
An introduction to infinite graphs
Antoine Meyer

Formal Methods Update 2006
IIT Guwahati

1 Foreword: approach and current issues

2 Pushdown graphs: characterizations

3 Reachability in pushdown graphs

4 Beyond pushdown graphs



An introduction to infinite graphs
Antoine Meyer

Formal Methods Update 2006
IIT Guwahati

1 Foreword: approach and current issues

2 Pushdown graphs: characterizations

3 Reachability in pushdown graphs

4 Beyond pushdown graphs



Reasoning about computation

Concrete
system

Properties

program,
network,
Ariane 5,

. . .

safety,
conformity,

liveness,
. . .

?



Reasoning about computation

Concrete
system

Properties

Computation
model

program,
network,
Ariane 5,

. . .

safety,
conformity,

liveness,
. . .

automaton,
Petri net,
rewriting system,
. . .

?



Reasoning about computation

Concrete
system

Properties

Computation
model

Formulas

program,
network,
Ariane 5,

. . .

safety,
conformity,

liveness,
. . .

automaton,
Petri net,
rewriting system,
. . .

temporal logics,
µ-calculus,
FO, MSO,
. . .

?



Reasoning about computation

Concrete
system

Properties

Computation
model

Formulas

program,
network,
Ariane 5,

. . .

safety,
conformity,

liveness,
. . .

automaton,
Petri net,
rewriting system,
. . .

temporal logics,
µ-calculus,
FO, MSO,
. . .

?



A few current issues

• Successful technique: finite models (circuits, protocols)
• Adopted by the industry (Intel, IBM, Motorola . . . )

• New issues: software verification
• Difficulties: data, dynamic evolution . . .
• Specific constraints: reliability, limited resources . . .
• Coexistence of several aspects (“complex” systems)

Ex: embedded systems

⇒ Need for more elaborate models and algorithms



The modelling problem

• Wide range of models
• Mostly from language, automata and rewriting theory

• Tradeoff btw. expressiveness and decidability/complexity

Finite automata
most restricted
mostly decidable

←→
Turing machines
most expressive

mostly undecidable

• Abstraction/approximation usually required
• Infinite domains, unbounded recursion, time, etc.



A few simple examples

Configuration: one (unbounded) integer counter
Operations: increment (i)

0 1 2 3 4 5 6 · · ·i i i i i i



A few simple examples

Configuration: one (unbounded) integer counter
Operations: increment (i) and reset (r)

0 1 2 3 4 5 6 · · ·i i i i i i

r
r

r
r

r



A few simple examples

Configuration: two (unbounded) integer counters
Operations: increments (i1, i2)

0, 0 1, 0 2, 0 3, 0 4, 0 5, 0 6, 0 · · ·

0, 1 1, 1 2, 1 3, 1 4, 1 5, 1 6, 1 · · ·

0, 2 1, 2 2, 2 3, 2 4, 2 5, 2 6, 2 · · ·

...
...

...
...

...
...

...

i1 i1 i1 i1 i1 i1

i1 i1 i1 i1 i1 i1

i1 i1 i1 i1 i1 i1

i2

i2

i2

i2

i2

i2

i2

i2

i2

i2

i2

i2

i2

i2



Structural study of infinite graphs

General objective

Systematic structural study of families of infinite graphs

• Infinite graphs induced by classical computation models

• Alternative characterizations of each family

• Focus on closure properties, logics, trace languages and
structural and algorithmic properties

• Abstraction from concrete systems ensures reusability

This talk
Overview through the example of pushdown graphs
(references: mostly Büchi, Caucal, Courcelle, Muller & Schupp)



An introduction to infinite graphs
Antoine Meyer

Formal Methods Update 2006
IIT Guwahati

1 Foreword: approach and current issues

2 Pushdown graphs: characterizations

3 Reachability in pushdown graphs

4 Beyond pushdown graphs



Characterization 1:
A pushdown system transition graph



Pushdown systems

A pushdown system consists in

• Control states p, q, . . . ∈ Q

• Stack symbols A,B ,C , . . . ∈ Γ

• Label alphabet a, b, c , . . . ∈ Σ

• Transitions of the form

p,A
a
→ q,

{
pushB

pop



Pushdown systems

A pushdown system consists in

• Control states p, q, . . . ∈ Q (global variables, registers)

• Stack symbols A,B ,C , . . . ∈ Γ (local vars., program counter)

• Label alphabet a, b, c , . . . ∈ Σ (program interactions)

• Transitions of the form

p,A
a
→ q,

{
pushB (procedure call)

pop (procedure return)

Classical abstract model for recursive sequential programs



Pushdown systems (2)

A configuration is a pair (p, s) with

• p a control state

• s a sequence of stack symbols (top first)

