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Abstract

Specifying dynamic behaviour of a system by listing scenarios of its interactions has
become a popular practice. Message sequence chart (MSC) is a rigorous and widely
used notation for specifying such scenarios of system behaviour. High-level MSCs
(HMSC) provide hierarchical and modular composition facilities for constructing
complex scenarios from basic MSCs. Although the general problem of formal verifi-
cation of properties of HMSCs is intractable, we propose a framework for restricted
verification. We present simple templates for commonly used types of properties
and discuss efficient algorithms for verifying them.
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1 Introduction

It is important to clearly and precisely state the behavioural requirements
when building practical business systems as well as safety-critical real-time,
embedded systems (e.g., see our railway system [23]). It is not always easy to
communicate dynamic behavioural requirements of a system to the end-users
in an easy-to-understand non-mathematical manner, particularly in the early
stages of requirements analysis, where the requirements need to be high-level
and abstract (removed from design and implementation issues). A simple and
intuitive way to describe a system is to list various examples or scenarios of its
intended behaviour. At the highest level of abstraction, a scenario describes
a set of interactions of the system with its environment and other external
systems. An interaction includes entities (including system components) that
participate in it and event occurrences. An interaction scenario often stands
for a set of possible event sequences (episodes). Each interaction scenario is
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typically classified as either desirable (sunny day) or undesirable (rainy day).
Ideally, an implementation should meet all sunny day interaction scenarios
and none of the rainy day ones.

There is a need for simple, expressive, intuitive, graphical and standard-
ised notations to specify interaction scenarios of systems. Message sequence
chart (MSC) is just such a simple, visual and mathematically rigorous no-
tation [25,13]. MSCs have been used widely in the telecom domain and are
also increasingly being used in many other applications [23]. The sequence
diagram and use case notations in UML are semantically and visually close
to the MSC notation [12,11,20,8]. The ITU standard for MSC [14] includes a
mathematical semantics for it. Other researchers have provided mathemati-
cal semantics for MSCs using formalisms such as transition systems, process
algebras etc. [16,19,18,9]. In this paper, we use the partial order semantics
given by Alur et al [2]. The main use of a formal semantics for a notation
is that it can be used to design formal verification and analysis algorithms.
For example, a specification written using MSCs can be analysed to detect
various problems such as missing scenarios and race conditions. Formal veri-
fication algorithms can be designed which check whether a given specification
written using MSCs satisfies a given property written in a suitable formal no-
tation [2,1,24,17,4,21,22,5]. Model-checking tools have also been applied for
formal verification of MSCs [3,10].

This paper presents a set of restricted simple property templates and for-
mal verification algorithms to check whether a given High-level MSC (HMSC)
satisfies the given property. Since the general problem of formal verification
of HMSC specification is intractable when the property is specified in tem-
poral logic or equivalent notations, following [7,15,5], we restrict the kinds
of properties that can be specified and give specialised algorithms for formal
verification of properties specified using each template. We present a compro-
mise wherein we sacrifice expressiveness for efficient verification. The MSC
notation has been extended in several ways (e.g., [26]); here we focus on the
core aspects of the MSC and HMSC notation only.

Section 2 presents an overview of HMSC notation and its formal semantics.
Section 3 discusses our approach of property templates and algorithms to
verify them. Section 4 provides conclusions and further work.

2 HMSC Semantics

We assume familiarity with basic MSC notation and its partial order (linear
time) semantics [2] (see Appendix A for an overview). Here we summarise the
relevant definitions for MSC-graphs and HMSC.
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2.1 Linear Time Semantics of MSC Graphs

An MSC graph is essentially a directed (not necessarily acyclic) graph in which
each vertex refers to a basic MSC.

Definition 2.1 An MSC graph G is a tuple (V,→, vI , vT , µ) where V is a
finite set of vertices, → is a binary relation over V (each element of → is a
directed edge in G), vI is the initial vertex, vT is the terminal vertex and µ is
a labelling function that maps each vertex to a basic MSC m.

