
The Expressive Power of Linear-time Temporal

Logic

K Narayan Kumar

Chennai Mathematical Institute
email:kumar@cmi.ac.in

IIT Guwahati, July 2006

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Summary of Last Lecture

LTL is expressible in FO.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Summary of Last Lecture

LTL is expressible in FO.

FO definable languages are regular. (Via EF Games)

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Summary of Last Lecture

LTL is expressible in FO.

FO definable languages are regular. (Via EF Games)

FO definable languages are aperiodic. (Via EF Games,
Syntacic Monoid)

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Star-free Regular Languages

Regular expressions constructed without the ∗ operator:

e ::= a | e1 + e2 | ¬e1 | e1.e2

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Star-free Regular Languages

Regular expressions constructed without the ∗ operator:

e ::= a | e1 + e2 | ¬e1 | e1.e2

Theorem:(Schutzenberger) L is aperiodic if and only if it is
star-free.

Theorem:(McNaughton and Papert) L is star-free if and only if it is
FO expressible.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Star-free Regular Languages

Regular expressions constructed without the ∗ operator:

e ::= a | e1 + e2 | ¬e1 | e1.e2

Theorem:(Schutzenberger) L is aperiodic if and only if it is
star-free.

Theorem:(McNaughton and Papert) L is star-free if and only if it is
FO expressible.

Question: Can we translate star-free expressions into LTL?

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Star-free Regular Languages

Regular expressions constructed without the ∗ operator:

e ::= a | e1 + e2 | ¬e1 | e1.e2

Theorem:(Schutzenberger) L is aperiodic if and only if it is
star-free.

Theorem:(McNaughton and Papert) L is star-free if and only if it is
FO expressible.

Question: Can we translate star-free expressions into LTL?

How do we put together LTL formulas ϕ1 and ϕ2 to describe the
language L(ϕ1).L(ϕ2)?

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Star-free Regular Languages

Regular expressions constructed without the ∗ operator:

e ::= a | e1 + e2 | ¬e1 | e1.e2

Theorem:(Schutzenberger) L is aperiodic if and only if it is
star-free.

Theorem:(McNaughton and Papert) L is star-free if and only if it is
FO expressible.

Question: Can we translate star-free expressions into LTL?

How do we put together LTL formulas ϕ1 and ϕ2 to describe the
language L(ϕ1).L(ϕ2)?

Easy if the decomposition is unambiguous. (eg.) L1.c .L2 where
either L1 or L2 is c-free.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The Proof: Base cases

The proof proceeds via a double induction: On the size of the
monoid recognizing L and the size of the alphabet.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The Proof: Base cases

The proof proceeds via a double induction: On the size of the
monoid recognizing L and the size of the alphabet.

The Base Cases:

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The Proof: Base cases

The proof proceeds via a double induction: On the size of the
monoid recognizing L and the size of the alphabet.

The Base Cases:

M is the trivial monoid.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The Proof: Base cases

The proof proceeds via a double induction: On the size of the
monoid recognizing L and the size of the alphabet.

The Base Cases:

M is the trivial monoid.

L is Σ+. Use ⊤.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The Proof: Base cases

The proof proceeds via a double induction: On the size of the
monoid recognizing L and the size of the alphabet.

The Base Cases:

M is the trivial monoid.

L is Σ+. Use ⊤.
L is ∅. Use ⊥.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The Proof: Base cases

The proof proceeds via a double induction: On the size of the
monoid recognizing L and the size of the alphabet.

The Base Cases:

M is the trivial monoid.

L is Σ+. Use ⊤.
L is ∅. Use ⊥.

Σ is singleton.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The Proof: Base cases

The proof proceeds via a double induction: On the size of the
monoid recognizing L and the size of the alphabet.

The Base Cases:

M is the trivial monoid.

L is Σ+. Use ⊤.
L is ∅. Use ⊥.

Σ is singleton.

L is finite. Easy.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The Proof: Base cases

The proof proceeds via a double induction: On the size of the
monoid recognizing L and the size of the alphabet.

The Base Cases:

M is the trivial monoid.

L is Σ+. Use ⊤.
L is ∅. Use ⊥.

Σ is singleton.

