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Outline

Parity games

An efficient algorithm for solving parity games [Jurdziński]

Solving parity games through strategy improvement
[Jurdziński and Vöge]
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Parity games

Two players, 0 and 1

Game graph G = (V, E), V = V0 ⊎ V1

Player 0 plays from V0, player 1 from V1

From every position, at least one move is possible

c : V → N assigns a colour to each position

Player 0 wins an infinite play if it satifies the parity winning
condition

Max-parity: largest colour that occurs infinitely often in
the play is even

Min-parity: smallest colour that occurs infinitely often in
the play is even
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Memoryless determinacy for parity games

Theorem

The set of positions of a parity game can be partitioned as W0,
from where player 0 wins with a memoryless strategy, and W1,
from where player 1 wins with a memoryless strategy.

Can identify W0 and W1 recursively, using 0-paradises and
1-paradises

Complexity is O(mnd)

m edges, n states, largest colour d

Can we identify W0 and W1 more efficiently?
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Solitaire games

Observation If both players play by memoryless strategy, each
infinite play is a finite prefix followed by a simple loop

5 6 3 0 4 2

Let f0 be a strategy for Player 0

f0 is closed for a set of positions X if all plays that start in X
that are consistent with f0 stay in X

Remove all moves not consistent with f0 to get a solitaire
game for Player 1

Odd/even cycle—simple cycle in solitaire game with minimum
colour odd/even

Lemma

f0 closed on X wins from all states in X iff all simple cycles in the
game restricted to X are even.
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Parity progress measures

For a game with d colours, assign a d+1-tuple
ρ(v) = (n0, n1, . . . , nd) to each position

Compare d-tuples lexicographically
(x0, . . . , xd) ≥i (y0, . . . , yd) : lexicographic comparison using
first i components

Parity progress measure
For each edge v → w

c(v) even ⇒ ρ(v) ≥c(v) ρ(w)
c(v) odd ⇒ ρ(v) >c(v) ρ(w)

Lemma

If a solitaire game admits a parity progress measure, then every
simple cycle in the game is even.
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Parity progress measures . . .

Lemma

If every simple cycle in a solitaire game is even, we can construct a
small parity progress measure.

Construct ρ : v 7→ (n0, n1, . . . , nd) (assume that d is odd)

For each even i, ni = 0
For each odd i, define ni as follows:

Consider all infinite paths from v with minimum colour i. Set
ni to maximum number of times i appears along all such
paths.

ni may be set to 0 or ∞!

Let Vi be set of positions coloured i

Claim 1 Let ρ(v) = (n0, n1, . . . , nd).
For odd i, ni ≤ |Vi + 1|.

Claim 2 ρ(v) is a parity progress measure.
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Parity progress measures . . .

Lemma

If every simple cycle in a solitaire game is even, we can construct a
small parity progress measure.

We have ρ : v 7→ (n0, n1, . . . , nd) such that
n0 = n2 = · · · = nd−1 = 0 and, for odd i, ni ≤ |Vi|
(recall that we assume d is odd)

Range of ρ is M where
M = {0} × {0, . . . , |V1|} × {0} × · · · × {0, . . . , |Vd|}
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Game progress measures

From parity progress measures on solitaire games to game
progress measures on full game graph

Extend
M = {0} × {0, . . . , |V1|} × {0} × · · · × {0, . . . , |Vd|}
by adding a new element ⊤ bigger than all elements in M

Construct ρ : v 7→ M⊤ so that

If v ∈ V0, for some v → w, ρ(v) ≥c(v) ρ(w)

If v ∈ V1, for every v → w, ρ(v) >c(v) ρ(w),
unless ρ(v) = ρ(w) = ⊤

A trivial game progress measure assigns ⊤ everywhere.

Let ‖ρ‖ = {v | ρ(v) 6= ⊤}

Our aim is to find ρ such that ‖ρ‖ is maximized.
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Game progress measures . . .

Given ρ, define the strategy f
ρ
0 that chooses for each position

v the successor w with minimum ρ(w)

Lemma

fρ
0 wins in the subgame defined by ‖ρ‖

Lemma

There is a game progress measure ρ such that ‖ρ‖ is the winning
region for Player 0.