Definition 2.2 The partial order associated with the asynchronous concate-
nation of two basic MSCs m1 and m2 having the same set of instances is the
partial order ≤m1,m2 on locations(m1)] locations(m2) given by the transitive
closure of the following relation:
≤m1 ] ≤m2 ∪{(< i, l1 >m1 , < i, l2 >m2)| < i, l1 >m1∈ locations(m1)
∧ < i, l2 >m2∈ locations(m2)}
where locations(m) is the set of locations (events) in basic MSC m and ] is
the operator for disjoint union of two sets. Each location is denoted by a tuple
< i, l > where i is the unique ID for an instance and l is the ID for the event
within the visual order of the instance i.

Figure 1 shows an MSC graph (initial vertex and terminal vertex are not
shown, initial vertex connects to v0 and vertices v2, v3 connect to the ter-
minal vertex). There are an infinite number of paths from the initial to the
terminal vertex in this MSC graph (due to the loop in it); e.g., < v0, v1, v3 >,
< v0, v1, v0, v1, v3 >, < v0, v1, v0, v1, v0, v1, v3 > etc. The idea in the seman-
tics of MSC graph is to construct a partial order for each such finite path in
the MSC graph, by asynchronously concatenating the partial orders of the ba-
sic MSCs occurring in the path. Figure 1 also shows the precedence graph for
walk < v0, v1, v0, v1, v3 > in the MSC graph; this graph is obtained by asyn-
chronously concatenating the basic MSCs for v0, v1, v0, v1 and v3. Dotted
lines show the edges in the precedence graph added due to Definition 2.2; we
omit the edges entailed by transitive closure. Note that the locations (events)
are renamed in different instance of v0 (and v1) in the walk (due to the disjoint
union).

Definition 2.3 The semantics of an MSC graph G is the set of all finite and
infinite runs obtained by (i) asynchronously concatenating each basic MSC
along each walk in G and (ii) taking the disjoint union over all walks, both
finite and infinite, of the set of runs obtained from the partial orders in (i).

Since the set of walks in an MSC graph may be infinite (if it has loops),
the set of runs is also infinite. The problem of deciding whether a given MSC-
graph satisfies a given property P (where P is specified as an automaton) is
undecidable [3].
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Fig. 1. MSC Graph

2.2 Linear Time Semantics of HMSC

Essentially, an HMSC is a hierarchical (multi-level) graph whose nodes are
either basic MSCs or another HMSC, thus allowing for nesting of graphs.

Definition 2.4 A high-level message sequence chart (HMSC) H is a tuple
(N, B, vI , vT , µ, E) where N is a finite set of nodes, B is a finite set of boxes
(or supernodes), vI ∈ N ∩ B is the initial node or box, vT ∈ N ∩ B is the
terminal node or box, µ is a labelling function that maps each node in N to a
basic MSC and each box in B to an already defined HMSC, and E is the set
of edges that connect the nodes and boxes to each other.

We omit some HMSC features in the MSC standard such as conditions and
inline expressions. What is the meaning of an HMSC H? First, an HMSC
is flattened into an MSC-graph, obtained by recursively substituting a box
by the corresponding HMSC. The meaning of an HMSC is then the set of
all possible finite or infinite runs of this flattened MSC-graph [3]; here it is
required that the nesting of HMSCs is not mutually recursive, i.e., if a node
of an HMSC H is labelled with another HMSC H’, then a node of H’ cannot
be labelled with H (or with any HMSC that refers to H).
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3 HMSC Verification

Given an HMSC H and a property P about the runs of H, the verification
problem is to decide whether or not all runs of H satisfy P . P is typically
stated using temporal logic like LTL or CTL, an automaton or a template
MSC. A näıve verification algorithm would examine some or all runs of H to
decide whether or not H satisfies P . The general problem of deciding whether
a given MSC-graph satisfies a given property P (where P is specified as an au-
tomaton) is undecidable[3]. However, we consider some special classes of prop-
erties below and present efficient verification algorithms for such properties.
Following [7,15,5], we assume that the properties fall into various pre-defined
templates, thus sacrificing generality for ease of use and efficiency of verifica-
tion. The properties are stated in terms of the relative ordering of events in
the runs of the input HMSC. Although the property templates cannot express
all the properties that may be of interest in practice, they do cover broad
classes of typical properties. Moreover, we present efficient graph-theoretic
algorithms (based on linear time semantics of HMSCs) to verify properties
stated using these templates.