L is finite. Easy.
L is {ai | i ≥ N}. Easy.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The Proof:

Induction Step: Given L over an alphabet Σ recognized by a
monoid M such that:

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The Proof:

Induction Step: Given L over an alphabet Σ recognized by a
monoid M such that:

if |M ′| < |M| then any language recognized by M ′ is
expressible in LTL.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The Proof:

Induction Step: Given L over an alphabet Σ recognized by a
monoid M such that:

if |M ′| < |M| then any language recognized by M ′ is
expressible in LTL.

if L′ is a language over an alphabet A with |A| < |Σ|
recognized by M then L′ is expressible in LTLA.

show that L is expressible in LTLΣ.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The Proof:

Induction Step: Given L over an alphabet Σ recognized by a
monoid M such that:

if |M ′| < |M| then any language recognized by M ′ is
expressible in LTL.

if L′ is a language over an alphabet A with |A| < |Σ|
recognized by M then L′ is expressible in LTLA.

show that L is expressible in LTLΣ.

Observation 1: If ϕ is a LTLA formula describing the language L

and A ⊆ Σ then
ϕ ∧

∧

a∈Σ\A

G¬a

is a LTLΣ formula that describes L.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Splitting by a letter

Let L be recognized by M via the morphism h as h−1(X).

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Splitting by a letter

Let L be recognized by M via the morphism h as h−1(X).

Pick a letter c such that h(c) 6= 1.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Splitting by a letter

Let L be recognized by M via the morphism h as h−1(X).

Pick a letter c such that h(c) 6= 1.

Such a c must exist. Otherwise, L is recognized by the

trivial monoid.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Splitting by a letter

Let L be recognized by M via the morphism h as h−1(X).

Pick a letter c such that h(c) 6= 1.

Such a c must exist. Otherwise, L is recognized by the

trivial monoid.

Decompose L into three disjoint sets:

L0 consisting of words of L with no cs.

L1 consisting of words of L with exactly one c .

L2 consisting of words of L with at least two cs.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Splitting by a letter

Let L be recognized by M via the morphism h as h−1(X).

Pick a letter c such that h(c) 6= 1.

Such a c must exist. Otherwise, L is recognized by the

trivial monoid.

Decompose L into three disjoint sets:

L0 consisting of words of L with no cs.

L1 consisting of words of L with exactly one c .

L2 consisting of words of L with at least two cs.

“No cs”, “Exactly 1 c” and “Atleast 2 cs” are expressible in LTL.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Splitting by a letter

Let L be recognized by M via the morphism h as h−1(X).

Pick a letter c such that h(c) 6= 1.

Such a c must exist. Otherwise, L is recognized by the

trivial monoid.

Decompose L into three disjoint sets:

L0 consisting of words of L with no cs.

L1 consisting of words of L with exactly one c .

L2 consisting of words of L with at least two cs.

“No cs”, “Exactly 1 c” and “Atleast 2 cs” are expressible in LTL.

It suffices to show that each of these three languages is LTL
expressible.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The Trivial Case: L0

Let A = Σ \ {c}.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The Trivial Case: L0

Let A = Σ \ {c}.

L0 is language over a smaller alphabet A, recognized by M via
h.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The Trivial Case: L0

Let A = Σ \ {c}.

L0 is language over a smaller alphabet A, recognized by M via
h.

So, L0 is defined by an LTLA formula ϕ0 over A.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The Trivial Case: L0

Let A = Σ \ {c}.

L0 is language over a smaller alphabet A, recognized by M via
h.

So, L0 is defined by an LTLA formula ϕ0 over A.

By Observation 1, it is expressible in LTLΣ.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The Easy Case: L1

L1 =
⋃

α.h(c).β∈X

(h−1(α) ∩ A∗).c .(h−1(β) ∩ A∗)

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The Easy Case: L1

L1 =
⋃

α.h(c).β∈X

(h−1(α) ∩ A∗).c .(h−1(β) ∩ A∗)

Why?

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The Easy Case: L1

L1 =
⋃

α.h(c).β∈X

(h−1(α) ∩ A∗).c .(h−1(β) ∩ A∗)

Why?

If xcy is in the RHS then h(xcy) = α.h(c).β ∈ X . Thus
xcy ∈ L.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The Easy Case: L1

L1 =
⋃

α.h(c).β∈X

(h−1(α) ∩ A∗).c .(h−1(β) ∩ A∗)

Why?

If xcy is in the RHS then h(xcy) = α.h(c).β ∈ X . Thus
xcy ∈ L.

