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Reactive systems

@ Traditionally, computer programs are transformational
Compute output as a function of inputs

X f(x)

@ Inadequate to describe schedulers, operating systems . ..
Reactive systems

‘ environment

@ Describe continuous interaction between system and
environment as an infinite game

Y
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Modelling reactive systems

A scheduler that allocates requests to two printers

done
printy
reqy printy
reqior2
reqo print2
printy
done

Computation is a sequence of actions , typically infinite
reqy print; done reqioro print; done reqio prints done ...

Madhavan Mukund Infinite games on finite graphs



Desirable and undesirable computations

done
printy
reqi print;
reqior2
reqs prints
printy
done

Printer 1 is colour printer, Printer 2 is black and white

Schedule jobs to minimize cost — respond to reqq..» with print,
reqi print; done reqiorm done reqior2 printy done ... is
reqp print; done reqiorn printo done reqiorn printy done ... is OK
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Controllable and uncontrollable actions

print;
-_—
reqi y
reqior2
-
reqo printp
print
_——

Requests are , choice of printer is controllable
Select controllable actions to achieve objective
— Respond to reqi,» with prints
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Controllability

@ Given a system and an objective, is there a strategy to select
controllable actions such that the objective is realized?

o Can this strategy be effectively computed?
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Controllability .. .as a game

@ Given a system and an objective, is there a strategy to select
controllable actions such that the objective is realized?

o Can this strategy be effectively computed?

@ Formulate the problem as a game

<

Two players, system and

Can select moves for system

Control objective is represented as the winning criterion for the
game

o Controllability is a winning strategy for system

¢ ©
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Infinite games on finite graphs

@ Two players, Player 0 and Player 1

@ Moves are determined by a finite game graph with positions
labelled 0 or 1.

@ Assume neither player ever gets stuck
@ Moves need not be strictly alternating

@ A play of the game is an infinite path through the graph
@ Winning condition

@ Some infinite sequences of states are good
o Player 0 wins if the path chosen is describes a good sequence
o Otherwise Player 1 wins
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Infinite games on finite graphs . ..

done
printy @
reqi print; .
reqior2
reqs prints
®@ " ®
done
@ Player 0 plays at green positions, Player 1 at positions

@ Winning condition: every s, is immediately followed by ss
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Winning conditions

How are the winning conditions specified?

(]

Simplest winning condition is reachability

o A set G of good states
o Want to visit some state in G at least once

Working backwards, compute Reach(G), the set of states
from which Player 0 can force the game to visit G

Compute Reach(G) iteratively

Ro = G — if already in G, we have visited G

(]

Ri+1 : states from which Player O can force game into R;

s 0 plays at s, some move from s to s’ € R; add s to Ri;1
s 1 plays at s, every move from s leads to s’ € R; add s to
Rit1

Eventually Ri;1 = R; because set of states is finite
This is Reach(G)
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Winning conditions — recurrence (Biichi condition)

Want to visit a set G of good states infinitely often

(]

Reach some g € G, such that from g we can return to g as
many times as we want

@ Must leave g and then get back
@ Reach™(G) : states from which we can reach G in one or
move moves

o Reach(G) : states from which G is reachable in zero or move
moves

o Calculate Reach™ (G) iteratively, like Reach(G)
° RO+ is set of states from we can reach G in one move
o When computing Reach(G), Rp = G
° R:Ll : states where Player 0 can force game into R;", as
before

e Eventually R}, = R = Reach™(G)
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Winning conditions — recurrence (Blichi) ...

@ Want to visit a set G of good states infinitely often

@ Reach™(G) M G — states in G from which we can return to
G once

@ Reach™(Reach™(G) N G) N G — states in G from which we
can return to G twice

@ Converges to Recur(G) — states in G from which we can
return to G infinitely often

@ Reach(Recur(G)) is the set of states from which Player 0
can start and win the game
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Strategies and memory

@ For reachability game, Player 0 wins from state s if
s € Reach(G)

e s € R; for some R; when computing Reach(G)
o Call this the rank of s

@ s has at least one successor of lower rank :
uniformly fix one and choose it every time we are at s