Every internal event in an HMSC has a unique ID specified by the unique
location in the basic MSC in which it occurs. A user-defined event E cor-
responds in general to a non-empty finite set γ(E) of internal events in an
HMSC. The properties are specified in terms of user-defined events and their
negations. We say that a user-defined event occurs when any of the internal
events corresponding to it occur. If a user-defined event E stands for a fi-
nite set {e1, . . . , ek} of internal events, the negative event not(E) stands for
not(e1) ∧ . . . ∧ not(ek). In Figure 1, a user event “P2 sends message to P1”
(underscore stands for “don’t care”) corresponds to the two internal events:
“P2 sends approve to P1” (in basic MSC v2) and “P2 sends fail to P1” (in
basic MSC v1).

3.1 Tracing

A tracing property asserts the occurrence of a sequence of events in the spec-
ified order in all runs or in at least one run of the input HMSC H. The
template for the property is shown below. The terms in bold are given by the
user and the terms in bold separated by slashes are alternatives, one of which
is chosen by the user. Each ai is a user-defined event or its negation.

The sub-sequence of events X = [a1, a2, . . . , ak] occurs in some / all

runs of HMSC H

Definition 3.1 Let H be an MSC-graph and let σ = u0, u1, u2, . . . be a run
of H, where each ui is an internal event in some MSC M in H. A positive
user-defined event a = {e1, . . . , en} occurs in σ if there is some event e ∈ a and
some ui (i ≥ 0) in σ such that ui = e. A negative user-defined event not(a),
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where a is a positive user-defined event a = {e1, . . . , en} occurs in σ if a does
not occurs in σ i.e., if there is no e ∈ a and there is no ui (i ≥ 0) in σ such
that ui = e.

The concept of a user-defined event occurring in a run can be generalised
for a sequence X = [a1, a2, . . . , an] of (positive or negative) user-defined events
by means of the inductive Definition 3.2.

Definition 3.2 Let H be an MSC-graph and σ = u0, u1, u2, . . . be a run
of H, where each ui is an internal event in some MSC M in H. A trace
X = [a1, a2, . . . , an] of (positive or negative) user-defined events occurs in σ if
x is a prefix of σ, where σ = x • y, such that a1 occurs in x and the remaining
trace [a2, . . . , an] occurs in the remaining run y. Here, • is the concatenation
operation on sequences.

Suppose that all events in X are positive user-defined events. Then X
occurs in a given finite or infinite run σ of an HMSC H if there is a sequence
of internal events B =< b1, . . . , bk > such that bi ∈ ai and B occurs as a
sub-sequence within σ. The sub-sequence B need not be contiguous in σ i.e.,
there may be other events between bi and bi+1 in σ. Now suppose one or more
ai’s in X are negative user-defined events. Then X occurs in a given finite or
infinite run σ of an HMSC H if there is a sequence of internal events b1, . . . , bn

(where n = number of positive user-defined events in X) such that (i) each bi

is in a positive user-defined event in X (in the order in which they occur in
X) and (ii) B is a sub-sequence within σ and (iii) for every pair bi and bi+1

in B such that bi ∈ ap and bi+1 ∈ aq, no internal event from any negative
user-defined events between ap and aq occurs between bi and bi+1 in σ.

For example, the following property checks if there is any run in the HMSC
of Figure 1 where P1 sends a connect message but P1 does not receive an
approve message after that. A chief difficulty in checking tracing properties
is that the runs of H may be infinite.

