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Summary of Last Lecture

LTL is expressible in FO.

FO definable languages are regular. (Via EF Games)

FO definable languages are aperiodic. (Via EF Games,
Syntacic Monoid)
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Star-free Regular Languages

Regular expressions constructed without the ∗ operator:

e ::= a | e1 + e2 | ¬e1 | e1.e2
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Star-free Regular Languages

Regular expressions constructed without the ∗ operator:

e ::= a | e1 + e2 | ¬e1 | e1.e2

Theorem:(Schutzenberger) L is aperiodic if and only if it is
star-free.

Theorem:(McNaughton and Papert) L is star-free if and only if it is
FO expressible.
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Theorem:(McNaughton and Papert) L is star-free if and only if it is
FO expressible.
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Regular expressions constructed without the ∗ operator:

e ::= a | e1 + e2 | ¬e1 | e1.e2

Theorem:(Schutzenberger) L is aperiodic if and only if it is
star-free.

Theorem:(McNaughton and Papert) L is star-free if and only if it is
FO expressible.

Question: Can we translate star-free expressions into LTL?

How do we put together LTL formulas ϕ1 and ϕ2 to describe the
language L(ϕ1).L(ϕ2)?
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Star-free Regular Languages

Regular expressions constructed without the ∗ operator:

e ::= a | e1 + e2 | ¬e1 | e1.e2

Theorem:(Schutzenberger) L is aperiodic if and only if it is
star-free.

Theorem:(McNaughton and Papert) L is star-free if and only if it is
FO expressible.

Question: Can we translate star-free expressions into LTL?

How do we put together LTL formulas ϕ1 and ϕ2 to describe the
language L(ϕ1).L(ϕ2)?

Easy if the decomposition is unambiguous. (eg.) L1.c .L2 where
either L1 or L2 is c-free.
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The Proof: Base cases

The proof proceeds via a double induction: On the size of the
monoid recognizing L and the size of the alphabet.
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The Proof: Base cases

The proof proceeds via a double induction: On the size of the
monoid recognizing L and the size of the alphabet.

The Base Cases:

M is the trivial monoid.

L is Σ+. Use ⊤.
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The Proof: Base cases

The proof proceeds via a double induction: On the size of the
monoid recognizing L and the size of the alphabet.

The Base Cases:

M is the trivial monoid.

L is Σ+. Use ⊤.
L is ∅. Use ⊥.
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The Proof: Base cases

The proof proceeds via a double induction: On the size of the
monoid recognizing L and the size of the alphabet.

The Base Cases:

M is the trivial monoid.

L is Σ+. Use ⊤.
L is ∅. Use ⊥.

Σ is singleton.
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The Proof: Base cases

The proof proceeds via a double induction: On the size of the
monoid recognizing L and the size of the alphabet.

The Base Cases:

M is the trivial monoid.

L is Σ+. Use ⊤.
L is ∅. Use ⊥.

Σ is singleton.

L is finite. Easy.
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The Proof: Base cases

The proof proceeds via a double induction: On the size of the
monoid recognizing L and the size of the alphabet.

The Base Cases:

M is the trivial monoid.

L is Σ+. Use ⊤.
L is ∅. Use ⊥.

Σ is singleton.

L is finite. Easy.
L is {ai | i ≥ N}. Easy.
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The Proof:

Induction Step: Given L over an alphabet Σ recognized by a
monoid M such that:
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The Proof:

Induction Step: Given L over an alphabet Σ recognized by a
monoid M such that:

if |M ′| < |M| then any language recognized by M ′ is
expressible in LTL.
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The Proof:

Induction Step: Given L over an alphabet Σ recognized by a
monoid M such that:

if |M ′| < |M| then any language recognized by M ′ is
expressible in LTL.

if L′ is a language over an alphabet A with |A| < |Σ|
recognized by M then L′ is expressible in LTLA.

show that L is expressible in LTLΣ.
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The Proof:

Induction Step: Given L over an alphabet Σ recognized by a
monoid M such that:

if |M ′| < |M| then any language recognized by M ′ is
expressible in LTL.

if L′ is a language over an alphabet A with |A| < |Σ|
recognized by M then L′ is expressible in LTLA.

show that L is expressible in LTLΣ.

