
0.5
setgray0

0.5
setgray1 Model checking pushdown systems

R. Ramanujam

Institute of Mathematical Sciences, Chennai

jam@imsc.res.in

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 1

Sources of unboundedness

• Data manipulation: integers, lists, trees,
pointers

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 2

Sources of unboundedness

• Data manipulation: integers, lists, trees,
pointers

• Control structures: procedures, process
creation

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 2

Sources of unboundedness

• Data manipulation: integers, lists, trees,
pointers

• Control structures: procedures, process
creation

• Asynchronous communication: unbounded
FIFO queues (buffers)

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 2

Sources of unboundedness

• Data manipulation: integers, lists, trees,
pointers

• Control structures: procedures, process
creation

• Asynchronous communication: unbounded
FIFO queues (buffers)

• Parameters: number of processes, delay
duration

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 2

Sources of unboundedness

• Data manipulation: integers, lists, trees,
pointers

• Control structures: procedures, process
creation

• Asynchronous communication: unbounded
FIFO queues (buffers)

• Parameters: number of processes, delay
duration

• Real time: discrete, dense domains

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 2

Extended automata

• A generic way of modelling such systems is
by finite state automata with guarded
transitions.

• An extended automaton is equipped with a
finite set of variables X = {x1, . . . , xn} with
variable xi taking values in set Vi.

• We have a finite set of guards G: each guard
is a preicate over X.

• With each transition is associated an action,
which is possibly a nondeterministic
assignment to X.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 3

Extended automata: semantics

A configuration is a tuple (q, v1, . . . , vn) where q is
a state and vi is a valuation for xi.
The transition system of the extended automaton
is over configurations:
(q, v1, . . . , vn) ⇒ (q′, v′

1
, . . . , v′n) if the automaton

has a transition q
g,a
→q′, the values vi satisfy guard

g and the tuple (v′
1
, . . . , v′n) is a possible result of

applying a to (v1, . . . , vn).

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 4

Some classes of extended
automata

• Timed automata: Variables – clocks; guards –
comparisons; actions: reset.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 5

Some classes of extended
automata

• Timed automata: Variables – clocks; guards –
comparisons; actions: reset.

• Petri nets: Variables – counters; guards –
x = 0; actions: * / - .

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 5

Some classes of extended
automata

• Timed automata: Variables – clocks; guards –
comparisons; actions: reset.

• Petri nets: Variables – counters; guards –
x = 0; actions: * / - .

• FIFO automata: Variables – queues; guards –
emptiness check; actions: insertion / deletion.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 5

Some classes of extended
automata

• Timed automata: Variables – clocks; guards –
comparisons; actions: reset.

• Petri nets: Variables – counters; guards –
x = 0; actions: * / - .

• FIFO automata: Variables – queues; guards –
emptiness check; actions: insertion / deletion.

• Pushdown systems: Variables – stack; guards
– emptiness check; actions: push / pop.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 5

Reachability problem

• Given: An extended automaton E, a set I of
initial configurations and a set D of
dangerous configurations.

• Decide if some d ∈ D is reachable from some
c0 ∈ I.

• The sets I and D may be infinite.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 6

Symbolic search

• Let post(C) denote the set of immediate
successors of a possibly infinite set of
configurations C.

• Forward search: Initialize C to I.
• Iterate C := C ∪ post(C) until C ∩ D 6= ∅ or a

fixed point is reached.
• Question: When is symbolic search effective

?

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 7

Sufficient conditions

• Each C ∈ C has a finite symbolic
representation.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 8

Sufficient conditions

• Each C ∈ C has a finite symbolic
representation.

• I ∈ C.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 8

Sufficient conditions

• Each C ∈ C has a finite symbolic
representation.

• I ∈ C.
• If C ∈ C then (post(C) ∪ C) ∈ C and is

effectively computable.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 8

Sufficient conditions

• Each C ∈ C has a finite symbolic
representation.

• I ∈ C.
• If C ∈ C then (post(C) ∪ C) ∈ C and is

effectively computable.
• Emptiness of C ∩ D is decidable.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 8

Sufficient conditions

• Each C ∈ C has a finite symbolic
representation.

• I ∈ C.
• If C ∈ C then (post(C) ∪ C) ∈ C and is

effectively computable.
• Emptiness of C ∩ D is decidable.
• C1 = C2 is decidable (to check fixpoint is

reached).