@ Strategy “decrease rank” depends only on s — no memory is
required

@ Recurrence game also has memoryless strategy

@ Initially play decrease rank till we reach Recur(G)
s Every Player 0 state s € Recur(G) is in Reach™(Recur(G)) :
again play decrease rank to revisit Recur(G)
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Determinacy

@ What happens outside Reach(Recur(G))?
@ Trap for Player O : set of states X such that

@ For Player 0, all moves from X lead back to X
o For Player 1, at least one move from X leads back to X

@ Player 0 cannot leave the trap and Player 1 can force Player 0
to stay in the trap
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@ Complement of Reach(Recur(G)) is a 0 trap

@ In general, for any set X, the complement of Reach(X) is a 0
trap

o If the game starts outside Reach(Recur(G), Player 1 can
keep the game outside Reach(Recur(G) and win

@ Bichi games are determined
From every position, either Player 0 wins or Player 1 wins

@ This is a special case of a very general result for infinite games
[Martin, 1975]
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More complicated winning conditions

® 1

2

@ A play in this game is a sequence in which states {1,2}
alternate with {A, B}

@ Player 0 wins if the highest number that appears infinitely
often is equal to the number of letters that appear infinitely
often

o If only A or B appear infinitely often, 2 should not appear
infinitely often

@ If both A and B appear infinitely often, 2 should appear
infinitely often
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More complicated winning conditions . . .

® 1

2

@ A memoryless strategy will force Player 0 to uniformly respond
with a move to 1 or 2 from A and from B

o If Player 0 chooses 1 from both, Player 1 alternates A and B
@ If Player 0 chooses 1 from A and 2 from B, Player 1 always

plays B

o If Player 0 chooses 2 from A and 1 from B, Player 1 always
plays A

o If Player 0 chooses 2 from both, Player 1 uniformly chooses A
(or B)
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More complicated winning conditions . . .

® 1

2

@ Player 0 should remember what Player 1 has played

@ Choose 1 if the latest move by Player 1 is the same as the
previous move

@ Choose 2 if the latest move by Player 1 is different from the
previous move

@ This is a finite memory strategy — Player 0 only needs to
remember one previous move of Player 1
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More complicated winning conditions . . .

@ Muller condition: family of good sets (G1, Go, ..., Gy)
Set of states visited infinitely often should exactly be one of

the G;i's
@ The winning condition of the previous example can be

represented as the family
({1,A},{1,B},{2,A,B},{1,2,A,B})

® ®

®
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Strategies and memory

@ Need a systematic way to maintain bounded history
@ Later Appearance Record (LAR)

@ Remember relative order of last visit to each state
e Hit position, where last change occurred

® ®

®

o A— Al — A1B — A1B2 — ¢1B2A — 1B e A2
— 1eA2B — 1A e B2 — 1eB2A — 1B e A2
—1eA2B — 1AeB2 —-1eB2A — ...
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Analyzing LAR

@ States visited only finite number of times eventually stay to
left of hit position

o If exactly s1,s2,...,s, are visited infinitely often, then
infinitely often the LAR will be of the form « e [3 where,
among the states visited so far,

@ «v is the set of states visited finite number of times
@ (3 is a permutation of s1,s2,...,5,

o Consider a run
A~1—-B—-2—-A—-2—-B—-2—>A—>2—...
visiting {A, B, 2} infinitely often

@ LAR evolves as
A — Al — A1B — A1B2 — ¢1B2A — 1B e A2
—1eA2B — 1A eB2 — 1eB2A — 1B e A2
—1eA2B — 1AeB2 — 1eB2A — .-
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A new winning condition

)

)

)

Muller condition (G1, G, ..., Gy)
Expand state space to include LAR: states are now (s, /)
E;: (s,/) st. £ = e 3 an LAR with hit position < i
Fi : E; plus (s,?) s.t. £ = e [3 an LAR with hit position
=i and 3 a permutation of some Muller set G;
EECRhCEC---CE CFy

o Merge (E;,Eiiq) if F;\E; =10

@ Merge (Fi,Fizq) if Eipr \Fi =10
Among E; C Fy C -+ C E, C F,, consider largest set that
appears infinitely often

o If this set is some E;, Player O loses
o If this set is some F;, Player 0 wins

Rabin chain condition
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Parity condition