Observation 1: If ϕ is a LTLA formula describing the language L

and A ⊆ Σ then
ϕ ∧

∧

a∈Σ\A

G¬a

is a LTLΣ formula that describes L.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic



Splitting by a letter

Let L be recognized by M via the morphism h as h−1(X ).
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Let L be recognized by M via the morphism h as h−1(X ).

Pick a letter c such that h(c) 6= 1.
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Splitting by a letter

Let L be recognized by M via the morphism h as h−1(X ).

Pick a letter c such that h(c) 6= 1.

Such a c must exist. Otherwise, L is recognized by the

trivial monoid.
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Splitting by a letter

Let L be recognized by M via the morphism h as h−1(X ).

Pick a letter c such that h(c) 6= 1.

Such a c must exist. Otherwise, L is recognized by the

trivial monoid.

Decompose L into three disjoint sets:

L0 consisting of words of L with no cs.

L1 consisting of words of L with exactly one c .

L2 consisting of words of L with at least two cs.
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Splitting by a letter

Let L be recognized by M via the morphism h as h−1(X ).

Pick a letter c such that h(c) 6= 1.

Such a c must exist. Otherwise, L is recognized by the

trivial monoid.

Decompose L into three disjoint sets:

L0 consisting of words of L with no cs.

L1 consisting of words of L with exactly one c .

L2 consisting of words of L with at least two cs.

“No cs”, “Exactly 1 c” and “Atleast 2 cs” are expressible in LTL.
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Splitting by a letter

Let L be recognized by M via the morphism h as h−1(X ).

Pick a letter c such that h(c) 6= 1.

Such a c must exist. Otherwise, L is recognized by the

trivial monoid.

Decompose L into three disjoint sets:

L0 consisting of words of L with no cs.

L1 consisting of words of L with exactly one c .

L2 consisting of words of L with at least two cs.

“No cs”, “Exactly 1 c” and “Atleast 2 cs” are expressible in LTL.

It suffices to show that each of these three languages is LTL
expressible.
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The Trivial Case: L0

Let A = Σ \ {c}.
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The Trivial Case: L0

Let A = Σ \ {c}.

L0 is language over a smaller alphabet A, recognized by M via
h.
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The Trivial Case: L0

Let A = Σ \ {c}.

L0 is language over a smaller alphabet A, recognized by M via
h.

So, L0 is defined by an LTLA formula ϕ0 over A.
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The Trivial Case: L0

Let A = Σ \ {c}.

L0 is language over a smaller alphabet A, recognized by M via
h.

So, L0 is defined by an LTLA formula ϕ0 over A.

By Observation 1, it is expressible in LTLΣ.
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The Easy Case: L1

L1 =
⋃

α.h(c).β∈X

(h−1(α) ∩ A∗).c .(h−1(β) ∩ A∗)
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The Easy Case: L1

L1 =
⋃

α.h(c).β∈X

(h−1(α) ∩ A∗).c .(h−1(β) ∩ A∗)

Why?
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The Easy Case: L1

L1 =
⋃

α.h(c).β∈X

(h−1(α) ∩ A∗).c .(h−1(β) ∩ A∗)

Why?

If xcy is in the RHS then h(xcy) = α.h(c).β ∈ X . Thus
xcy ∈ L.
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The Easy Case: L1

L1 =
⋃

α.h(c).β∈X

(h−1(α) ∩ A∗).c .(h−1(β) ∩ A∗)

Why?

If xcy is in the RHS then h(xcy) = α.h(c).β ∈ X . Thus
xcy ∈ L.

Let w ∈ L1. Therefore, w = xcy . Take α = h(x) and
β = h(y).
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The Easy Case: L1

L1 =
⋃

α.h(c).β∈X

(h−1(α) ∩ A∗).c .(h−1(β) ∩ A∗)

Let Lα = h−1(α) ∩ A∗ and Lβ = h−1(β) ∩ A∗.
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The Easy Case: L1

L1 =
⋃

α.h(c).β∈X

(h−1(α) ∩ A∗).c .(h−1(β) ∩ A∗)

Let Lα = h−1(α) ∩ A∗ and Lβ = h−1(β) ∩ A∗.