Example

p, ∅
a
→ p, pushA

p, A
a
→ p, pushA

p, A
b
→ q, pop

q, A
b
→ q, pop



Pushdown systems (2)

A configuration is a pair (p, s) with

• p a control state

• s a sequence of stack symbols (top first)

Example

p, ∅
a
→ p, pushA

p, A
a
→ p, pushA

p, A
b
→ q, pop

q, A
b
→ q, pop

p, ∅



Pushdown systems (2)

A configuration is a pair (p, s) with

• p a control state

• s a sequence of stack symbols (top first)

Example

p, ∅
a
→ p, pushA

p, A
a
→ p, pushA

p, A
b
→ q, pop

q, A
b
→ q, pop

p, ∅ p, A
a



Pushdown systems (2)

A configuration is a pair (p, s) with

• p a control state

• s a sequence of stack symbols (top first)

Example

p, ∅
a
→ p, pushA

p, A
a
→ p, pushA

p, A
b
→ q, pop

q, A
b
→ q, pop

p, ∅ p, A
a

q, ∅

b



Pushdown systems (2)

A configuration is a pair (p, s) with

• p a control state

• s a sequence of stack symbols (top first)

Example

p, ∅
a
→ p, pushA

p, A
a
→ p, pushA

p, A
b
→ q, pop

q, A
b
→ q, pop

p, ∅ p, A
a

q, ∅

b

p, AA
a



Pushdown systems (2)

A configuration is a pair (p, s) with

• p a control state

• s a sequence of stack symbols (top first)

Example

p, ∅
a
→ p, pushA

p, A
a
→ p, pushA

p, A
b
→ q, pop

q, A
b
→ q, pop

p, ∅ p, A
a

q, ∅

b

p, AA
a

q, A

b



Pushdown systems (2)

A configuration is a pair (p, s) with

• p a control state

• s a sequence of stack symbols (top first)

Example

p, ∅
a
→ p, pushA

p, A
a
→ p, pushA

p, A
b
→ q, pop

q, A
b
→ q, pop

p, ∅ p, A
a

q, ∅

b

p, AA
a

q, A

b

b



Pushdown systems (2)

A configuration is a pair (p, s) with

• p a control state

• s a sequence of stack symbols (top first)

Example

p, ∅
a
→ p, pushA

p, A
a
→ p, pushA

p, A
b
→ q, pop

q, A
b
→ q, pop

p, ∅ p, A
a

q, ∅

b

p, AA
a

q, A

b

b

p, AAA

q, AA

· · ·

· · ·

Such graphs are called pushdown graphs

a

b

b

a

b



General form: prefix rewriting graphs

• Rewriting system: set of rules l
a
→ r

• Prefix rewriting: lu
a
→ ru whenever l

a
→ r

Example

A
a
→ AA

AA
a
→ B

BA
b
→ B



General form: prefix rewriting graphs

• Rewriting system: set of rules l
a
→ r

• Prefix rewriting: lu
a
→ ru whenever l

a
→ r

Example

A
a
→ AA

AA
a
→ B

BA
b
→ B

A



General form: prefix rewriting graphs

• Rewriting system: set of rules l
a
→ r

• Prefix rewriting: lu
a
→ ru whenever l

a
→ r

Example

A
a
→ AA

AA
a
→ B

BA
b
→ B

A AA
a



General form: prefix rewriting graphs

• Rewriting system: set of rules l
a
→ r

• Prefix rewriting: lu
a
→ ru whenever l

a
→ r

Example

A
a
→ AA

AA
a
→ B

BA
b
→ B

A AA
a

B

b



General form: prefix rewriting graphs

• Rewriting system: set of rules l
a
→ r

• Prefix rewriting: lu
a
→ ru whenever l

a
→ r

Example

A
a
→ AA

AA
a
→ B

BA
b
→ B

A AA
a

B

b

AAA
a



General form: prefix rewriting graphs

• Rewriting system: set of rules l
a
→ r

• Prefix rewriting: lu
a
→ ru whenever l

a
→ r

Example

A
a
→ AA

AA
a
→ B

BA
b
→ B

A AA
a

B

b

AAA
a

BA

b



General form: prefix rewriting graphs

• Rewriting system: set of rules l
a
→ r

• Prefix rewriting: lu
a
→ ru whenever l

a
→ r

Example

A
a
→ AA

AA
a
→ B

BA
b
→ B

A AA
a

B

b

AAA
a

BA

b

b



General form: prefix rewriting graphs

• Rewriting system: set of rules l
a
→ r

• Prefix rewriting: lu
a
→ ru whenever l

a
→ r

Example

A
a
→ AA

AA
a
→ B

BA
b
→ B

A AA
a

B

b

AAA
a

BA

b

b

AAAA

BAA

· · ·

· · ·

Note: not all vertices are considered,
only vertices of the form {A,B}A∗

(regular restriction)

a

b

b

a

b



Characterization 2:
Building a graph with a grammar



Decomposition by distance

• Consider the distance of any vertex to vertex r :