@ Rabin chain condition E; C F; € --- CE, CF,

@ Player 0 wins if “index” of largest infinitely occurring set is
even

@ Colour states with colours {1,2,...,2n}

States in E; get colour 1
States in F; \ E; get colour 2

States in E; \ Fi_; get colour 2i — 1

)
)
)
)
o States in F; \ E; get colour 2i

@ Player 0 wins if largest colour visited infinitely often is even

o Parity condition
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Parity games have memoryless winning strategies

@ Trap for Player O : set of states X such that

@ For Player 0, all moves from X lead back to X

o For Player 1, at least one move from X leads back to X

o Player 0 cannot leave the trap and Player 1 can force Player 0
to stay in the trap

@ Trap for Player 1 : symmetric
@ For any X, S\ Reach(X) is a 0 trap
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Parity games have memoryless winning strategies . . .

@ A set of positions U is a O-paradise if U is a | trap in which
Player 0 has a winning strategy

@ Define a 1-paradise symmetrically

The set of positions of a parity game can be partitioned into a
0-paradise and a I-paradise

@ Proof is by induction on the size of largest colour n used to
label positions

@ Basecase: n =10

@ Only Player 0 can win
o Entire set of positions is a 0 paradise
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Parity games have memoryless winning strategies . . .

@ Assume n > 0 is even (n odd is symmetric)

X1

Xo

@ Suppose X; is an 1-paradise and complement X is a 1 trap
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Parity games have memoryless winning strategies . . .

@ Assume n > 0 is even (n odd is symmetric)

X1

Xo

]

@ Suppose X; is an 1-paradise and complement X is a 1 trap
@ Let N C X be states with colour n

Madhavan Mukund
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Parity games have memoryless winning strategies . . .

@ Assume n > 0 is even (n odd is symmetric)

Z IN
X1

Reach(N)

@ Suppose X; is an 1-paradise and complement X is a 1 trap
@ Let N C X be states with colour n
® Let Z be Xp \ Reach(N)
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Parity games have memoryless winning strategies . . .

@ Assume n > 0 is even (n odd is symmetric)

]
X1
Reach(N)
Zy
Z

@ Suppose X; is an 1-paradise and complement X is a 1 trap
@ Let N C X be states with colour n
® Let Z be Xp \ Reach(N)

@ Z is a subgame with parities < n
Inductively, split Z as | paradise Z; and 0 paradise Zg
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Parity games have memoryless winning strategies . . .

)
X1

Reach(N)
Zy
Z,

Xo

o If Z; is nonempty, we can extend | paradise X; to X; U Z;
@ ZisaOtrapin Xg, ZyisaOtrapin Z = Z;isa 0 trap in X
o Xy UZjisalo trap
o If game stays in Z1, | wins Z game
o If game moves to X, 1 wins in X
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Parity games have memoryless winning strategies . . .

)
X1

Reach(N)
Zy
Z,

Xo

o If Z; is nonempty, we can extend | paradise X; to X; U Z;
o If Z; is empty, Xg is a O paradise

o From N, return to Xj

@ From Reach(N) return to N

@ From Zy win Zy game
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Parity games have memoryless winning strategies . . .

N
X1

Reach(N)

Xo

o If Z; is nonempty, we can extend | paradise X; to X; U Z;
o If Z; is empty, Xg is a 0 paradise

@ Recursively partition positions into 0 and | paradise, starting
with Xy empty
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Concluding remarks

Problem originally posed by Church/Biichi, solved by Biichi
and Landweber in 1969

Can be extended to certain kinds of infinite game graphs that
are finitely generated

o Pushdown graphs, corresponding to an automaton with a stack

The model checking problem for modal p-calculus directly
reduces to solving parity games

What is the complexity of constructing a memoryless winning
strategy for parity games?
o Our recursive algorithm has complexity O(mn?) for a game

with m edges, n positions, d colours
@ The problem is in NP M co(NP). Is it in P?

Can we do improve on LAR for winning conditions that
require memory?
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