L1 is a union of languages of the form Lα.c .Lβ where Lα,Lβ ⊆ A∗

are recognized by M and hence LTLA (and therefore LTLΣ)
expressible.
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The Easy Case: L1

L1 =
⋃

α.h(c).β∈X

(h−1(α) ∩ A∗).c .(h−1(β) ∩ A∗)

Let Lα = h−1(α) ∩ A∗ and Lβ = h−1(β) ∩ A∗.

L1 is a union of languages of the form Lα.c .Lβ where Lα,Lβ ⊆ A∗

are recognized by M and hence LTLA (and therefore LTLΣ)
expressible.
Well, almost! Lα ∩ A+ and Lβ ∩ A+ are LTL expressible. We have
to deal with ǫ separately
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Dealing with Unambiguous Concatenations

We may rewrite Lα.c .Lβ as

A∗.c .Lβ ∩ Lα.c .Σ
∗
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Dealing with Unambiguous Concatenations

We may rewrite Lα.c .Lβ as

A∗.c .Lβ ∩ Lα.c .Σ
∗

If ϕβ is the LTLΣ formula expressing Lβ ∩ A+ then
ϕ1 = ⊤U(c ∧ Xϕβ) describes A∗.c .(Lβ ∩ A+).
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Dealing with Unambiguous Concatenations

We may rewrite Lα.c .Lβ as

A∗.c .Lβ ∩ Lα.c .Σ
∗

If ϕβ is the LTLΣ formula expressing Lβ ∩ A+ then
ϕ1 = ⊤U(c ∧ Xϕβ) describes A∗.c .(Lβ ∩ A+).

If ǫ 6∈ Lβ then ϕ1 also describes the language A∗.c .Lβ .
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Dealing with Unambiguous Concatenations

We may rewrite Lα.c .Lβ as

A∗.c .Lβ ∩ Lα.c .Σ
∗

If ϕβ is the LTLΣ formula expressing Lβ ∩ A+ then
ϕ1 = ⊤U(c ∧ Xϕβ) describes A∗.c .(Lβ ∩ A+).

If ǫ 6∈ Lβ then ϕ1 also describes the language A∗.c .Lβ .

Otherwise, ϕ1 ∨ ⊤U(c ∧ ¬X⊤) describes the language A∗.c .Lβ .
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Dealing with Unambiguous Concatenations

We may rewrite Lα.c .Lβ as

A∗.c .Lβ ∩ Lα.c .Σ
∗

If ϕβ is the LTLΣ formula expressing Lβ ∩ A+ then
ϕ1 = ⊤U(c ∧ Xϕβ) describes A∗.c .(Lβ ∩ A+).

If ǫ 6∈ Lβ then ϕ1 also describes the language A∗.c .Lβ .

Otherwise, ϕ1 ∨ ⊤U(c ∧ ¬X⊤) describes the language A∗.c .Lβ .

This case was easy because our modalities walk only to the right
and so cannot “stray” to the left. Dealing with Lα.c .Σ

∗ will need a
little more work.
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Unambiguous Concatenation: Lα.c .Σ∗

Let ϕα be a LTLA formula describing Lα ∩ A+.
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Unambiguous Concatenation: Lα.c .Σ∗

Let ϕα be a LTLA formula describing Lα ∩ A+.

We cannot use ϕα to describe Lα.c .Σ
∗ since the modalities may

walk to the right and cross the c boundary.
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Unambiguous Concatenation: Lα.c .Σ∗

Let ϕα be a LTLA formula describing Lα ∩ A+.

We “relativize” ϕα to a formula ϕ′
α which examines the part to the

left of the first c and checks if it satisfies ϕα.
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Unambiguous Concatenation: Lα.c .Σ∗

Let ϕα be a LTLA formula describing Lα ∩ A+.

We “relativize” ϕα to a formula ϕ′
α which examines the part to the

left of the first c and checks if it satisfies ϕα.

Formally, w |= ϕ′
α iff w = xcy , x ∈ A+ and x |= ϕα.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic



Unambiguous Concatenation: Lα.c .Σ∗

Let ϕα be a LTLA formula describing Lα ∩ A+.