Player 0 has a memoryless winning strategy f0 with winning
set W0. The solitaire game over W0 defined by f0 has only
even cycles ⇒ we can assign a parity progress measure over
W0, which lifts to a game progress measure ρ with
W0 = ‖ρ‖.
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Computing game progress measures

Define an operator Lift(ρ, v) that updates ρ at v

Lift(ρ, v)(u) =

ρ(u), if u 6= v
max{ρ(v), minv→w Dom(ρ, v, w)}, if u = v ∈ V0

max{ρ(v), maxv→w Dom(ρ, v, w)}, if u = v ∈ V1

where Dom(ρ, v, w) is the smallest value m ∈ M⊤ such that

m ≥c(v) ρ(w), if v ∈ V0

m >c(v) ρ(w) or m = ρ(w) = ⊤, if v ∈ V1

Lift tries to raise the measure of each position in V0 above at
least one neighbour and each position in V1 strictly above all
neighbours
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Computing game progress measures

Lift(ρ, v) is monotone for each v

ρ : V → M⊤ is a game progress measure iff Lift(ρ, v) ⊑ ρ

for each v

Can compute simultaneous fixed point of all Lift(ρ, v)
iteratively

Initialize Lift(ρ, v) = (0, . . . , 0) for all v
So long as ρ < Lift(ρ, v) for some v, set ρ = Lift(ρ, v)

Computation takes space O(dn log n)

To describe ρ, for each of n positions, store an element of
M⊤—d numbers in the range {0, . . . , n}, hence n · d · log n

Computation takes time O(d · m ·
(

n
⌊d/2⌋

)⌊d/2⌋
)

Analysis is a bit complicated
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Part 2

Strategy Improvement

Given a pair of memoryless strategies (f0, f1) for players 0 and
1, associate a valuation to each position in the game

Define an ordering on valuations and a notion of optimality

Optimal valuations correspond to winning strategies

If a valuation is not optimal for either player, improve it to get
a better strategy

Iteratively converge to an optimal (winning) strategy

Assumptions

Max-parity game—player 0 wins if largest infinitely occurring
colour is even
All positions have distinct colours—assume positions and
colours are both numbered {0, 1, . . . , d} so that position i
has colour i
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Valuations

A typical play P consistent with memoryless (f0, f1)

5 6 3 0 4 2

λ(P)Prefix(P)

λ(P) = 4 — max colour in the loop

π(P) = {5, 6} — values higher than λ(P) in Prefix(P)

ℓ(P) = 4 — length of Prefix(P)

Valuation

Θ : v 7→ (λ(P), π(P), ℓ(P)) for some play P starting at v
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Valuations . . .

Strategy induced valuation

Let (f0, f1) be memoryless strategies for players 0 and 1
Assign Θ(v) according to path from v picked out by (f0, f1)

Locally progressive valuation

For each position u, there is a successor u → v such that
Θ(u) and Θ(v) refer to same path P
Write this as u ; v

Claim For any locally progressive valuation Θ, there are
strategies (f0, f1) that induce Θ

From any locally progressive valuation Θ, we can extract a
pair of strategies (f0, f1) that induce Θ
From any pair of strategies (f0, f1) we can derive a locally
progressive valuation Θ
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Ordering valuations

Order Θ(u) = (w, P, ℓ) and Θ(v) = (x, Q, m)
lexicographically

Linear order on colours (positions) {0, 1, . . . , 2k}

(2k−1) ≺ (2k−3) ≺ · · · ≺ 3 ≺ 1 ≺ 0 ≺ 2 ≺ · · · < 2k

Linear order on sets of colours P and Q

P ≺ Q iff max(P \ Q) ≺ max(Q \ P)

Order on l and m is normal ≤
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Optimal valuations

A valuation Θ is optimal if we have:

Whenever u ; v, among successors of u, Θ(v) is largest
value with respect to ≺

Lemma

If Θ is an optimal valuation for player 0 (player 1), the
corresponding strategy is winning for player 0 (player 1).
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Strategy improvement

Begin with arbitrary memoryless strategies (f0, f1)

Construct induced valuations

If the strategy is not optimal for player 0 (player 1), pick a
nonoptimal position and improve it

Repeat until both players have an optimal strategy

Claim This procedure converges.

No theoretical bound is known on the complexity of
convergence.
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