• •

•

•

•

•

•

•

•

· · ·

· · ·

a

b

a

b

b

a

b

b

a

b

b

a

b

r

0 1 2 3 4

• Build a finite graph grammar using this decomposition



Decomposition by distance

• Consider the distance of any vertex to vertex r :

• •

•

•

•

•

•

•

•

· · ·

· · ·

a

b

a

b

b

a

b

b

a

b

b

a

b

r

0 1 2 3 4

• Build a finite graph grammar using this decomposition

•
1 A ⇒ •

1
•
Ba



Decomposition by distance

• Consider the distance of any vertex to vertex r :

• •

•

•

•

•

•

•

•

· · ·

· · ·

a

b

a

b

b

a

b

b

a

b

b

a

b

r

0 1 2 3 4

• Build a finite graph grammar using this decomposition

•
1 A ⇒ •

1
•
Ba

•
1 B ⇒ •

1
•

•

a

b
C



Decomposition by distance

• Consider the distance of any vertex to vertex r :

• •

•

•

•

•

•

•

•

· · ·

· · ·

a

b

a

b

b

a

b

b

a

b

b

a

b

r

0 1 2 3 4

• Build a finite graph grammar using this decomposition

•
1 A ⇒ •

1
•
Ba

•
1 B ⇒ •

1
•

•

a

b
C

•
1

•

2

C ⇒

•
1

•

•

2
•

a

b

b

C



Decomposition by distance

• Consider the distance of any vertex to vertex r :

• •

•

•

•

•

•

•

•

· · ·

· · ·

a

b

a

b

b

a

b

b

a

b

b

a

b

r

0 1 2 3 4

• Build a finite graph grammar using this decomposition

•
1 A ⇒ •

1
•
Ba

•
1 B ⇒ •

1
•

•

a

b
C

•
1

•

2

C ⇒

•
1

•

•

2
•

a

b

b

C



Characterization 3:
Transforming a simpler graph



Unfold and substitute

Idea
Starting from a family of generators, characterize new graphs by
applying transformations

Present case

• Generator: a finite graph

• First transformation: unfold from a vertex,

• Second transformation: substitute paths with edges



Unfold and substitute (2)

• Example:

• •

•

x

y

x

• Start with a finite graph

• Unfold it from its root

• Substitute paths with edges



Unfold and substitute (2)

• Example:

• •

•

•

•

x

y

x

y

x

• Start with a finite graph

• Unfold it from its root

• Substitute paths with edges



Unfold and substitute (2)

• Example:

• •

•

•

•

•

•

x

y

x

y

x

y

x

• Start with a finite graph

• Unfold it from its root

• Substitute paths with edges



Unfold and substitute (2)

• Example:

• •

•

•

•

•

•

•

•

x

y

x

y

x

y

x

y

x

• Start with a finite graph

• Unfold it from its root

• Substitute paths with edges



Unfold and substitute (2)

• Example:

• •

•

•

•

•

•

•

•

· · ·x

y

x

y

x

y

x

y

x

• Start with a finite graph

• Unfold it from its root

• Substitute paths with edges



Unfold and substitute (2)

• Example:

• •

•

•

•

•

•

•

•

· · ·

· · ·

x

y

x

y

x

y

x

y

x

b b b b

• Start with a finite graph

• Unfold it from its root

• Substitute paths with edges

y
←

x
←

y
→ becomes

b
→



Unfold and substitute (2)

• Example:

• •

•

•

•

•

•

•

•

· · ·

· · ·

x

y

x

y

x

y

x

y

x

b b b b

a a a a a

• Start with a finite graph

• Unfold it from its root

• Substitute paths with edges

y
←

x
←

y
→ becomes

b
→

x
→ becomes

a
→



Unfold and substitute (2)

• Example:

• •

•

•

•

•

•

•

•

· · ·

· · ·

x

y

x

y

x

y

x

y

x

b b b b

a a a a a
b b b b

• Start with a finite graph

• Unfold it from its root

• Substitute paths with edges

y
←

x
←

y
→ becomes

b
→

x
→ becomes

a
→

y
→ becomes

b
→



Unfold and substitute (2)

• Example:

• •

•

•

•

•

•

•

•

· · ·

· · ·
b b b b

a a a a a

b b b b

• Start with a finite graph

• Unfold it from its root

• Substitute paths with edges

y
←

x
←

y
→ becomes

b
→

x
→ becomes

a
→

y
→ becomes

b
→



Equivalence result

Theorem
Let G be a connected graph of finite degree, the following
statements are equivalent (up to isomorphism):