We “relativize” ϕα to a formula ϕ′
α which examines the part to the

left of the first c and checks if it satisfies ϕα.

Formally, w |= ϕ′
α iff w = xcy , x ∈ A+ and x |= ϕα.

This relativization is defined via structural recursion as follows:

a′ = a ∧ XFc
(ϕ ∧ ψ)′ = ϕ′ ∧ ψ′

(¬ϕ)′ = (¬ϕ′) ∧ ¬c ∧ Fc
(ϕXUψ)′ = (ϕ′ ∧ ¬c)XU(ψ′ ∧ ¬c)
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Unambiguous Concatenation: Lα.c .Σ∗

Let ϕα be a LTLA formula describing Lα ∩ A+.

We “relativize” ϕα to a formula ϕ′
α which examines the part to the

left of the first c and checks if it satisfies ϕα.

Formally, w |= ϕ′
α iff w = xcy , x ∈ A+ and x |= ϕα.

This relativization is defined via structural recursion as follows:

a′ = a ∧ XFc
(ϕ ∧ ψ)′ = ϕ′ ∧ ψ′

(¬ϕ)′ = (¬ϕ′) ∧ ¬c ∧ Fc
(ϕXUψ)′ = (ϕ′ ∧ ¬c)XU(ψ′ ∧ ¬c)

ϕ2 = ϕ′
α describes (Lα ∩ A+).c .Σ∗. If ǫ 6∈ Lα then ϕ2 also

describes Lα.c .Σ
∗. Otherwise, use ϕ2 ∨ c .

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic



STATUTORY WARNING

I WILL BE SLOPPY WITH ǫ

FROM NOW ON.
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The Interesting Case: L2

So far, we got away by examining the alphabet. Here we need to
examine M and induct on its size.
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The Interesting Case: L2

So far, we got away by examining the alphabet. Here we need to
examine M and induct on its size.

A word w in L2 is of the form t0ct1ct2c . . . tk−1ctk for some k > 1,
ti ∈ A∗.
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The Interesting Case: L2

So far, we got away by examining the alphabet. Here we need to
examine M and induct on its size.

A word w in L2 is of the form t0ct1ct2c . . . tk−1ctk for some k > 1,
ti ∈ A∗.

Further, h(w) = h(t0)h(ct1ct2ct3 . . . tk−1c)h(tk) ∈ X .
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The Interesting Case: L2

So far, we got away by examining the alphabet. Here we need to
examine M and induct on its size.

A word w in L2 is of the form t0ct1ct2c . . . tk−1ctk for some k > 1,
ti ∈ A∗.

Further, h(w) = h(t0)h(ct1ct2ct3 . . . tk−1c)h(tk) ∈ X .

Let ∆ = (cA∗)+c . Then, L2 ⊆ A∗.∆.A∗.
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The Interesting Case: L2

So far, we got away by examining the alphabet. Here we need to
examine M and induct on its size.

A word w in L2 is of the form t0ct1ct2c . . . tk−1ctk for some k > 1,
ti ∈ A∗.

Further, h(w) = h(t0)h(ct1ct2ct3 . . . tk−1c)h(tk) ∈ X .

Let ∆ = (cA∗)+c . Then, L2 ⊆ A∗.∆.A∗.

L2 =
⋃

αβγ∈X

(h−1(α) ∩ A∗).(h−1(β) ∩ ∆).(h−1(γ) ∩ A∗)
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The Interesting Case: L2

So far, we got away by examining the alphabet. Here we need to
examine M and induct on its size.

A word w in L2 is of the form t0ct1ct2c . . . tk−1ctk for some k > 1,
ti ∈ A∗.

Further, h(w) = h(t0)h(ct1ct2ct3 . . . tk−1c)h(tk) ∈ X .

Let ∆ = (cA∗)+c . Then, L2 ⊆ A∗.∆.A∗.