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 8

Sufficient conditions

• Each C ∈ C has a finite symbolic
representation.

• I ∈ C.
• If C ∈ C then (post(C) ∪ C) ∈ C and is

effectively computable.
• Emptiness of C ∩ D is decidable.
• C1 = C2 is decidable (to check fixpoint is

reached).
• Any chain C1 ⊆ C2 ⊆ . . . reaches a fixpoint

finitely.
Update Meeting, IIT-Guwahati, 4 July 2006 – p. 8

Timed automata

• Variables are clocks: non-negative real
valued.

• Transitions guarded by boolean combinations
of comparisons with integer bounds, actions
reset a subset of clocks.

• Equivalent configurations: when states are
the same and values are equivalent with
respect to constraints.

• Regions: equivalence classes of
configurations.

• Choose C to be the powerset of regions.Update Meeting, IIT-Guwahati, 4 July 2006 – p. 9

Conditions: regions

• A region can be finitely represented by the set
of constraints.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 10

Conditions: regions

• A region can be finitely represented by the set
of constraints.

• I is a union of regions.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 10

Conditions: regions

• A region can be finitely represented by the set
of constraints.

• I is a union of regions.
• If C is a union of regions, then so is post(C):

takes some work.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 10

Conditions: regions

• A region can be finitely represented by the set
of constraints.

• I is a union of regions.
• If C is a union of regions, then so is post(C):

takes some work.
• Checking emptiness of C ∩ D: check if C

contains some configuration with some state
of QD as its first element.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 10

Conditions: regions

• A region can be finitely represented by the set
of constraints.

• I is a union of regions.
• If C is a union of regions, then so is post(C):

takes some work.
• Checking emptiness of C ∩ D: check if C

contains some configuration with some state
of QD as its first element.

• Checking equality of regions is decidable.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 10

Conditions: regions

• A region can be finitely represented by the set
of constraints.

• I is a union of regions.
• If C is a union of regions, then so is post(C):

takes some work.
• Checking emptiness of C ∩ D: check if C

contains some configuration with some state
of QD as its first element.

• Checking equality of regions is decidable.
• Fixedpoint condition follows from the fact that

the set of regions is finite. Update Meeting, IIT-Guwahati, 4 July 2006 – p. 10

Lossy channel systems

• Automata extended with unbounded queues.
• Send transitions: no guard, action: add

message to channel.
• Receive transitions: guard: non-emptiness of

channel; action removes first message.
• Loss transitions: no guard, self loop, removes

an arbitrary message.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 11

Symbolic reachability

• Order configurations by the subword ordering.
• Choose C to be all upward closed sets of

configurations.
• Forward search does not work, satisfies

conditions 1 to 5 but not 6.
• When D is a set of upward closed

configurations, backward search works.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 12

Backward symbolic search

• Key idea: Use Higman’s lemma to show that
any upward closed set can be finitely
represented by its set of minimal elements
w.r.t. the pointwise order ≥.

• Checking that if C is upward closed, so is
pre(C) is easy.

• To show that a fixed point is reached in finitely
many steps, again appeal to Higman’s
lemma.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 13

Forward symbolic search

• Choose C to be the set of simple regular
expressions.

• SREs satisfy the first 5 conditions, but the
fixpoint cannot be effectively computed.

• One approach: find loops by (a kind of) static
analysis (Abdallah et al LICS 99).

• Another: use Angluin’s learning algorithms
(Varadhan et al FSTTCS 04).

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 14

Pushdown Systems

• Natural abstraction of programs written in
procedural, sequential languages.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 15

Pushdown Systems

• Natural abstraction of programs written in
procedural, sequential languages.

• They generate infinite-state transition
systems; states are pairs : (control state,
stack content).

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 15

Pushdown Systems

• Natural abstraction of programs written in
procedural, sequential languages.

• They generate infinite-state transition
systems; states are pairs : (control state,
stack content).

• Applications: analysis of boolean programs,
data-flow analysis, checkpoint algorithms
(suspend computations to inspect stack
content, for instance, to enforce security
requirements).

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 15

Automata with stack

• Automata extended with one stack.
• Guards: Check the topmost symbol on stack.
• Actions: replace topmost symbol by a fixed

word.
• Configuration (q, v): q holds values of global

variables, v holds values of program pointer,
values of local variables, return address.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 16

Symbolic reachability

• Choose C to be the family of regular
configurations.