The sub-sequence of events X = [“P1 sends connect to ”,

not(“P1 receives approve from )”] occurs in some runs of HMSC H.

The sequence X may include some cycles or repetitions, as shown below.

The sub-sequence of events X = [“P1 sends connect to ”,

“P1 receives fail from ”, “P1 sends connect to ”)]

occurs in some runs of HMSC H.

For simplicity, we assume that X does not include any negative user-
defined events. Let H be an HMSC and let S be the set of basic MSCs
that occur in the MSC-graph obtained by flattening H. For a given internal
event e, let φ(e) denote the set of basic MSCs from S in which e occurs (clearly
φ(e) 6= ∅ and φ(e) ⊆ S); e.g., φ(“P2 sends to P1”) = {v1, v2}. Recall that
a positive user-defined event E stands for a finite set γ(E) = {e1, . . . , ep} of
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internal events. Then the function φ can be extended to a user defined event
E as: φ(E) =

⋃
e∈γ(E) φ(e) = φ(e1) ∪ . . . ∪ φ(ep). Here, φ(E) denotes the set

of basic MSCs in H, which contains at least one internal event corresponding
to the user-defined event E. We need some more definitions.

Definition 3.3 Let H be an MSC-graph over a set S of basic MSCs. Then a
sequence w =< M1, M2, . . . ,Mm > of basic MSCs in S is called feasible trace
of H if (i) there is a directed path from initial node to M1 and (ii) from each
Mi to Mi+1 (1 ≤ i < m) and (iii) from Mm to terminal node of H. Specifically,
(ii) needs to hold even if Mi = Mi+1 for any i, in which case there must be a
non-empty directed path from Mi to itself (i.e., Mi should be reachable from
itself via a non-empty directed path).

Definition 3.4 Let β =< e1, e2, . . . , ek > be a sequence of positive internal
events in a set of basic MSCs S in an MSC-graph H. Let w =< M1, M2, . . . ,Mm >
be a feasible trace of H. Then a function f partitions β among w if (i)
f(M) = β if w consists of a single MSC M and M ∈ φ(β); and (ii) if
w =< Mi > • < Mi+1, . . . ,Mm > then f(Mi) = a proper prefix x of β
(where β = x • y), Mi ∈ φ(x) and f partitions y among < Mi+1, . . . ,Mm >.

In Figure 1, w =< v1, v3 > is a feasible trace of H. Also, a function
f = {v1 7→< r fail p1, r report p3 >, v3 7→< s req service p1 >} partitions
β =< r fail p1, r report p3, s req service p1 > among w. Note that f asso-
ciates a non-empty subsequence of β with every basic MSC in w. A simple
algorithm can be designed to construct a function f that partitions given β
among w; such an f is unique for given w, β because every event in β is an
internal event, which belongs to a unique basic MSC in S.

Algorithm 1 (hmsc tracing a) to check properties stated using the tracing
template is as follows (we assume the option some is chosen). We system-
atically select a permutation β of internal events from X, form a candidate
feasible trace w in H which partitions β through a function f and efficiently
check whether β occurs in some linearization of the precedence relation corre-
sponding to the asynchronous concatenation of basic MSCs in w. The feasible
traces have a length of at most k and hence are finite in number.

For the second property above, X = [a1, a2, a3] where a1 = “P1 sends
connect to ”, a2 = “P1 receives fail from ”, a3 = “P1 sends connect to ”.
φ(a1) = φ(a3) = {v0}, φ(a2) = {v1} and γ(a1) = γ(a3) = {s connect p1},
γ(a2) = {r fail p1}. There is only one possible β =< e1, e2, e3 > where e1 =
s connect p1, e2 = r fail p1, e3 = s connect p1. Thus w =< M1, M2, M3 >
where M1 = v0, M2 = v1, M3 = v0 is a feasible trace of H and the function
f = {M1 7→< s connect p1 >,M2 7→< r fail p1 >,M3 7→< s connect p1 >}
partitions β among w. This choice of β, w and f clearly satisfies the inner for
loops; hence the property is satisfied. Clearly, the following property is not
satisfied by the HMSC in Figure 1.
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Algorithm 1 hmsc tracing a