Let w ∈ L1. Therefore, w = xcy . Take α = h(x) and
β = h(y).

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The Easy Case: L1

L1 =
⋃

α.h(c).β∈X

(h−1(α) ∩ A∗).c .(h−1(β) ∩ A∗)

Let Lα = h−1(α) ∩ A∗ and Lβ = h−1(β) ∩ A∗.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The Easy Case: L1

L1 =
⋃

α.h(c).β∈X

(h−1(α) ∩ A∗).c .(h−1(β) ∩ A∗)

Let Lα = h−1(α) ∩ A∗ and Lβ = h−1(β) ∩ A∗.

L1 is a union of languages of the form Lα.c .Lβ where Lα,Lβ ⊆ A∗

are recognized by M and hence LTLA (and therefore LTLΣ)
expressible.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The Easy Case: L1

L1 =
⋃

α.h(c).β∈X

(h−1(α) ∩ A∗).c .(h−1(β) ∩ A∗)

Let Lα = h−1(α) ∩ A∗ and Lβ = h−1(β) ∩ A∗.

L1 is a union of languages of the form Lα.c .Lβ where Lα,Lβ ⊆ A∗

are recognized by M and hence LTLA (and therefore LTLΣ)
expressible.
Well, almost! Lα ∩ A+ and Lβ ∩ A+ are LTL expressible. We have
to deal with ǫ separately

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Dealing with Unambiguous Concatenations

We may rewrite Lα.c .Lβ as

A∗.c .Lβ ∩ Lα.c .Σ
∗

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Dealing with Unambiguous Concatenations

We may rewrite Lα.c .Lβ as

A∗.c .Lβ ∩ Lα.c .Σ
∗

If ϕβ is the LTLΣ formula expressing Lβ ∩ A+ then
ϕ1 = ⊤U(c ∧ Xϕβ) describes A∗.c .(Lβ ∩ A+).

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Dealing with Unambiguous Concatenations

We may rewrite Lα.c .Lβ as

A∗.c .Lβ ∩ Lα.c .Σ
∗

If ϕβ is the LTLΣ formula expressing Lβ ∩ A+ then
ϕ1 = ⊤U(c ∧ Xϕβ) describes A∗.c .(Lβ ∩ A+).

If ǫ 6∈ Lβ then ϕ1 also describes the language A∗.c .Lβ .

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Dealing with Unambiguous Concatenations

We may rewrite Lα.c .Lβ as

A∗.c .Lβ ∩ Lα.c .Σ
∗

If ϕβ is the LTLΣ formula expressing Lβ ∩ A+ then
ϕ1 = ⊤U(c ∧ Xϕβ) describes A∗.c .(Lβ ∩ A+).

If ǫ 6∈ Lβ then ϕ1 also describes the language A∗.c .Lβ .

Otherwise, ϕ1 ∨ ⊤U(c ∧ ¬X⊤) describes the language A∗.c .Lβ .

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Dealing with Unambiguous Concatenations

We may rewrite Lα.c .Lβ as

A∗.c .Lβ ∩ Lα.c .Σ
∗

If ϕβ is the LTLΣ formula expressing Lβ ∩ A+ then
ϕ1 = ⊤U(c ∧ Xϕβ) describes A∗.c .(Lβ ∩ A+).

If ǫ 6∈ Lβ then ϕ1 also describes the language A∗.c .Lβ .

Otherwise, ϕ1 ∨ ⊤U(c ∧ ¬X⊤) describes the language A∗.c .Lβ .

This case was easy because our modalities walk only to the right
and so cannot “stray” to the left. Dealing with Lα.c .Σ

∗ will need a
little more work.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Unambiguous Concatenation: Lα.c .Σ∗

Let ϕα be a LTLA formula describing Lα ∩ A+.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Unambiguous Concatenation: Lα.c .Σ∗

Let ϕα be a LTLA formula describing Lα ∩ A+.

We cannot use ϕα to describe Lα.c .Σ
∗ since the modalities may

walk to the right and cross the c boundary.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Unambiguous Concatenation: Lα.c .Σ∗

Let ϕα be a LTLA formula describing Lα ∩ A+.

We “relativize” ϕα to a formula ϕ′
α which examines the part to the

left of the first c and checks if it satisfies ϕα.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Unambiguous Concatenation: Lα.c .Σ∗

Let ϕα be a LTLA formula describing Lα ∩ A+.

