-
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A Variety of Modalities
-

Thus, we can define constrained modality ; where I is
non-singular

-

# interval I has integer end-point or infinity as end-points.
# Non-singular, I.e. not a singleton set or empty.
# Can be closed, open, partially closed.

Logic MITL T'L(U;, Sr) where I is non-singular interval.

def
Let X Z/l(n, n —+ m) Y = (D(O,n] (X A XZ/{Y)) N <>(n,n—|—m)Y-

Theorem MITL and QT L have same expressive power.
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A Variety of Modalities (Cont)

- N

#® Nearest Next [Wilke,Raskin]

def
D(n,n+m)X = (—IXZ/{X) N <>(m,m—|—n)X A —I<>(0,n])X.

#® Age Constraints [MP93] Age(X) > n ot O (—n,0)X-

def
Age(X)=n = O_poX ADCn—n-1)Q1,07X.
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Summary

- N

#® Logic QTL is expressively complete for QM SO.

# Modalities from most know decidable timed logics can
be defined within Q7L and QM SO

#® Question Is QM SO decidable?

o |
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Decidability of OMFO
vaerview
#® Timer Normal Form TTNF C QM FO
#® Transform QM FO — T NF (equivalent formula)
#® Transform TN F — M FO (equisatisfiable formula)
# Decidablility of M FO

o |
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Timer Normal Form (TNF)
f def —‘

® InQTL, define TIMER(X,Y) < O o 0 x).
In QM FO define
TIMER(X,Y) € Wi(Y(t) = (Vt)Sh  X(t)))

® Timer,(X1,...,Xn,Y1,...,Y,) o N\, Timer(X;, Y1)



Timer Normal Form (TNF)
- -

® InQTL, define TIMER(X,Y) < O o 0 x).
In QM FO define

TIMER(X,Y) € Wi(Y(t) = (Vt)Sh  X(t)))

® Timer,(X1,...,Xn,Y1,...,Y,) o N\, Timer(X;, Y1)

# Formulais in first order TNF if it has the following form
where ¢ € M FO and W is list of monadic predicates.

AW .(Timery,(X1,..., X0, Y1,...,Y,) Ao

o |
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-

Timer Normal Form (TNF)
-

In QTL, define TIMER(X,Y) < O < 0:X).

In QM FO define
TIMER(X,Y) € Wi(Y(t) = (Vt)Sh  X(t)))

Timery(Xq, ..., Xn, Y1,...,Y,) o N\, Timer(X;, Y1)

Formula is in first order TNF if it has the following form
where ¢ € M FO and W is list of monadic predicates.

AW .(Timery,(X1,..., X0, Y1,...,Y,) Ao

If in above definition, if p € M SO we have second order
TNF. If o € TL we have TL TNF

|
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Reducing Futureto Past
=

Aim: To represent 51 by El (using U, S).
Consider witness [J(Y <:><_>>1 Y). This implies



Reducing Futureto Past
=

Aim: To represent 51 by El (using U, S).
Consider witness [J(Y <:><_>>1 Y). This implies

s v € Oy = yux).



Reducing Futureto Past
=

Aim: To represent 51 by El (using U, S).
Consider witness [J(Y <:><_>>1 Y). This implies

s v € Oy = yux).

o v ¥ O = Oy



Reducing Futureto Past
=

Aim: To represent 51 by El (using U, S).
Consider witness [J(Y <:><_>>1 Y). This implies
def

o v ¥ Ox =Ov
o y3 € O((h-X) = Op10)Y)

o Letwdef%/\%/\%

o



Reducing Futureto Past
B L -

Aim: To represent ¢, by (11 (using U, S).
Consider witness [J(Y <:><_>>1 Y). This implies
def

o v ¥ Ox =Ov
o y3 € O((h-X) = Op10)Y)

o Letwdef%/\%/\%
Also, vy Ay = (Y = (0y X))and s = (01 X) = V).
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Reducing Futureto Past
B L -

Aim: To represent ¢, by (11 (using U, S).
Consider witness [J(Y <:><_>>1 Y). This implies
def

o v ¥ Ox =Ov
o y3 € O((h-X) = Op10)Y)

o Let X g A by A s,
AlSO, 1 Az = (Y = (01 X)) and s = ((0 X) = Y).
# Hence, (Y @51 Y) & .

L.o <_>>1Y < JY.(Y A ). J



Reducing ¢
- . -

(Y = YUX)AD(X = 1Y) AD(01=X) = Or_10Y).



