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Reactive systems

Traditionally, computer programs are transformational
Compute output as a function of inputs

- -

x f(x)

Inadequate to describe schedulers, operating systems . . .
Reactive systems

system environment
-

�

Describe continuous interaction between system and
environment as an infinite game
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Modelling reactive systems

A scheduler that allocates requests to two printers

req1

req1or2

req2

print1

print1

print2

print2

done

done

Computation is a sequence of actions , typically infinite
req1 print1 done req1or2 print1 done req1or2 print2 done . . .

Madhavan Mukund Infinite games on finite graphs



Desirable and undesirable computations

req1

req1or2

req2

print1

print1

print2

print2

done

done

Printer 1 is colour printer, Printer 2 is black and white
Schedule jobs to minimize cost — respond to req1or2 with print2
req1 print1 done req1or2 print1 done req1or2 print2 done . . . is bad
req1 print1 done req1or2 print2 done req1or2 print2 done . . . is OK
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Controllable and uncontrollable actions

req1

req1or2

req2

print1

print1

print2

print2

done

done

req1

req1or2

req2

done

done

print1

print1

print2

print2

req1or2

print1

Requests are uncontrollable, choice of printer is controllable
Select controllable actions to achieve objective
— Respond to req1or2 with print2

Madhavan Mukund Infinite games on finite graphs



Controllability

Given a system and an objective, is there a strategy to select
controllable actions such that the objective is realized?

Can this strategy be effectively computed?

Madhavan Mukund Infinite games on finite graphs



Controllability . . . as a game

Given a system and an objective, is there a strategy to select
controllable actions such that the objective is realized?

Can this strategy be effectively computed?

Formulate the problem as a game

Two players, system and environment
Can select moves for system
Control objective is represented as the winning criterion for the
game
Controllability is a winning strategy for system
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Infinite games on finite graphs

Two players, Player 0 and Player 1

Moves are determined by a finite game graph with positions
labelled 0 or 1.

Assume neither player ever gets stuck
Moves need not be strictly alternating

A play of the game is an infinite path through the graph

Winning condition

Some infinite sequences of states are good
Player 0 wins if the path chosen is describes a good sequence
Otherwise Player 1 wins
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Infinite games on finite graphs . . .

s1

s2

s3

s0

s4

s5

req1

req1or2

req2

print1

print1

print2

print2

done

done

Player 0 plays at green positions, Player 1 at orange positions

Winning condition: every s2 is immediately followed by s5
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Winning conditions

How are the winning conditions specified?

Simplest winning condition is reachability

A set G of good states
Want to visit some state in G at least once

Working backwards, compute Reach(G), the set of states
from which Player 0 can force the game to visit G

Compute Reach(G) iteratively

R0 = G — if already in G, we have visited G

Ri+1 : states from which Player 0 can force game into Ri

0 plays at s, some move from s to s′ ∈ Ri ⇒ add s to Ri+1

1 plays at s, every move from s leads to s′ ∈ Ri ⇒ add s to
Ri+1

Eventually Ri+1 = Ri because set of states is finite

This is Reach(G)
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Winning conditions — recurrence (Büchi condition)

Want to visit a set G of good states infinitely often

Reach some g ∈ G, such that from g we can return to g as
many times as we want

Must leave g and then get back

Reach+(G) : states from which we can reach G in one or
move moves

Reach(G) : states from which G is reachable in zero or move
moves

Calculate Reach+(G) iteratively, like Reach(G)

R+
0 is set of states from we can reach G in one move

When computing Reach(G), R0 = G

R+
i+1 : states where Player 0 can force game into R+

i , as
before

Eventually R+
i+1 = R+

i = Reach+(G)
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Winning conditions — recurrence (Büchi) . . .

Want to visit a set G of good states infinitely often

Reach+(G) ∩ G — states in G from which we can return to
G once

Reach+(Reach+(G) ∩ G) ∩ G — states in G from which we
can return to G twice

. . .