We “relativize” ϕα to a formula ϕ′
α which examines the part to the

left of the first c and checks if it satisfies ϕα.

Formally, w |= ϕ′
α iff w = xcy , x ∈ A+ and x |= ϕα.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Unambiguous Concatenation: Lα.c .Σ∗

Let ϕα be a LTLA formula describing Lα ∩ A+.

We “relativize” ϕα to a formula ϕ′
α which examines the part to the

left of the first c and checks if it satisfies ϕα.

Formally, w |= ϕ′
α iff w = xcy , x ∈ A+ and x |= ϕα.

This relativization is defined via structural recursion as follows:

a′ = a ∧ XFc
(ϕ ∧ ψ)′ = ϕ′ ∧ ψ′

(¬ϕ)′ = (¬ϕ′) ∧ ¬c ∧ Fc
(ϕXUψ)′ = (ϕ′ ∧ ¬c)XU(ψ′ ∧ ¬c)

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Unambiguous Concatenation: Lα.c .Σ∗

Let ϕα be a LTLA formula describing Lα ∩ A+.

We “relativize” ϕα to a formula ϕ′
α which examines the part to the

left of the first c and checks if it satisfies ϕα.

Formally, w |= ϕ′
α iff w = xcy , x ∈ A+ and x |= ϕα.

This relativization is defined via structural recursion as follows:

a′ = a ∧ XFc
(ϕ ∧ ψ)′ = ϕ′ ∧ ψ′

(¬ϕ)′ = (¬ϕ′) ∧ ¬c ∧ Fc
(ϕXUψ)′ = (ϕ′ ∧ ¬c)XU(ψ′ ∧ ¬c)

ϕ2 = ϕ′
α describes (Lα ∩ A+).c .Σ∗. If ǫ 6∈ Lα then ϕ2 also

describes Lα.c .Σ
∗. Otherwise, use ϕ2 ∨ c .

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

STATUTORY WARNING

I WILL BE SLOPPY WITH ǫ

FROM NOW ON.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The Interesting Case: L2

So far, we got away by examining the alphabet. Here we need to
examine M and induct on its size.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The Interesting Case: L2

So far, we got away by examining the alphabet. Here we need to
examine M and induct on its size.

A word w in L2 is of the form t0ct1ct2c . . . tk−1ctk for some k > 1,
ti ∈ A∗.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The Interesting Case: L2

So far, we got away by examining the alphabet. Here we need to
examine M and induct on its size.

A word w in L2 is of the form t0ct1ct2c . . . tk−1ctk for some k > 1,
ti ∈ A∗.

Further, h(w) = h(t0)h(ct1ct2ct3 . . . tk−1c)h(tk) ∈ X .

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The Interesting Case: L2

So far, we got away by examining the alphabet. Here we need to
examine M and induct on its size.

A word w in L2 is of the form t0ct1ct2c . . . tk−1ctk for some k > 1,
ti ∈ A∗.

Further, h(w) = h(t0)h(ct1ct2ct3 . . . tk−1c)h(tk) ∈ X .

Let ∆ = (cA∗)+c . Then, L2 ⊆ A∗.∆.A∗.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The Interesting Case: L2

So far, we got away by examining the alphabet. Here we need to
examine M and induct on its size.

A word w in L2 is of the form t0ct1ct2c . . . tk−1ctk for some k > 1,
ti ∈ A∗.

Further, h(w) = h(t0)h(ct1ct2ct3 . . . tk−1c)h(tk) ∈ X .

Let ∆ = (cA∗)+c . Then, L2 ⊆ A∗.∆.A∗.

L2 =
⋃

αβγ∈X

(h−1(α) ∩ A∗).(h−1(β) ∩ ∆).(h−1(γ) ∩ A∗)

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The Interesting Case: L2

So far, we got away by examining the alphabet. Here we need to
examine M and induct on its size.

A word w in L2 is of the form t0ct1ct2c . . . tk−1ctk for some k > 1,
ti ∈ A∗.

Further, h(w) = h(t0)h(ct1ct2ct3 . . . tk−1c)h(tk) ∈ X .

Let ∆ = (cA∗)+c . Then, L2 ⊆ A∗.∆.A∗.