L2 =
⋃

αβγ∈X

(h−1(α) ∩ A∗).(h−1(β) ∩ ∆).(h−1(γ) ∩ A∗)

The first and third components are LTL definable. What about
the middle component?
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An Outline of the proof

We show that the language Lβ ∩ ∆ is LTL definable as follows:
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An Outline of the proof

We show that the language Lβ ∩ ∆ is LTL definable as follows:

1 Translate each word in ∆ to a word over the alphabet M

(actually h(A∗) ⊆ M) via a map σ.
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An Outline of the proof

We show that the language Lβ ∩ ∆ is LTL definable as follows:

1 Translate each word in ∆ to a word over the alphabet M

(actually h(A∗) ⊆ M) via a map σ.
2 Construct a language K over M such that:
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An Outline of the proof

We show that the language Lβ ∩ ∆ is LTL definable as follows:

1 Translate each word in ∆ to a word over the alphabet M

(actually h(A∗) ⊆ M) via a map σ.
2 Construct a language K over M such that:

1 σ−1(K ) = Lβ ∩ ∆
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An Outline of the proof

We show that the language Lβ ∩ ∆ is LTL definable as follows:

1 Translate each word in ∆ to a word over the alphabet M

(actually h(A∗) ⊆ M) via a map σ.
2 Construct a language K over M such that:

1 σ−1(K ) = Lβ ∩ ∆
2 K is recognized by a aperiodic monoid smaller than M .
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An Outline of the proof

We show that the language Lβ ∩ ∆ is LTL definable as follows:

1 Translate each word in ∆ to a word over the alphabet M

(actually h(A∗) ⊆ M) via a map σ.
2 Construct a language K over M such that:

1 σ−1(K ) = Lβ ∩ ∆
2 K is recognized by a aperiodic monoid smaller than M .
3 the LTLM formula describing K can be lifted to a formula in

LTLΣ describing Lβ ∩ ∆.
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An Outline of the proof

We show that the language Lβ ∩ ∆ is LTL definable as follows:

1 Translate each word in ∆ to a word over the alphabet M

(actually h(A∗) ⊆ M) via a map σ.
2 Construct a language K over M such that:

1 σ−1(K ) = Lβ ∩ ∆
2 K is recognized by a aperiodic monoid smaller than M .
3 the LTLM formula describing K can be lifted to a formula in

LTLΣ describing Lβ ∩ ∆.

We use m to denote elements of M when treated as letters and m

when they are treated as elements of the monoid M.
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The map σ and Language K

The map σ is the obvious one:

σct1ct2 . . . tk−2ctk−1c = h(t1)h(t2) . . . h(tk−1)
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The map σ and Language K

The map σ is the obvious one:

σct1ct2 . . . tk−2ctk−1c = h(t1)h(t2) . . . h(tk−1)

Given the map σ and requirement 2.1, the definition of K is also
quite obvious:

K = {m1m2 . . .mk | h(c)m1h(c)m2 . . . h(c)mkh(c) = β}

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic



The map σ and Language K

The map σ is the obvious one:

σct1ct2 . . . tk−2ctk−1c = h(t1)h(t2) . . . h(tk−1)

Given the map σ and requirement 2.1, the definition of K is also
quite obvious:

K = {m1m2 . . .mk | h(c)m1h(c)m2 . . . h(c)mkh(c) = β}

With these definitions:

σ−1(K ) = {ct1ct2 . . . ctkc | h(t1)h(t2) . . . h(tk) ∈ K}
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The map σ and Language K

The map σ is the obvious one:

σct1ct2 . . . tk−2ctk−1c = h(t1)h(t2) . . . h(tk−1)

Given the map σ and requirement 2.1, the definition of K is also
quite obvious:

K = {m1m2 . . .mk | h(c)m1h(c)m2 . . . h(c)mkh(c) = β}

With these definitions:

σ−1(K ) = {ct1ct2 . . . ctkc | h(t1)h(t2) . . . h(tk) ∈ K}
= {ct1ct2 . . . ctkc | h(c)h(t1)h(c)h(t2) . . . h(c)h(tk)h(c) = β
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The map σ and Language K

The map σ is the obvious one:

σct1ct2 . . . tk−2ctk−1c = h(t1)h(t2) . . . h(tk−1)

Given the map σ and requirement 2.1, the definition of K is also
quite obvious:

K = {m1m2 . . .mk | h(c)m1h(c)m2 . . . h(c)mkh(c) = β}

With these definitions:

σ−1(K ) = {ct1ct2 . . . ctkc | h(t1)h(t2) . . . h(tk) ∈ K}
= {ct1ct2 . . . ctkc | h(c)h(t1)h(c)h(t2) . . . h(c)h(tk)h(c) = β

= Lβ ∩ ∆ as required by 2.1
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Localizing a Monoid at an element

The following construction is due to Diekert and Gastin.

