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Sources of unboundedness

• Data manipulation: integers, lists, trees,
pointers

• Control structures: procedures, process
creation

• Asynchronous communication: unbounded
FIFO queues (buffers)

• Parameters: number of processes, delay
duration

• Real time: discrete, dense domains
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Extended automata

• A generic way of modelling such systems is
by finite state automata with guarded
transitions.

• An extended automaton is equipped with a
finite set of variables X = {x1, . . . , xn} with
variable xi taking values in set Vi.

• We have a finite set of guards G: each guard
is a preicate over X.

• With each transition is associated an action,
which is possibly a nondeterministic
assignment to X.
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Extended automata: semantics

A configuration is a tuple (q, v1, . . . , vn) where q is
a state and vi is a valuation for xi.
The transition system of the extended automaton
is over configurations:
(q, v1, . . . , vn) ⇒ (q′, v′

1
, . . . , v′n) if the automaton

has a transition q
g,a
→q′, the values vi satisfy guard

g and the tuple (v′
1
, . . . , v′n) is a possible result of

applying a to (v1, . . . , vn).
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Some classes of extended
automata

• Timed automata: Variables – clocks; guards –
comparisons; actions: reset.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 5



Some classes of extended
automata

• Timed automata: Variables – clocks; guards –
comparisons; actions: reset.

• Petri nets: Variables – counters; guards –
x = 0; actions: * / - .

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 5



Some classes of extended
automata

• Timed automata: Variables – clocks; guards –
comparisons; actions: reset.

• Petri nets: Variables – counters; guards –
x = 0; actions: * / - .

• FIFO automata: Variables – queues; guards –
emptiness check; actions: insertion / deletion.

Update Meeting, IIT-Guwahati, 4 July 2006 – p. 5



Some classes of extended
automata

• Timed automata: Variables – clocks; guards –
comparisons; actions: reset.

• Petri nets: Variables – counters; guards –
x = 0; actions: * / - .

• FIFO automata: Variables – queues; guards –
emptiness check; actions: insertion / deletion.

• Pushdown systems: Variables – stack; guards
– emptiness check; actions: push / pop.
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Reachability problem

• Given: An extended automaton E, a set I of
initial configurations and a set D of
dangerous configurations.

• Decide if some d ∈ D is reachable from some
c0 ∈ I.

• The sets I and D may be infinite.
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Symbolic search

• Let post(C) denote the set of immediate
successors of a possibly infinite set of
configurations C.

• Forward search: Initialize C to I.
• Iterate C := C ∪ post(C) until C ∩ D 6= ∅ or a

fixed point is reached.
• Question: When is symbolic search effective

?
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Sufficient conditions

• Each C ∈ C has a finite symbolic
representation.
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Sufficient conditions

• Each C ∈ C has a finite symbolic
representation.

• I ∈ C.
• If C ∈ C then (post(C) ∪ C) ∈ C and is

effectively computable.
• Emptiness of C ∩ D is decidable.
• C1 = C2 is decidable (to check fixpoint is

reached).
• Any chain C1 ⊆ C2 ⊆ . . . reaches a fixpoint

finitely.
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Timed automata

• Variables are clocks: non-negative real
valued.

• Transitions guarded by boolean combinations
of comparisons with integer bounds, actions
reset a subset of clocks.

• Equivalent configurations: when states are
the same and values are equivalent with
respect to constraints.

• Regions: equivalence classes of
configurations.

• Choose C to be the powerset of regions.Update Meeting, IIT-Guwahati, 4 July 2006 – p. 9



Conditions: regions

• A region can be finitely represented by the set
of constraints.
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Conditions: regions

• A region can be finitely represented by the set
of constraints.

• I is a union of regions.
• If C is a union of regions, then so is post(C):

takes some work.
• Checking emptiness of C ∩ D: check if C

contains some configuration with some state
of QD as its first element.