Converges to Recur(G) — states in G from which we can
return to G infinitely often

Reach(Recur(G)) is the set of states from which Player 0
can start and win the game
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Strategies and memory

For reachability game, Player 0 wins from state s if
s ∈ Reach(G)

s ∈ Ri for some Ri when computing Reach(G)
Call this the rank of s
s has at least one successor of lower rank :
uniformly fix one and choose it every time we are at s

Strategy “decrease rank” depends only on s — no memory is
required

Recurrence game also has memoryless strategy

Initially play decrease rank till we reach Recur(G)
Every Player 0 state s ∈ Recur(G) is in Reach+(Recur(G)) :
again play decrease rank to revisit Recur(G)
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Determinacy

What happens outside Reach(Recur(G))?

Trap for Player 0 : set of states X such that

For Player 0, all moves from X lead back to X
For Player 1, at least one move from X leads back to X

Player 0 cannot leave the trap and Player 1 can force Player 0
to stay in the trap
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Determinacy . . .

Complement of Reach(Recur(G)) is a 0 trap

In general, for any set X, the complement of Reach(X) is a 0
trap

If the game starts outside Reach(Recur(G), Player 1 can
keep the game outside Reach(Recur(G) and win

Büchi games are determined
From every position, either Player 0 wins or Player 1 wins

This is a special case of a very general result for infinite games
[Martin, 1975]
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More complicated winning conditions

A

B

1

2

A play in this game is a sequence in which states {1, 2}
alternate with {A, B}

Player 0 wins if the highest number that appears infinitely
often is equal to the number of letters that appear infinitely
often

If only A or B appear infinitely often, 2 should not appear
infinitely often
If both A and B appear infinitely often, 2 should appear
infinitely often
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More complicated winning conditions . . .

A

B

1

2

A memoryless strategy will force Player 0 to uniformly respond
with a move to 1 or 2 from A and from B

If Player 0 chooses 1 from both, Player 1 alternates A and B
If Player 0 chooses 1 from A and 2 from B, Player 1 always
plays B
If Player 0 chooses 2 from A and 1 from B, Player 1 always
plays A
If Player 0 chooses 2 from both, Player 1 uniformly chooses A
(or B)
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More complicated winning conditions . . .

A

B

1

2

Player 0 should remember what Player 1 has played

Choose 1 if the latest move by Player 1 is the same as the
previous move
Choose 2 if the latest move by Player 1 is different from the
previous move

This is a finite memory strategy — Player 0 only needs to
remember one previous move of Player 1
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More complicated winning conditions . . .

Muller condition: family of good sets (G1, G2, . . . , Gk)
Set of states visited infinitely often should exactly be one of
the Gi’s

The winning condition of the previous example can be
represented as the family
({1, A}, {1, B}, {2, A, B}, {1, 2, A, B})

A

B

1

2
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Strategies and memory

Need a systematic way to maintain bounded history

Later Appearance Record (LAR)

Remember relative order of last visit to each state
Hit position, where last change occurred

A

B

1

2

A → A1 → A1B → A1B2 → •1B2A → 1B • A2
→ 1 • A2B → 1A • B2 → 1 • B2A → 1B • A2
→ 1 • A2B → 1A • B2 → 1 • B2A → · · ·
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Analyzing LAR

States visited only finite number of times eventually stay to
left of hit position

If exactly s1, s2, . . . , sn are visited infinitely often, then
infinitely often the LAR will be of the form α • β where,
among the states visited so far,

α is the set of states visited finite number of times
β is a permutation of s1, s2, . . . , sn

Consider a run
A → 1 → B → 2 → A → 2 → B → 2 → A → 2 → · · ·,
visiting {A, B, 2} infinitely often

LAR evolves as
A → A1 → A1B → A1B2 → •1B2A → 1B • A2
→ 1 • A2B → 1A • B2 → 1 • B2A → 1B • A2
→ 1 • A2B → 1A • B2 → 1 • B2A → · · ·
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A new winning condition

Muller condition (G1, G2, . . . , Gk)

Expand state space to include LAR: states are now (s, ℓ)

Ei : (s, ℓ) s.t. ℓ = α • β an LAR with hit position < i

Fi : Ei plus (s, ℓ) s.t. ℓ = α • β an LAR with hit position
= i and β a permutation of some Muller set Gj

E1 ( F1 ( E2 ( · · · ( En ( Fn

Merge (Ei, Ei+1) if Fi \ Ei = ∅
Merge (Fi, Fi+1) if Ei+1 \ Fi = ∅

Among E1 ( F1 ( · · · ( En ( Fn, consider largest set that
appears infinitely often