The Monoid Locm(M): Let M be a monoid and m ∈ M. Then

Locm(M) = (mM ∩ Mm, ◦,m)

where (xm) ◦ (my)
△
= xmy .
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Localizing a Monoid at an element

The following construction is due to Diekert and Gastin.

The Monoid Locm(M): Let M be a monoid and m ∈ M. Then

Locm(M) = (mM ∩ Mm, ◦,m)

where (xm) ◦ (my)
△
= xmy .

Observe that xm ◦ ym = xm ◦ my ′ = xmy ′ = xym. Thus ◦ is
associative and m = 1.m is the identity w.r.t. ◦.
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Localizing a Monoid at an element

The following construction is due to Diekert and Gastin.

The Monoid Locm(M): Let M be a monoid and m ∈ M. Then

Locm(M) = (mM ∩ Mm, ◦,m)

where (xm) ◦ (my)
△
= xmy .

Observe that xm ◦ ym = xm ◦ my ′ = xmy ′ = xym. Thus ◦ is
associative and m = 1.m is the identity w.r.t. ◦.

xm ◦ xm ◦ . . . xm = xNm. Thus, Locm(M) is aperiodic
whenever M is aperiodic.
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Localizing a Monoid at an element

The following construction is due to Diekert and Gastin.

The Monoid Locm(M): Let M be a monoid and m ∈ M. Then

Locm(M) = (mM ∩ Mm, ◦,m)

where (xm) ◦ (my)
△
= xmy .

Observe that xm ◦ ym = xm ◦ my ′ = xmy ′ = xym. Thus ◦ is
associative and m = 1.m is the identity w.r.t. ◦.

xm ◦ xm ◦ . . . xm = xNm. Thus, Locm(M) is aperiodic
whenever M is aperiodic.

1 6∈ Locm(M) if m 6= 1. This follows from the fact that
1 6= m′m for any m,m′ 6= 1.
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A Monoid for K

We now show that the monoid Loch(c)(M) accepts the language
K .
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We now show that the monoid Loch(c)(M) accepts the language
K .

Let g : M∗ −→ Loch(c)(M) be given by g(m) = h(c)mh(c).
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We now show that the monoid Loch(c)(M) accepts the language
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Let g : M∗ −→ Loch(c)(M) be given by g(m) = h(c)mh(c).

Claim: K = g−1(β)
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A Monoid for K

We now show that the monoid Loch(c)(M) accepts the language
K .

Let g : M∗ −→ Loch(c)(M) be given by g(m) = h(c)mh(c).

Claim: K = g−1(β)

Proof:
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A Monoid for K

We now show that the monoid Loch(c)(M) accepts the language
K .

Let g : M∗ −→ Loch(c)(M) be given by g(m) = h(c)mh(c).

Claim: K = g−1(β)

Proof:

Note that β ∈ Loch(c)(M) whenever h−1(β) ∩ ∆ 6= ∅.
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A Monoid for K

We now show that the monoid Loch(c)(M) accepts the language
K .

Let g : M∗ −→ Loch(c)(M) be given by g(m) = h(c)mh(c).

Claim: K = g−1(β)

Proof:

Note that β ∈ Loch(c)(M) whenever h−1(β) ∩ ∆ 6= ∅.

g(m1m2 . . .mk) = β if and only if
h(c)m1h(c) ◦ h(c)m2h(c) ◦ . . . h(c)mkh(c) = β if and only if
h(c)m1h(c)m2h(c) . . . h(c)mkh(c) = β if and only if
m1m2 . . .mk ∈ K .
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A Monoid for K

We now show that the monoid Loch(c)(M) accepts the language
K .

Let g : M∗ −→ Loch(c)(M) be given by g(m) = h(c)mh(c).

