An introduction to infinite graphs
Antoine Meyer

Formal Methods Update 2006
HT Guwahati

@ Foreword: approach and current issues
® Pushdown graphs: characterizations
© Reachability in pushdown graphs

O Beyond pushdown graphs



@ Foreword: approach and current issues



program,
network,
Ariane 5,

safety,
conformity,
liveness,

Reasoning about computation

Concrete
system

v

Properties




program,
network,
Ariane 5,

safety,
conformity,
liveness,

Reasoning about computation

Concrete
system

Computation
model

v

Properties

automaton,
Petri net,
rewriting system,



program,
network,
Ariane 5,

safety,
conformity,
liveness,

Reasoning about computation

Concrete
system

Computation
model

v

v

Properties

Formulas

automaton,
Petri net,
rewriting system,

temporal logics,

p-calculus,
FO, MSO,



program,
network,
Ariane 5,

safety,
conformity,
liveness,

Reasoning about computation

Concrete
system

Computation
model

v

v

Properties

Formulas

automaton,
Petri net,
rewriting system,

temporal logics,

p-calculus,
FO, MSO,




A few current issues

e Successful technique: finite models (circuits, protocols)
e Adopted by the industry (Intel, IBM, Motorola ...)

e New issues: software verification

o Difficulties: data, dynamic evolution ...
e Specific constraints: reliability, limited resources ...
o Coexistence of several aspects (“complex” systems)

Ex: embedded systems

= Need for more elaborate models and algorithms



The modelling problem

e Wide range of models
e Mostly from language, automata and rewriting theory

o Tradeoff btw. expressiveness and decidability/complexity

Finite automata Turing machines
most restricted «— most expressive
mostly decidable mostly undecidable

e Abstraction/approximation usually required
e [nfinite domains, unbounded recursion, time, etc.



A few simple examples

Configuration: one (unbounded) integer counter
Operations: increment (1)




A few simple examples

Configuration: one (unbounded) integer counter
Operations: increment (/) and reset (r)




A few simple examples

Configuration: two (unbounded) integer counters
Operations: increments (i1, i)

0,0 1102013040050 560

i i i i i i i

i i i i i i
001 2e11-teo1 31 a1 s e
I i i i i I I

i i i i i i

0,2 — 1,2 — 22 —» 32 —» 42 —» 52 —» 6,2



Structural study of infinite graphs

General objective
Systematic structural study of families of infinite graphs

e Infinite graphs induced by classical computation models
e Alternative characterizations of each family

e Focus on closure properties, logics, trace languages and
structural and algorithmic properties

e Abstraction from concrete systems ensures reusability

This talk
Overview through the example of pushdown graphs
(references: mostly Biichi, Caucal, Courcelle, Muller & Schupp)



® Pushdown graphs: characterizations



Characterization 1:
A pushdown system transition graph



Pushdown systems

A pushdown system consists in
e Control states p,q,... € Q
e Stack symbols A,B,C,... €T
e Label alphabet a,b,c,... € X

e Transitions of the form

ushB
p AL g
pop



Pushdown systems

A pushdown system consists in
e Control states p,q,... € Q (global variables, registers)
Stack symbols A, B, C,... € I (local vars., program counter)

Label alphabet a,b,c,... € ¥ (program interactions)
Transitions of the form

a pushB (procedure call)
p, A= q,
pop (procedure return)

Classical abstract model for recursive sequential programs



Pushdown systems (2)

A configuration is a pair (p, s) with
e p a control state
e s a sequence of stack symbols (top first)

Example
p,0 > p,push A
p, A p,push A
b
p, A= q,pop
b
q,A— q,pop



Pushdown systems (2)

A configuration is a pair (p, s) with
e p a control state
e s a sequence of stack symbols (top first)

Example
. p. 0

p,0 > p,push A
p, A p,push A
b
p,A— q,pop
b
q,A— q,pop



Pushdown systems (2)

A configuration is a pair (p, s) with
e p a control state
e s a sequence of stack symbols (top first)

Example
. p7®4a>p~A

p,0 > p,push A
p, A p,push A
b
p,A— q,pop
b
q,A— q,pop



Pushdown systems (2)

A configuration is a pair (p, s) with
e p a control state
e s a sequence of stack symbols (top first)

Example
° p,0—2+p,A
p,0 2 p,push A b
p, A p,push A
q,0

b

p,A— q,pop
b

q,A— q,pop



Pushdown systems (2)

A configuration is a pair (p, s) with
e p a control state
e s a sequence of stack symbols (top first)

Example
° p,0 —2> p, A2+ p AA

p,0 2 p,push A b

p, A p,push A
q,0

b

p,A— q,pop
b

q,A— q,pop



Pushdown systems (2)

A configuration is a pair (p, s) with
e p a control state
e s a sequence of stack symbols (top first)

Example
° pa®4a>p7A4a>p7AA

p,® = p,push A {b {b
p, A p,push A

b q,0 q,A
p, A— g, pop
9, A2 g, pop



Pushdown systems (2)