L2 =
⋃

αβγ∈X

(h−1(α) ∩ A∗).(h−1(β) ∩ ∆).(h−1(γ) ∩ A∗)

The first and third components are LTL definable. What about
the middle component?

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

An Outline of the proof

We show that the language Lβ ∩ ∆ is LTL definable as follows:

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

An Outline of the proof

We show that the language Lβ ∩ ∆ is LTL definable as follows:

1 Translate each word in ∆ to a word over the alphabet M

(actually h(A∗) ⊆ M) via a map σ.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

An Outline of the proof

We show that the language Lβ ∩ ∆ is LTL definable as follows:

1 Translate each word in ∆ to a word over the alphabet M

(actually h(A∗) ⊆ M) via a map σ.
2 Construct a language K over M such that:

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

An Outline of the proof

We show that the language Lβ ∩ ∆ is LTL definable as follows:

1 Translate each word in ∆ to a word over the alphabet M

(actually h(A∗) ⊆ M) via a map σ.
2 Construct a language K over M such that:

1 σ−1(K) = Lβ ∩ ∆

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

An Outline of the proof

We show that the language Lβ ∩ ∆ is LTL definable as follows:

1 Translate each word in ∆ to a word over the alphabet M

(actually h(A∗) ⊆ M) via a map σ.
2 Construct a language K over M such that:

1 σ−1(K) = Lβ ∩ ∆
2 K is recognized by a aperiodic monoid smaller than M .

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

An Outline of the proof

We show that the language Lβ ∩ ∆ is LTL definable as follows:

1 Translate each word in ∆ to a word over the alphabet M

(actually h(A∗) ⊆ M) via a map σ.
2 Construct a language K over M such that:

1 σ−1(K) = Lβ ∩ ∆
2 K is recognized by a aperiodic monoid smaller than M .
3 the LTLM formula describing K can be lifted to a formula in

LTLΣ describing Lβ ∩ ∆.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

An Outline of the proof

We show that the language Lβ ∩ ∆ is LTL definable as follows:

1 Translate each word in ∆ to a word over the alphabet M

(actually h(A∗) ⊆ M) via a map σ.
2 Construct a language K over M such that:

1 σ−1(K) = Lβ ∩ ∆
2 K is recognized by a aperiodic monoid smaller than M .
3 the LTLM formula describing K can be lifted to a formula in

LTLΣ describing Lβ ∩ ∆.

We use m to denote elements of M when treated as letters and m

when they are treated as elements of the monoid M.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The map σ and Language K

The map σ is the obvious one:

σct1ct2 . . . tk−2ctk−1c = h(t1)h(t2) . . . h(tk−1)

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The map σ and Language K

The map σ is the obvious one:

σct1ct2 . . . tk−2ctk−1c = h(t1)h(t2) . . . h(tk−1)

Given the map σ and requirement 2.1, the definition of K is also
quite obvious:

K = {m1m2 . . .mk | h(c)m1h(c)m2 . . . h(c)mkh(c) = β}

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The map σ and Language K

The map σ is the obvious one:

σct1ct2 . . . tk−2ctk−1c = h(t1)h(t2) . . . h(tk−1)

Given the map σ and requirement 2.1, the definition of K is also
quite obvious:

K = {m1m2 . . .mk | h(c)m1h(c)m2 . . . h(c)mkh(c) = β}

With these definitions:

σ−1(K) = {ct1ct2 . . . ctkc | h(t1)h(t2) . . . h(tk) ∈ K}

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The map σ and Language K

The map σ is the obvious one:

σct1ct2 . . . tk−2ctk−1c = h(t1)h(t2) . . . h(tk−1)

Given the map σ and requirement 2.1, the definition of K is also
quite obvious:

K = {m1m2 . . .mk | h(c)m1h(c)m2 . . . h(c)mkh(c) = β}

With these definitions:

σ−1(K) = {ct1ct2 . . . ctkc | h(t1)h(t2) . . . h(tk) ∈ K}
= {ct1ct2 . . . ctkc | h(c)h(t1)h(c)h(t2) . . . h(c)h(tk)h(c) = β

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

The map σ and Language K

The map σ is the obvious one:

σct1ct2 . . . tk−2ctk−1c = h(t1)h(t2) . . . h(tk−1)

Given the map σ and requirement 2.1, the definition of K is also
quite obvious:

K = {m1m2 . . .mk | h(c)m1h(c)m2 . . . h(c)mkh(c) = β}

With these definitions:

σ−1(K) = {ct1ct2 . . . ctkc | h(t1)h(t2) . . . h(tk) ∈ K}
= {ct1ct2 . . . ctkc | h(c)h(t1)h(c)h(t2) . . . h(c)h(tk)h(c) = β

= Lβ ∩ ∆ as required by 2.1

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Localizing a Monoid at an element

The following construction is due to Diekert and Gastin.