• Checking equality of regions is decidable.
• Fixedpoint condition follows from the fact that

the set of regions is finite. Update Meeting, IIT-Guwahati, 4 July 2006 – p. 10



Lossy channel systems

• Automata extended with unbounded queues.
• Send transitions: no guard, action: add

message to channel.
• Receive transitions: guard: non-emptiness of

channel; action removes first message.
• Loss transitions: no guard, self loop, removes

an arbitrary message.
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Symbolic reachability

• Order configurations by the subword ordering.
• Choose C to be all upward closed sets of

configurations.
• Forward search does not work, satisfies

conditions 1 to 5 but not 6.
• When D is a set of upward closed

configurations, backward search works.
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Backward symbolic search

• Key idea: Use Higman’s lemma to show that
any upward closed set can be finitely
represented by its set of minimal elements
w.r.t. the pointwise order ≥.

• Checking that if C is upward closed, so is
pre(C) is easy.

• To show that a fixed point is reached in finitely
many steps, again appeal to Higman’s
lemma.
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Forward symbolic search

• Choose C to be the set of simple regular
expressions.

• SREs satisfy the first 5 conditions, but the
fixpoint cannot be effectively computed.

• One approach: find loops by (a kind of) static
analysis (Abdallah et al LICS 99).

• Another: use Angluin’s learning algorithms
(Varadhan et al FSTTCS 04).
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Pushdown Systems

• Natural abstraction of programs written in
procedural, sequential languages.
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Pushdown Systems

• Natural abstraction of programs written in
procedural, sequential languages.

• They generate infinite-state transition
systems; states are pairs : (control state,
stack content).

• Applications: analysis of boolean programs,
data-flow analysis, checkpoint algorithms
(suspend computations to inspect stack
content, for instance, to enforce security
requirements).
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Automata with stack

• Automata extended with one stack.
• Guards: Check the topmost symbol on stack.
• Actions: replace topmost symbol by a fixed

word.
• Configuration (q, v): q holds values of global

variables, v holds values of program pointer,
values of local variables, return address.
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Symbolic reachability

• Choose C to be the family of regular
configurations.

• Each is represented by a DFA.
• I is typically finite and hence regular. Equality

of regular sets is decidable.
• If C is regular, showing that pre(C) or post(C)

is regular is straightforward.
• Büchi’s theorem asserts that the fixedpoint of

a chain is regular and can be effectively
computed.
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Model checking-1

• In fact we often need to verify not only
reachability but arbitrary LTL properties.
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Model checking-1

• In fact we often need to verify not only
reachability but arbitrary LTL properties.

• When valuations are arbitrary – that is, the
set of pushdown configurations in which an
atomic proposition is true, is an arbitrary
subset of the possible ones, model checking
is undecidable.
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Model checking-2

• When valuations are simple – that is, the truth
of an atomic proposition in a pushdown
configuration depends only on the control
state and topmost stack symbol, we can use
a Büchi-like technique to get decidability.
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Model checking-2

• When valuations are simple – that is, the truth
of an atomic proposition in a pushdown
configuration depends only on the control
state and topmost stack symbol, we can use
a Büchi-like technique to get decidability.

• These techniques can be extended to regular
valuations.

• Lower bounds: the model checking problem
is generically EXPTIME-complete.

• Over pushdown systems, model checking
CTL∗ reduces to model checking LTL over
regular valuations.
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LTL:1

• Fix P , a countable set of atomic propositions.
LTL formulae are defined by the following
syntax:

α ::= p ∈ P | ¬α | α ∨ β | ©α | αUβ

• A model is a word w : N → 2P , and the notion
w |= α is defined as usual.

• Derived modalities: 3α = TrueUα and
2α = ¬3¬α.
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LTL:2

• Let L(α) = {w|w |= α}.
• We know that for every formula α, we can

construct a nondeterministic Büchi automaton
Bα such that L(α) = L(Bα), where Bα of size
O(2|α|).

• Typically, we define a transition system
T = (S,→, s0, V ) where V : S → 2P is a
valuation, and interpret formulas on runs of T .
We thus define the model checking problem:
T |= α, if every infinite run of T satisfies α.
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Pushdown systems-1

• A pushdown system is a tuple
S = (C, Γ, ∆, c0, b): C is a finite set of control
locations, Γ is the stack alphabet, ∆ is the
transition relation, c0 is the initial location and
b is the bottom stack symbol.

• Γ ⊆ (C × Γ) × (C × Γ∗), and a transition is
written as: (c, a) → (d, w).