A configuration is a pair (p, s) with
e p a control state

e s a sequence of stack symbols (top first)

Example
° pa®4a>p7A4a>p7AA
p,® = p,push A {b {b
p, A p,push A
anTqvA

b

p,A— q,pop
b

q,A— q,pop



Pushdown systems (2)

A configuration is a pair (p, s) with
e p a control state
e s a sequence of stack symbols (top first)

Example
ramp p0—2+p, A—2w p AA 2 p AAA 2w ..

p,® = p,push A {b {b {b

p, A= p,push A
~— g A+—qg AA~——---
9.0 —aqA—q 5

b
p,A— q,pop

b
,A , po
G AT 4 Pop Such graphs are called pushdown graphs



General form: prefix rewriting graphs

e Rewriting system: set of rules | = r

. oy a a
o Prefix rewriting: lu = ru whenever | = r

Example
A2 AA
AAZ B
BAL B



General form: prefix rewriting graphs

e Rewriting system: set of rules | = r

. oy a a
o Prefix rewriting: lu = ru whenever | = r

Example
A2 AA
AAZ B
BAL B



General form: prefix rewriting graphs

e Rewriting system: set of rules | = r

. oy a a
o Prefix rewriting: lu = ru whenever | = r

Example A2

AA
A2 AA
AAZ B
BAL B



General form: prefix rewriting graphs

e Rewriting system: set of rules | = r

. oy a a
o Prefix rewriting: lu = ru whenever | = r

Example
P A—2+ Ap
A2 AA i

AAS B
B

BAL B



General form: prefix rewriting graphs

e Rewriting system: set of rules | = r

. oy a a
o Prefix rewriting: lu = ru whenever | = r

Example
P A—2L e paa—20 anA
A2 AA A
AAZ B
B

BAL B



General form: prefix rewriting graphs

e Rewriting system: set of rules | = r

. oy a a
o Prefix rewriting: lu = ru whenever | = r

Example
P A—2 o aa—2 4 ApA
AS AA b b
AAS B
B BA

BAL B



General form: prefix rewriting graphs

e Rewriting system: set of rules | = r

. oy a a
o Prefix rewriting: lu = ru whenever | = r

Example
P A—2 o aa—2 4 AAA
AS AA b b
AAS B
B BA

BAL B b



General form: prefix rewriting graphs

e Rewriting system: set of rules | = r

: . a a
o Prefix rewriting: lu = ru whenever | = r

Example
P A—2L o aa—2 0 ApAA -2+ apan s -
AS AA b {b b
AAS B
B<~—— BA<~— BAA~— -
BAL B b b b

Note: not all vertices are considered,
only vertices of the form {A, B} A*
(regular restriction)



Characterization 2:
Building a graph with a grammar



Decomposition by distance

e Consider the distance of any vertex to vertex r:
0 1 2 3 4

I d ! d . . d
4

O Y

e Build a finite graph grammar using this decomposition




Decomposition by distance

e Consider the distance of any vertex to vertex r:
0 1 2 3 4

I d ! d . . d
4

O

e Build a finite graph grammar using this decomposition

1,A o 1,_a B

o —» 0



Decomposition by distance

e Consider the distance of any vertex to vertex r:
0 1 2 3 4

| a a
re L%

Sk

/
e Build a finite graph grammar using this decomposition

\o<7~o

1,A o 1,_a B

1,B o 1,_a



Decomposition by distance

e Consider the distance of any vertex to vertex r:
0 1 2 3 4

| a | a a
re o/ o

b

e Build a finite graph grammar using this decomposition

1,A o 1,_a B

* ° 1. 1.4a>.
1,B o 1,_a _, . b >C




Decomposition by distance

e Consider the distance of any vertex to vertex r:
0 1 2 3 4

| a | a a
re o/ o

I

e Build a finite graph grammar using this decomposition

1,A o 1,_a B

* ° 1. 1.4a>.
1,B o 1,_a _, . b >C




Characterization 3:
Transforming a simpler graph



Unfold and substitute

ldea
Starting from a family of generators, characterize new graphs by

applying transformations

Present case
e Generator: a finite graph
e First transformation: unfold from a vertex,

e Second transformation: substitute paths with edges



Unfold and substitute (2)

Example: X
« ()

e —» 0

y

Start with a finite graph
Unfold it from its root
Substitute paths with edges



Unfold and substitute (2)

o)

Start with a finite graph

Example:

Unfold it from its root
Substitute paths with edges



Unfold and substitute (2)

X
x . x (J

y \y
Substitute paths with edges

Example:

X > o
\y

Start with a finite graph

Unfold it from its root



Unfold and substitute (2)

X
x . x ()

b

Example:

X . X
\y
Start with a finite graph

Unfold it from its root
Substitute paths with edges



Unfold and substitute (2)

b

Example:

X . X
\y
Start with a finite graph

Unfold it from its root
Substitute paths with edges



Unfold and substitute (2)

N

Example:

X . X
\y
b

Start with a finite graph

Unfold it from its root
Substitute paths with edges

y x y b
& & = becomes —



Unfold and substitute (2)

Example:

.<7.
.<7.
.<7.
.<7.