• Each is represented by a DFA.
• I is typically finite and hence regular. Equality

of regular sets is decidable.
• If C is regular, showing that pre(C) or post(C)

is regular is straightforward.
• Büchi’s theorem asserts that the fixedpoint of

a chain is regular and can be effectively
computed.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 17

Model checking-1

• In fact we often need to verify not only
reachability but arbitrary LTL properties.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 18

Model checking-1

• In fact we often need to verify not only
reachability but arbitrary LTL properties.

• When valuations are arbitrary – that is, the
set of pushdown configurations in which an
atomic proposition is true, is an arbitrary
subset of the possible ones, model checking
is undecidable.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 18

Model checking-2

• When valuations are simple – that is, the truth
of an atomic proposition in a pushdown
configuration depends only on the control
state and topmost stack symbol, we can use
a Büchi-like technique to get decidability.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 19

Model checking-2

• When valuations are simple – that is, the truth
of an atomic proposition in a pushdown
configuration depends only on the control
state and topmost stack symbol, we can use
a Büchi-like technique to get decidability.

• These techniques can be extended to regular
valuations.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 19

Model checking-2

• When valuations are simple – that is, the truth
of an atomic proposition in a pushdown
configuration depends only on the control
state and topmost stack symbol, we can use
a Büchi-like technique to get decidability.

• These techniques can be extended to regular
valuations.

• Lower bounds: the model checking problem
is generically EXPTIME-complete.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 19

Model checking-2

• When valuations are simple – that is, the truth
of an atomic proposition in a pushdown
configuration depends only on the control
state and topmost stack symbol, we can use
a Büchi-like technique to get decidability.

• These techniques can be extended to regular
valuations.

• Lower bounds: the model checking problem
is generically EXPTIME-complete.

• Over pushdown systems, model checking
CTL∗ reduces to model checking LTL over
regular valuations.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 19

LTL:1

• Fix P , a countable set of atomic propositions.
LTL formulae are defined by the following
syntax:

α ::= p ∈ P | ¬α | α ∨ β | ©α | αUβ

• A model is a word w : N → 2P , and the notion
w |= α is defined as usual.

• Derived modalities: 3α = TrueUα and
2α = ¬3¬α.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 20

LTL:2

• Let L(α) = {w|w |= α}.
• We know that for every formula α, we can

construct a nondeterministic Büchi automaton
Bα such that L(α) = L(Bα), where Bα of size
O(2|α|).

• Typically, we define a transition system
T = (S,→, s0, V) where V : S → 2P is a
valuation, and interpret formulas on runs of T .
We thus define the model checking problem:
T |= α, if every infinite run of T satisfies α.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 21

Pushdown systems-1

• A pushdown system is a tuple
S = (C, Γ, ∆, c0, b): C is a finite set of control
locations, Γ is the stack alphabet, ∆ is the
transition relation, c0 is the initial location and
b is the bottom stack symbol.

• Γ ⊆ (C × Γ) × (C × Γ∗), and a transition is
written as: (c, a) → (d, w).

• A configuration is an element of C × Γ∗.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 22

Pushdown systems-2

• With a pushdown system S, we associate a
transition system TS with configurations as
states, (c0, b) as the initial state and the
transition relation ⇒ is the least one
satisfying:
if (c, a) → (d, w) then for all u ∈ Γ∗,
(c, au) ⇒ (d, wu).

• Without loss of generality, we assume that b is
never removed from stack, and that every
transition increases the stack by at most one.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 23

LTL on pushdown systems

Let S = (C, Γ, ∆, c0, b) be a pushdown system, α

an LTL formula, and V : P → 2C×Γ
∗

.
The model checking problem comes in three
forms:

• Does (c0, b) |= α ?
• Is there any configuration that violates α ?
• Is there any reachable configuration that

violates α ?

All these problems are undecidable, in general.
Update Meeting, IIT-Guwahati, 4 July 2006 – p. 24

Simple valuations

• A set of configurations C is said to be simple if
C ⊆ {(c, aw) | w ∈ Γ∗} for some c ∈ C, a ∈ Γ.

• A valuation V is simple, if for every p ∈ P ,
V (p) is a union of simple sets.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 25

Regular valuations

• A valuation V is said to be regular if for every
p ∈ P , V (p) is recognizable and does not
contain any configuration with an empty
stack.