input HMSC H; {actually H is the flattened MSC-graph for an HMSC}
input X = [a1, . . . , ak] {finite sequence of positive user-defined events}
output true if X occurs in some run of H; false otherwise
Let S = the set of all basic MSCs in H;
Let φ(ai) = the set of basic MSCs for user-defined events ai;
Let γ(ai) = the set of internal events in user-defined event ai;
for every sequence β =< e1, e2, . . . , ek > where ei ∈ γ(ai) do

for every feasible trace w =< M1, M2, . . . ,Ma >, 1 ≤ a ≤ k,
of basic MSCs from S such that a function f partitions β among w do

ok = true;
{do for every MSC in w}
for (x = 1; ok == true && x ≤ a; x++) do

for (j = 2; ok == true && j ≤ |f(Mx)|; j++) do
for (i = 1; i < j; i++) do
{RM = precedence order for MSC M}
if precedes(RMx ,f(Mx)j,f(Mx)i) then

ok = false;
break;

end if
end for

end for
end for
if ok == true then

return(true);
end if

end for
end for
return(false);

The sub-sequence of events X = [“P1 sends req service to ”,

“P1 sends connect to ”] occurs in some runs of HMSC H.

The complexity of the Algorithm 1 is easily seen to be O(Ak ·mk) where
A is the maximum number of internal events corresponding to any event ai

in X (i.e., A = max{γ(ai)}), m is the number of basic MSCs in H and
k is the number of events in X. To reduce the complexity, we enforce an
upper bound of k=10, which means that one can use up to 10 user-defined
events to state the tracing property, which is acceptable in practice. The
earlier work reported in [5] presents a similar algorithm for basic MSCs and
its analysis. The algorithm is efficient and does not explicitly check all possible
finite linearizations of H. Clearly, the approach works even when there are
repetitions in X. The algorithm can be modified for the situations (a) when X
contains negative user-defined events; and/or (b) the option all runs is chosen
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in the template. For better use in practice, we have extended this approach to
provide additional options such as packed subsequences, position of the tracing
(only at the beginning, only at the end or anywhere) within the linearization
etc.

3.2 Consequence

Another useful kind of property is specified using the following template. Here
X = {x1, . . . , xm}, Y = {y1, . . . , yn} are given sets of user-defined events or
their negations.

Each / An / All events from X leads to an / all events from Y

in all runs of HMSC H

For example, in Figure 1, the following property states that each occurrence
of P1 sending a connect message is followed by P1 receiving either fail or
approve message in every run.

An events from [“P1 sends connect to ”] leads to an events from

[“P1 receives fail from ”, “P1 receives approve from ”]

in all runs of HMSC H

As another example, in Figure 1, the following property states that each
occurrence of P1 sending a connect message or P1 receiving a fail mes-
sage is followed by either P1 receiving an approve message or P1 sending a
req service message in every run.

Each events from [“P1 sends connect to ”, “P1 receives fail from ”]

leads to an events from [“P1 receives approve from ”,

“P1 sends req service to ”] in all runs of HMSC H

For simplicity, we again assume that X,Y do not include any negative
user-defined events. Given a set of sets X, we use

⋃
X to denote the union of

the sets in X; e.g.,
⋃
{{a, b}, {a, c}} = {a, b, c}. The meaning of this property

template is as follows:

• Property pattern: An event from X leads to an event from Y in all
runs of HMSC H. Meaning: Is it true that for every run σ of H, if there
exists some internal event x ∈

⋃
X, then there exists some internal event

y ∈
⋃

Y such that the sequence x • y (obtained by concatenating x and
y) is a sub-sequence (tracing) of σ?

• Property pattern: An event from X leads to all events from Y in all
runs of HMSC H. Meaning: Is it true that for every run σ of H, if
there exists some internal event x ∈

⋃
X then some ordered permutation

Y 1 of internal events in
⋃

Y exists such that the sequence x • Y 1 is a
sub-sequence (tracing) of σ?