The Monoid Locm(M): Let M be a monoid and m ∈ M. Then

Locm(M) = (mM ∩ Mm, ◦,m)

where (xm) ◦ (my)
△
= xmy .

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Localizing a Monoid at an element

The following construction is due to Diekert and Gastin.

The Monoid Locm(M): Let M be a monoid and m ∈ M. Then

Locm(M) = (mM ∩ Mm, ◦,m)

where (xm) ◦ (my)
△
= xmy .

Observe that xm ◦ ym = xm ◦ my ′ = xmy ′ = xym. Thus ◦ is
associative and m = 1.m is the identity w.r.t. ◦.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Localizing a Monoid at an element

The following construction is due to Diekert and Gastin.

The Monoid Locm(M): Let M be a monoid and m ∈ M. Then

Locm(M) = (mM ∩ Mm, ◦,m)

where (xm) ◦ (my)
△
= xmy .

Observe that xm ◦ ym = xm ◦ my ′ = xmy ′ = xym. Thus ◦ is
associative and m = 1.m is the identity w.r.t. ◦.

xm ◦ xm ◦ . . . xm = xNm. Thus, Locm(M) is aperiodic
whenever M is aperiodic.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Localizing a Monoid at an element

The following construction is due to Diekert and Gastin.

The Monoid Locm(M): Let M be a monoid and m ∈ M. Then

Locm(M) = (mM ∩ Mm, ◦,m)

where (xm) ◦ (my)
△
= xmy .

Observe that xm ◦ ym = xm ◦ my ′ = xmy ′ = xym. Thus ◦ is
associative and m = 1.m is the identity w.r.t. ◦.

xm ◦ xm ◦ . . . xm = xNm. Thus, Locm(M) is aperiodic
whenever M is aperiodic.

1 6∈ Locm(M) if m 6= 1. This follows from the fact that
1 6= m′m for any m,m′ 6= 1.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

A Monoid for K

We now show that the monoid Loch(c)(M) accepts the language
K .

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

A Monoid for K

We now show that the monoid Loch(c)(M) accepts the language
K .

Let g : M∗ −→ Loch(c)(M) be given by g(m) = h(c)mh(c).

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

A Monoid for K

We now show that the monoid Loch(c)(M) accepts the language
K .

Let g : M∗ −→ Loch(c)(M) be given by g(m) = h(c)mh(c).

Claim: K = g−1(β)

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

A Monoid for K

We now show that the monoid Loch(c)(M) accepts the language
K .

Let g : M∗ −→ Loch(c)(M) be given by g(m) = h(c)mh(c).

Claim: K = g−1(β)

Proof:

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

A Monoid for K

We now show that the monoid Loch(c)(M) accepts the language
K .

Let g : M∗ −→ Loch(c)(M) be given by g(m) = h(c)mh(c).

Claim: K = g−1(β)

Proof:

Note that β ∈ Loch(c)(M) whenever h−1(β) ∩ ∆ 6= ∅.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

A Monoid for K

We now show that the monoid Loch(c)(M) accepts the language
K .

Let g : M∗ −→ Loch(c)(M) be given by g(m) = h(c)mh(c).

Claim: K = g−1(β)

Proof:

Note that β ∈ Loch(c)(M) whenever h−1(β) ∩ ∆ 6= ∅.

g(m1m2 . . .mk) = β if and only if
h(c)m1h(c) ◦ h(c)m2h(c) ◦ . . . h(c)mkh(c) = β if and only if
h(c)m1h(c)m2h(c) . . . h(c)mkh(c) = β if and only if
m1m2 . . .mk ∈ K .

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

A Monoid for K

We now show that the monoid Loch(c)(M) accepts the language
K .

Let g : M∗ −→ Loch(c)(M) be given by g(m) = h(c)mh(c).