If this set is some Ei, Player 0 loses
If this set is some Fi, Player 0 wins

Rabin chain condition

Madhavan Mukund Infinite games on finite graphs



Parity condition

Rabin chain condition E1 ( F1 ( · · · ( En ( Fn

Player 0 wins if “index” of largest infinitely occurring set is
even

Colour states with colours {1, 2, . . . , 2n}

States in E1 get colour 1
States in F1 \ E1 get colour 2
. . .
States in Ei \ Fi−1 get colour 2i − 1
States in Fi \ Ei get colour 2i

Player 0 wins if largest colour visited infinitely often is even

Parity condition
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Parity games have memoryless winning strategies

Trap for Player 0 : set of states X such that

For Player 0, all moves from X lead back to X
For Player 1, at least one move from X leads back to X
Player 0 cannot leave the trap and Player 1 can force Player 0
to stay in the trap

Trap for Player 1 : symmetric

For any X, S \ Reach(X) is a 0 trap
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Parity games have memoryless winning strategies . . .

A set of positions U is a 0-paradise if U is a 1 trap in which
Player 0 has a winning strategy

Define a 1-paradise symmetrically

Theorem

The set of positions of a parity game can be partitioned into a
0-paradise and a 1-paradise

Proof is by induction on the size of largest colour n used to
label positions

Base case: n = 0

Only Player 0 can win
Entire set of positions is a 0 paradise
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Parity games have memoryless winning strategies . . .

Assume n > 0 is even (n odd is symmetric)

X1

X0

Suppose X1 is an 1-paradise and complement X0 is a 1 trap
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Parity games have memoryless winning strategies . . .

Assume n > 0 is even (n odd is symmetric)

X1

X0

N

Suppose X1 is an 1-paradise and complement X0 is a 1 trap

Let N ⊆ XO be states with colour n
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Parity games have memoryless winning strategies . . .

Assume n > 0 is even (n odd is symmetric)

X1

N

Reach(N)

Z

Suppose X1 is an 1-paradise and complement X0 is a 1 trap

Let N ⊆ XO be states with colour n

Let Z be X0 \ Reach(N)
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Parity games have memoryless winning strategies . . .

Assume n > 0 is even (n odd is symmetric)

X1

N

Reach(N)

Z1

Z0

Suppose X1 is an 1-paradise and complement X0 is a 1 trap

Let N ⊆ XO be states with colour n

Let Z be X0 \ Reach(N)

Z is a subgame with parities < n
Inductively, split Z as 1 paradise Z1 and 0 paradise Z0
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Parity games have memoryless winning strategies . . .

X1

N

Reach(N)

Z1

Z0

X0

Z

If Z1 is nonempty, we can extend 1 paradise X1 to X1 ∪ Z1

Z is a 0 trap in X0, Z1 is a 0 trap in Z ⇒ Z1 is a 0 trap in X0

X1 ∪ Z1 is a 0 trap
If game stays in Z1, 1 wins Z game
If game moves to X1, 1 wins in X1
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Parity games have memoryless winning strategies . . .

X1

N

Reach(N)

Z1

Z0

X0

Z

If Z1 is nonempty, we can extend 1 paradise X1 to X1 ∪ Z1

If Z1 is empty, X0 is a 0 paradise

From N, return to X0

From Reach(N) return to N
From Z0 win Z0 game
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Parity games have memoryless winning strategies . . .

X1

N

Reach(N)

Z1

Z0

X0

Z

If Z1 is nonempty, we can extend 1 paradise X1 to X1 ∪ Z1

If Z1 is empty, X0 is a 0 paradise

Recursively partition positions into 0 and 1 paradise, starting
with X1 empty
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Concluding remarks

Problem originally posed by Church/Büchi, solved by Büchi
and Landweber in 1969

Can be extended to certain kinds of infinite game graphs that
are finitely generated

Pushdown graphs, corresponding to an automaton with a stack

The model checking problem for modal µ-calculus directly
reduces to solving parity games

What is the complexity of constructing a memoryless winning
strategy for parity games?

Our recursive algorithm has complexity O(mnd) for a game
with m edges, n positions, d colours
The problem is in NP ∩ co(NP). Is it in P?

Can we do improve on LAR for winning conditions that
require memory?
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