• G is the transition graph of a pushdown automaton

• G is the prefix rewriting graph of a finite rewriting system

• G has a finite decomposition by distance from any vertex

• G is generated by a deterministic graph grammar

• G is the result of unfolding a finite graph and applying a finite
substitution



An introduction to infinite graphs
Antoine Meyer

Formal Methods Update 2006
IIT Guwahati

1 Foreword: approach and current issues

2 Pushdown graphs: characterizations

3 Reachability in pushdown graphs

4 Beyond pushdown graphs



Reachability analysis

• Fundamental questions for most applications

• Several variants:

x

y
I ? I

F

w1

w2

w3

Reachability Reachable Path

relations configurations languages

• Examples :
• “Is it possible to reach a deadlock state?”
• “Is it always possible to reach a target state?”
• “Is every request eventually answered?”

• Path languages of pushdown graphs: context-free languages



Reachability in pushdown graphs (1)

Notations

• For every symbol A, we write
• Ā the action of removing a prefix A (“pop” A)
• A the action of adding a prefix A (“push” A)

This notation is extended to words: Au = Āū

Example: AB = ĀB̄

• The mirror of a word u is written ũ (with Ãu = ũA and ε̃ = ε)

Example: ÃB = B̃A = BA



Reachability in pushdown graphs (2)

Representation of rules

• The effect of rewrite rule u
a
→ v can be written ūṽ

• The effect of any rewriting system R can be represented by
the regular language {ūṽ | u

a
→ v ∈ R}∗

• Conversely, any word ūṽ can be seen as a rewrite rule u → v

• Any regular language L ⊆ N̄∗N∗ can be seen as an infinite
recognizable rewriting system R = {u → v | ūṽ ∈ L}

• Alternative notation:
If L =

⋃
i U i Ṽi , we write R =

⋃
i Ui → Vi



Reachability in pushdown graphs (3)

Observation: Sequences of the form AĀ can be discarded

Algorithm

1 Start with automaton accepting LR = {ūṽ | u
a
→ v ∈ R}∗

2 Aim: remove all “unnecessary steps” of the form AĀ

→֒ For all path p
AĀ
→ q in A, add ε-transition p

ε

→ q

3 Iterate the previous step until saturation

4 Intersect the obtained language with N̄∗N∗

5 Interpret as a union of relations U → V



Reachability in pushdown graphs (4)

Theorem (Caucal, Dauchet&Tison)
The reachability relation in a prefix rewriting
graph can always be written as a finite union of
relations (U → V ) · Id, with U,V regular

x

y

Note:

• When using regular restrictions, more general form needed:
finite union of relations (U → V ) · IdW

• Such relations are called prefix-recognizable



Reachability in pushdown graphs (5)

Corollary
The set of vertices F reachable from any regular
set I in a pushdown graph is regular

I
?

Other possible interpretation:

Corollary (Büchi)

The set of stack contents reachable from the initial configuration
in a pushdown automaton is a regular language



An introduction to infinite graphs
Antoine Meyer

Formal Methods Update 2006
IIT Guwahati

1 Foreword: approach and current issues

2 Pushdown graphs: characterizations

3 Reachability in pushdown graphs

4 Beyond pushdown graphs



Prefix-recognizable graphs

Q: Prefix-recognizable relations express reachability in prefix
rewriting graphs. What about graphs whose edges are P-R?

A: Extension of (nearly) all previous characterizations

Theorem
Let G be a graph, the following statements are equivalent:

• G is the transition graph of a pushdown automaton with
ε-transitions

• G is the prefix rewriting graph of a recognizable rewriting
system (+ regular restriction)

• G is the result of unfolding a finite graph and applying a
regular substitution

Additionally, all previous reachability results remain true



A graph

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

a

b

c

a

b

b
c

a

b

b

b
c

a

b

b

b

b
c



Not a pushdown graph!

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

a

b

c

a

b

b
c

a

b

b

b
c

a

b

b

b

b
c

This graph “looks” regular though, how can we characterize it?



Extensions and variants

• More general computation models
(e.g. linearly bounded machines, petri nets)

• Arbitrary finitely presented binary relations
(e.g. automatic or rational relations)

• More powerful or iterated transformations

• New operators in graph equations (or grammars)

• Restrictions or specialization of existing families
(e.g. degree, tree-width, connectedness)



Conclusion

• Open topic with numerous variants and extensions

• Links with other theoretical topics
Language theory, automata, rewriting, logics . . .

• (Prospective) applications in computer science

Modeling (notion of structural richness)

Verification (through logics and algorithms)