Claim: K = g−1(β)

Proof:

Note that β ∈ Loch(c)(M) whenever h−1(β) ∩ ∆ 6= ∅.

g(m1m2 . . .mk) = β if and only if
h(c)m1h(c) ◦ h(c)m2h(c) ◦ . . . h(c)mkh(c) = β if and only if
h(c)m1h(c)m2h(c) . . . h(c)mkh(c) = β if and only if
m1m2 . . .mk ∈ K .

K is recognized by a smaller monoid and hence there is an LTLM

formula that describes K

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Lifting the formula for K

We show that for any formula ϕ in LTLM , there is a formula ϕ# in
LTLΣ such that

w |= ϕ# ⇐⇒ w = ct1ct2c . . . tk−1ctk , with ti ∈ A∗

and σ(ct1ct2 . . . tk−1c) |= ϕ

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Lifting the formula for K

We show that for any formula ϕ in LTLM , there is a formula ϕ# in
LTLΣ such that

w |= ϕ# ⇐⇒ w = ct1ct2c . . . tk−1ctk , with ti ∈ A∗

and σ(ct1ct2 . . . tk−1c) |= ϕ

The formula ϕ# is defined recursively on the structure as follows:

m# = (c ∧ XFc) ∧ (Xψ′
m)

where ψm is the formula in LTLA describing
h−1(m) ∩ A∗ and ψ′

m is its relativization

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Lifting the formula for K

We show that for any formula ϕ in LTLM , there is a formula ϕ# in
LTLΣ such that

w |= ϕ# ⇐⇒ w = ct1ct2c . . . tk−1ctk , with ti ∈ A∗

and σ(ct1ct2 . . . tk−1c) |= ϕ

The formula ϕ# is defined recursively on the structure as follows:

m# = (c ∧ XFc) ∧ (Xψ′
m)

where ψm is the formula in LTLA describing
h−1(m) ∩ A∗ and ψ′

m is its relativization

(ϕ1 ∧ ϕ2)
= ϕ

#
1 ∧ ϕ#

2

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Lifting the formula for K

We show that for any formula ϕ in LTLM , there is a formula ϕ# in
LTLΣ such that

w |= ϕ# ⇐⇒ w = ct1ct2c . . . tk−1ctk , with ti ∈ A∗

and σ(ct1ct2 . . . tk−1c) |= ϕ

The formula ϕ# is defined recursively on the structure as follows:

m# = (c ∧ XFc) ∧ (Xψ′
m)

where ψm is the formula in LTLA describing
h−1(m) ∩ A∗ and ψ′

m is its relativization

(ϕ1 ∧ ϕ2)
= ϕ

#
1 ∧ ϕ#

2

(¬ϕ)# = ¬(ϕ#) ∧ (c ∧ XFc)

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Lifting the formula for K

We show that for any formula ϕ in LTLM , there is a formula ϕ# in
LTLΣ such that

w |= ϕ# ⇐⇒ w = ct1ct2c . . . tk−1ctk , with ti ∈ A∗

and σ(ct1ct2 . . . tk−1c) |= ϕ

The formula ϕ# is defined recursively on the structure as follows:

m# = (c ∧ XFc) ∧ (Xψ′
m)

where ψm is the formula in LTLA describing
h−1(m) ∩ A∗ and ψ′

m is its relativization

(ϕ1 ∧ ϕ2)
= ϕ

#
1 ∧ ϕ#

2

(¬ϕ)# = ¬(ϕ#) ∧ (c ∧ XFc)
(Xϕ)# = X(¬cU(c ∧ ϕ#))

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

Lifting the formula for K

We show that for any formula ϕ in LTLM , there is a formula ϕ# in
LTLΣ such that

w |= ϕ# ⇐⇒ w = ct1ct2c . . . tk−1ctk , with ti ∈ A∗

and σ(ct1ct2 . . . tk−1c) |= ϕ

The formula ϕ# is defined recursively on the structure as follows:

m# = (c ∧ XFc) ∧ (Xψ′
m)

where ψm is the formula in LTLA describing
h−1(m) ∩ A∗ and ψ′

m is its relativization

(ϕ1 ∧ ϕ2)
= ϕ

#
1 ∧ ϕ#

2

(¬ϕ)# = ¬(ϕ#) ∧ (c ∧ XFc)
(Xϕ)# = X(¬cU(c ∧ ϕ#))

(ϕ1Uϕ2)
= (c =⇒ ϕ

#
1)U(c ∧ ϕ#

2)

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