• Then, for every p ∈ P and c ∈ C, we have a
DFA Ac

p over the alphabet Γ such that
V (p) = {(c, w) | c ∈ C, wR ∈ L(Ac

p)}.

• That is, p is true at (c, w) iff Ac
p enters a final

state after reading the stack bottom up.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 26

S-automata

• For a PDS S = (C, Γ, ∆, c0, b), an
S-automaton is a tuple A = (Q, Γ, δ, C, F)
where Q is a finite set of states, Γ (the stack
alphabet of S) is its input alphabet,
δ : (Q × Γ) → 2Q is its transition function, C is
its set of initial states and F is the set of
accepting states.

• δ is extended as usual, and we say that a
configiration (c, w) is accepted by A iff
δ(c, w) ∩ F 6= ∅.

• A set of S-configurations C ′ is regular if it is
accepted by some S-automaton. Update Meeting, IIT-Guwahati, 4 July 2006 – p. 27

The main idea

Consider the model checking problem for the
initial configuration.

• The problem is reduced to that of emptiness
for Büchi pushdown systems.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 28

The main idea

Consider the model checking problem for the
initial configuration.

• The problem is reduced to that of emptiness
for Büchi pushdown systems.

• The emptiness problem for Büchi pushdown
systems is reduced to that of computing the
set of predecessors of certain regular sets of
configurations.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 28

The main idea

Consider the model checking problem for the
initial configuration.

• The problem is reduced to that of emptiness
for Büchi pushdown systems.

• The emptiness problem for Büchi pushdown
systems is reduced to that of computing the
set of predecessors of certain regular sets of
configurations.

• The set of predecessors is regular, and an
algorithm is given for computing it; this is
Büchi’s saturation procedure. Update Meeting, IIT-Guwahati, 4 July 2006 – p. 28

Step 1

• Given a PDS S = (C, Γ, ∆, c0, b), and a
formula α, first construct Aα = (Q, δ, q0, F) on
2P .

• Construct the product
B = ((C × Q), Γ, ∆′, (c0, q0), b, G) by
“synchronizing” S and Aα.

• ((c, q), a) →′ ((c′, q′), w)) if (c, a) → (c′, w) in S

and q′ ∈ δ(q, σ), where σ is the set of
propositions true in (c, a).

• Note that we are using the simplicity of
valuations here.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 29

Step 2

• Consider a transition (c, a) → (c′, w) in B.
• It is repeating if there exists v ∈ Γ∗ such that

(c, av) can be reached from (c, a) visiting G.
• Let Rep denoting repeating heads of

transitions and let R denote the set
{(c, aw) | (c, a) ∈ Rep, w ∈ Γ∗}.

• We can show that L(B) is nonempty iff
(c0, b) ∈ pre∗(R).

• Rep is easily computed by an edge marking
algorithm.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 30

Regular valuations

• Suppose we have Pα = {p1, · · · , pk}. Consider
all the DFAs M c

i for each c ∈ C.
• We form a vector of these automata in a

canonical fashion with its (product) state from
a set States.

• The crucial idea is to carry the state vector as
part of the stack in a larger pushdown system
with Γ′ = (Γ × States.

• Care is needed to ensure consistent
configurations.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 31

	Sources of unboundedness
	Sources of unboundedness
	Sources of unboundedness
	Sources of unboundedness
	Sources of unboundedness

	Extended automata
	Extended automata: semantics
	Some classes of extended automata
	Some classes of extended automata
	Some classes of extended automata
	Some classes of extended automata

	Reachability problem
	Symbolic search
	Sufficient conditions
	Sufficient conditions
	Sufficient conditions
	Sufficient conditions
	Sufficient conditions
	Sufficient conditions

	Timed automata
	Conditions: regions
	Conditions: regions
	Conditions: regions
	Conditions: regions
	Conditions: regions
	Conditions: regions

	Lossy channel systems
	Symbolic reachability
	Backward symbolic search
	Forward symbolic search
	Pushdown Systems
	Pushdown Systems
	Pushdown Systems

	Automata with stack
	Symbolic reachability
	Model checking-1
	Model checking-1

	Model checking-2
	Model checking-2
	Model checking-2
	Model checking-2

	LTL:1
	LTL:2
	Pushdown systems-1
	Pushdown systems-2
	LTL on pushdown systems
	Simple valuations
	Regular valuations
	S-automata
	The main idea
	The main idea
	The main idea

	Step 1
	Step 2
	Regular valuations