Start with a finite graph
Unfold it from its root
Substitute paths with edges
£ XY becomes >
X

a
becomes —



Unfold and substitute (2)

Example:
X X X X X
SO S0 HO— %
a a a a a
b " b T bp T

Start with a finite graph
Unfold it from its root
Substitute paths with edges

Yy x y b

& & = becomes —
a

becomes —

b
becomes —



Unfold and substitute (2)

Example:

a ,_a ., a _,_ a a
b T b T b b
Start with a finite graph

Unfold it from its root
Substitute paths with edges

Yy x y b

& & = becomes —
a

becomes —

b
becomes —



Equivalence result

Theorem
Let G be a connected graph of finite degree, the following
statements are equivalent (up to isomorphism):

e G is the transition graph of a pushdown automaton

G is the prefix rewriting graph of a finite rewriting system

G has a finite decomposition by distance from any vertex

e G is generated by a deterministic graph grammar

G is the result of unfolding a finite graph and applying a finite
substitution



© Reachability in pushdown graphs



Reachability analysis

e Fundamental questions for most applications

e Several variants:

w1
y . R
SO ) )
/v/ 5 Ny “/1/3 .
Reachability Reachable Path
relations configurations languages

e Examples :

e “Is it possible to reach a deadlock state?”
e “Is it always possible to reach a target state?”
e “Is every request eventually answered?”

e Path languages of pushdown graphs: context-free languages



Reachability in pushdown graphs (1)

Notations

e For every symbol A, we write

e A the action of removing a prefix A (“pop” A)
e A the action of adding a prefix A (“push” A)

This notation is extended to words: Au = Al
Example: AB = AB

e The mirror of a word u is written U (with Au=TAand € = £)
Example: AB = BA = BA



Reachability in pushdown graphs (2)

Representation of rules

The effect of rewrite rule u = v can be written Gv

The effect of any rewriting system R can be represented by
the regular language {av | u > v € R}*

Conversely, any word Tv can be seen as a rewrite rule u — v

Any regular language L € N*N* can be seen as an infinite
recognizable rewriting system R = {u — v | v € L}

Alternative notation:
If L = UiUiVi. we write R = J; Ui — Vi



Reachability in pushdown graphs (3)

Observation: Sequences of the form AA can be discarded

Algorithm
© Start with automaton accepting Lg = {av | u > v € R}*
® Aim: remove all “unnecessary steps” of the form AA
— For all path p A g in A, add e-transition p = g
© lterate the previous step until saturation
O Intersect the obtained language with N*N*

® Interpret as a union of relations U — V



Reachability in pushdown graphs (4)

Theorem (Caucal, Dauchet& Tison)

The reachability relation in a prefix rewriting \
graph can always be written as a finite union of X \ e
relations (U — V) - 1d, with U,V regular " '

Note:

e When using regular restrictions, more general form needed:
finite union of relations (U — V) - Idy

e Such relations are called prefix-recognizable



Reachability in pushdown graphs (5)

Corollary ;
The set of vertices F reachable from any regular (Des
set | in a pushdown graph is regular '

Other possible interpretation:

Corollary (Biichi)

The set of stack contents reachable from the initial configuration
in a pushdown automaton is a regular language



O Beyond pushdown graphs



Prefix-recognizable graphs

Q: Prefix-recognizable relations express reachability in prefix
rewriting graphs. What about graphs whose edges are P-R?

A: Extension of (nearly) all previous characterizations

Theorem
Let G be a graph, the following statements are equivalent:

e G is the transition graph of a pushdown automaton with
e-transitions

e G is the prefix rewriting graph of a recognizable rewriting
system (+ regular restriction)

e G is the result of unfolding a finite graph and applying a
regular substitution

Additionally, all previous reachability results remain true



O ———r+ 0 —— P+ 0 —— > 0 —» 0

O ———»+ 0 —— >+ 00— 0

O ——» 0 ———» 0



Not a pushdown graph!

C

oy

. .a/lb :
-—a»lb/vlb Ib lb
- .‘c\lb : lb

\lb |

This graph “looks” regular though, how can we characterize it?



Extensions and variants

More general computation models
(e.g. linearly bounded machines, petri nets)

Arbitrary finitely presented binary relations
(e.g. automatic or rational relations)

More powerful or iterated transformations
New operators in graph equations (or grammars)

Restrictions or specialization of existing families
(e.g. degree, tree-width, connectedness)



Conclusion

e Open topic with numerous variants and extensions

e Links with other theoretical topics
Language theory, automata, rewriting, logics . ..

o (Prospective) applications in computer science
Modeling (notion of structural richness)
Verification (through logics and algorithms)