Claim: K = g−1(β)

Proof:

Note that β ∈ Loch(c)(M) whenever h−1(β) ∩ ∆ 6= ∅.

g(m1m2 . . .mk) = β if and only if
h(c)m1h(c) ◦ h(c)m2h(c) ◦ . . . h(c)mkh(c) = β if and only if
h(c)m1h(c)m2h(c) . . . h(c)mkh(c) = β if and only if
m1m2 . . .mk ∈ K .

K is recognized by a smaller monoid and hence there is an LTLM

formula that describes K
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Lifting the formula for K

We show that for any formula ϕ in LTLM , there is a formula ϕ# in
LTLΣ such that

w |= ϕ# ⇐⇒ w = ct1ct2c . . . tk−1ctk , with ti ∈ A∗

and σ(ct1ct2 . . . tk−1c) |= ϕ
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We show that for any formula ϕ in LTLM , there is a formula ϕ# in
LTLΣ such that

w |= ϕ# ⇐⇒ w = ct1ct2c . . . tk−1ctk , with ti ∈ A∗

and σ(ct1ct2 . . . tk−1c) |= ϕ

The formula ϕ# is defined recursively on the structure as follows:

m# = (c ∧ XFc) ∧ (Xψ′
m)

where ψm is the formula in LTLA describing
h−1(m) ∩ A∗ and ψ′

m is its relativization
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Lifting the formula for K

We show that for any formula ϕ in LTLM , there is a formula ϕ# in
LTLΣ such that

w |= ϕ# ⇐⇒ w = ct1ct2c . . . tk−1ctk , with ti ∈ A∗

and σ(ct1ct2 . . . tk−1c) |= ϕ

The formula ϕ# is defined recursively on the structure as follows:

m# = (c ∧ XFc) ∧ (Xψ′
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where ψm is the formula in LTLA describing
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m is its relativization

(ϕ1 ∧ ϕ2)
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1 ∧ ϕ#
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Lifting the formula for K

We show that for any formula ϕ in LTLM , there is a formula ϕ# in
LTLΣ such that

w |= ϕ# ⇐⇒ w = ct1ct2c . . . tk−1ctk , with ti ∈ A∗

and σ(ct1ct2 . . . tk−1c) |= ϕ

The formula ϕ# is defined recursively on the structure as follows:

m# = (c ∧ XFc) ∧ (Xψ′
m)

where ψm is the formula in LTLA describing
h−1(m) ∩ A∗ and ψ′

m is its relativization

(ϕ1 ∧ ϕ2)
# = ϕ

#
1 ∧ ϕ#

2

(¬ϕ)# = ¬(ϕ#) ∧ (c ∧ XFc)
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Lifting the formula for K

We show that for any formula ϕ in LTLM , there is a formula ϕ# in
LTLΣ such that

w |= ϕ# ⇐⇒ w = ct1ct2c . . . tk−1ctk , with ti ∈ A∗

and σ(ct1ct2 . . . tk−1c) |= ϕ

The formula ϕ# is defined recursively on the structure as follows:

m# = (c ∧ XFc) ∧ (Xψ′
m)

where ψm is the formula in LTLA describing
h−1(m) ∩ A∗ and ψ′

m is its relativization

(ϕ1 ∧ ϕ2)
# = ϕ

#
1 ∧ ϕ#

2

(¬ϕ)# = ¬(ϕ#) ∧ (c ∧ XFc)
(Xϕ)# = X(¬cU(c ∧ ϕ#))
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Lifting the formula for K

We show that for any formula ϕ in LTLM , there is a formula ϕ# in
LTLΣ such that

w |= ϕ# ⇐⇒ w = ct1ct2c . . . tk−1ctk , with ti ∈ A∗

and σ(ct1ct2 . . . tk−1c) |= ϕ

The formula ϕ# is defined recursively on the structure as follows:

m# = (c ∧ XFc) ∧ (Xψ′
m)

where ψm is the formula in LTLA describing
h−1(m) ∩ A∗ and ψ′

m is its relativization

(ϕ1 ∧ ϕ2)
# = ϕ

#
1 ∧ ϕ#

2

(¬ϕ)# = ¬(ϕ#) ∧ (c ∧ XFc)
(Xϕ)# = X(¬cU(c ∧ ϕ#))

(ϕ1Uϕ2)
# = (c =⇒ ϕ

#
1 )U(c ∧ ϕ#

2 )
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