• A configuration is an element of C × Γ∗.
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Pushdown systems-2

• With a pushdown system S, we associate a
transition system TS with configurations as
states, (c0, b) as the initial state and the
transition relation ⇒ is the least one
satisfying:
if (c, a) → (d, w) then for all u ∈ Γ∗,
(c, au) ⇒ (d, wu).

• Without loss of generality, we assume that b is
never removed from stack, and that every
transition increases the stack by at most one.
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LTL on pushdown systems

Let S = (C, Γ, ∆, c0, b) be a pushdown system, α

an LTL formula, and V : P → 2C×Γ
∗

.
The model checking problem comes in three
forms:

• Does (c0, b) |= α ?
• Is there any configuration that violates α ?
• Is there any reachable configuration that

violates α ?

All these problems are undecidable, in general.
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Simple valuations

• A set of configurations C is said to be simple if
C ⊆ {(c, aw) | w ∈ Γ∗} for some c ∈ C, a ∈ Γ.

• A valuation V is simple, if for every p ∈ P ,
V (p) is a union of simple sets.
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Regular valuations

• A valuation V is said to be regular if for every
p ∈ P , V (p) is recognizable and does not
contain any configuration with an empty
stack.

• Then, for every p ∈ P and c ∈ C, we have a
DFA Ac

p over the alphabet Γ such that
V (p) = {(c, w) | c ∈ C, wR ∈ L(Ac

p)}.

• That is, p is true at (c, w) iff Ac
p enters a final

state after reading the stack bottom up.
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S-automata

• For a PDS S = (C, Γ, ∆, c0, b), an
S-automaton is a tuple A = (Q, Γ, δ, C, F )
where Q is a finite set of states, Γ (the stack
alphabet of S) is its input alphabet,
δ : (Q × Γ) → 2Q is its transition function, C is
its set of initial states and F is the set of
accepting states.

• δ is extended as usual, and we say that a
configiration (c, w) is accepted by A iff
δ(c, w) ∩ F 6= ∅.

• A set of S-configurations C ′ is regular if it is
accepted by some S-automaton. Update Meeting, IIT-Guwahati, 4 July 2006 – p. 27



The main idea

Consider the model checking problem for the
initial configuration.

• The problem is reduced to that of emptiness
for Büchi pushdown systems.
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The main idea

Consider the model checking problem for the
initial configuration.

• The problem is reduced to that of emptiness
for Büchi pushdown systems.

• The emptiness problem for Büchi pushdown
systems is reduced to that of computing the
set of predecessors of certain regular sets of
configurations.

• The set of predecessors is regular, and an
algorithm is given for computing it; this is
Büchi’s saturation procedure. Update Meeting, IIT-Guwahati, 4 July 2006 – p. 28



Step 1

• Given a PDS S = (C, Γ, ∆, c0, b), and a
formula α, first construct Aα = (Q, δ, q0, F ) on
2P .

• Construct the product
B = ((C × Q), Γ, ∆′, (c0, q0), b, G) by
“synchronizing” S and Aα.

• ((c, q), a) →′ ((c′, q′), w)) if (c, a) → (c′, w) in S

and q′ ∈ δ(q, σ), where σ is the set of
propositions true in (c, a).

• Note that we are using the simplicity of
valuations here.
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Step 2

• Consider a transition (c, a) → (c′, w) in B.
• It is repeating if there exists v ∈ Γ∗ such that

(c, av) can be reached from (c, a) visiting G.
• Let Rep denoting repeating heads of

transitions and let R denote the set
{(c, aw) | (c, a) ∈ Rep, w ∈ Γ∗}.

• We can show that L(B) is nonempty iff
(c0, b) ∈ pre∗(R).

• Rep is easily computed by an edge marking
algorithm.
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Regular valuations

• Suppose we have Pα = {p1, · · · , pk}. Consider
all the DFAs M c

i for each c ∈ C.
• We form a vector of these automata in a

canonical fashion with its (product) state from
a set States.

• The crucial idea is to carry the state vector as
part of the stack in a larger pushdown system
with Γ′ = (Γ × States.

• Care is needed to ensure consistent
configurations.
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