Reducing ¢
- . -

(Y = YUX)AD(X = 1Y) AD(01=X) = Or_10Y).

e 0oV ¥ (01 Y Vv (YS-Y)AD 01 V) and

° <>1 / & —|D1—IZ.



Reducing ¢
- . -

OY = YUX)ADX = DY) AD(O1-X) = Op_1.0Y).

e 0oV ¥ (01 Y Vv (YS-Y)AD 01 V) and

° <>1 / & —|D1—IZ.

Hence, v <
(Y = YUX)ADX = O1Y)A
O(0h=X) = (=OhY Vv (YS=Y)ADi—-0;Y))

o |
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%

Eliminating ;X using Timers

- N

® Consider subformula ElX.

# Introduce Timer(X, W) o (W < ElX).

® Hence, v & IW.(Timer(X,W)A®[O1X/W]



H

Eliminating ;X using Timers

- N

® Consider subformula ElX.

# Introduce Timer(X, W) o (W < ElX).

® Hence, v < 3IW.(Timer(X,W) A0 X/W]

We obtain, v <

7,15, T5. Timer(—X,Ty) A Timer(Y,To) A Timer(=15, T3) A
Y = YUX)ANO(X = Ty)A
D(Tl = (_|T2 V ((YS—IY)/\Tg)))
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H

Eliminating ;X using Timers

- N

® Consider subformula ElX.

# Introduce Timer(X, W) o (W < ElX).

® Hence, v < 3IW.(Timer(X, W) A0 X/W]

We obtain, v <

7,15, T5. Timer(—X,Ty) A Timer(Y,To) A Timer(=15, T3) A
Y = YUX)ANO(X = Ty)A
D(Tl = (_|T2 V ((YS—IY)/\Tg)))

Recall that 31 X < 3dY.(Y A))

o |
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Reduction to Timer Normal Form

-

Theorem For any ¢(t, Z) in QM FO, we can associate

auxiliary monadic predicates X,Y and formula ¢(¢, Z, X,Y)
In M FO such that o

o, 7Z) < XY (Timer,(X,Y)N@(t, Z,X,Y))

# The theorem is true even when ¢ € QM SO and gives a
reduction to M SO.

# The theorem is true ven when ¢ € Q7L and gives a
reductionto TL(U, S).

o |
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Elimination of Metric
B -

let X = X,....X,and Y =Y, ...,Y,. We transform
Timer(X, overlineY') into Timer(X,Y) in M FO such that
satisfiablility is preserved (equisatisfiable).

MFO Properties of Timers Formula A; iIs conjuction of

® Y;istrue at0

# Y Is finitely variable.

# Set of point where Y] Is true is closed. l.e. if Y; holds for
(a,b) 1t also holds for [a, b].

Formula B; Is conjuction of

#® Fort > 01f Y;(¢) then Xj; is true is small left
neighbourhood of ¢.

o |
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Metric Elimination (Cont)

- N

o |If X; continuously true from ¢ onwards then Y; becomes
continuously true from some future point ¢ > ¢.

# IfY;(t) and X; holds in [¢,t") then Y;(¢).

Formula C; ; Is conjunction of

» If Y;i(t) A =Y;(t) then for some t' < ¢t we have X; holds
invariantly for (¢',¢) but X; does not hold invariantly in

(t,1).
» [f Y; and Y; become true at ¢ then for every previous ¢’
we have X; is true over (¢, t) iff X; is true over (¢',¢).

Let Timefr’(X,Y) det /\z A, N B; A /\z’,j Cz"j.

|
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Timer Elimination Theorem

fTheorem [HRO3] The predicates T

Pi,...,P,,Q1,...,Qn E Timer(X,Y) Iff there Is an order
preserving bijection p : RrightarrowR such that

p(P1)7 s 7/0(Pn)710(Q1)7 s 7P(Qn) ’: Timer(yv 7)

For o € MFO, we have M = ¢ Iff p(M) = ¢.
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Decidability of OMFO
-

Theorem For evert o € QM FO (or QM SO, QT L) we can

construct (¢) € MFO (or M SO, TL) which is equisatisfiable.

-

Corollary
® (OMFO is decidable over continous canonical models.

® (MSO is decidable over finitiely variable models.
(Alternative proof of M IT L decidability.)

® (QTL is decidable over continuous canonical models.

o |
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