• Property pattern: Each event from X leads to an event from Y in all
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runs of HMSC H. Meaning: Is it true that for every run σ of H, and
for every user event a ∈ X, if there exists some internal event x ∈ a then
there exists some internal event y ∈

⋃
Y such that the sequence x • y is

a sub-sequence (tracing) of σ?

• Property pattern: Each event from X leads to all events from Y in all
runs of HMSC H. Meaning: Is it true that for every run σ of H and
every user event a ∈ X, if there exists some internal event x ∈ a then
there exists some ordered permutation Y 1 of internal events in

⋃
Y such

that the sequence x • Y 1 is a sub-sequence (tracing) of σ?

The meaning is defined similarly when the first “all events” option is cho-
sen. We illustrate the approach by an algorithm to verify the second conse-
quence property pattern listed above.

Definition 3.5 Let H be an MSC-graph. Let A be a positive user-defined
event in H and let B be a collection of positive user-defined events in H. We
say that A must be followed by some event in B, denoted A I B, if for every
finite run σ = e1, e2, . . . of the MSC graph H, if some internal event a ∈ A
occurs in σ (i.e., ei = a for some i ≥ 1) then (i) there is some event b ∈

⋃
B

such that ej = b for some j > i (i.e., a is followed by b); and (ii) A I B is
true in the remaining run ei+1, ei+2, . . . , ej−1, ej+1, . . . of σ.

Remarks:

• If no event from A occurs in some run of an HMSC H then A I B is
vacuously true for that run.

• If two internal events e1 and e2 belong to the same bMSC (i.e., φ(e1) =
φ(e2) = M) then {e1} I {{e2}} iff e1 precedes e2 in the precedence order
of M .

For example, in Figure 1, it is easy to see that {“P1 send connect to P2”}
I {“P2 send approve to P1”’, “P2 send fail to P1”}.

Proposition 3.6 Let H be an MSC-graph, let A be a positive user-defined
event and let B be a non-empty collection of positive user events over H.
Then A I B if and only if for every internal event e1 in A, there exists an
internal event e2 in

⋃
B with φ(e1) = M1, φ(e2) = M2, such that the following

holds:

• if M1 = M2 = some bMSC M then e1 precedes e2 in the partial order asso-
ciated with M ; or

• if M1 6= M2 then

(i) M1 is reachable from the start vertex of H, and

(ii) M2 is reachable from M1, and

(iii) the end vertex of H is reachable from M2, and

(iv) every directed path from the start vertex of H to the end vertex of H that
passes through M1 also passes through M2 after M1.
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The following Algorithm 2 implements Proposition 3.6 to check whether a
given vertex u is always followed by another vertex v in a graph G, with respect
to special given start and end vertices in G. The algorithm essentially performs
a recursive depth-first traversal of the graph G starting at u and backtracking
when reaching any vertex in L. The global array visited of Boolean flags
marks vertices already visited.

Algorithm 2 must followed by

global Boolean visited[|V |]; {initially each vertex in V is unvisited}
input Graph G = (V, E);
input start, end, u ∈ V ; {u 6= start,u 6= end}
input L ⊆ V \ {start, end, u};
output true if u is always followed by at least one vertex in L on any path
from start to end through u; false otherwise
{assumed: u is reachable from start and end is reachable from u}
visited[u] = true; {mark u as visited}
for every vertex w adjacent to u do

if (visited[w] || w == start || w ∈ L) then
continue

end if
if (w == end) then

return(false); {u not always followed by a vertex in L}
end if
visited[w] = true; {mark w as visited}
if (must followed by(G, start, end, w, L) == false) then

return(false);
end if

end for
return(true);

The complexity of Algorithm 2 is clearly the same as depth-first graph
traversal viz. O(|V | + |E|). The Algorithm 3 for the consequence property
(where the second consequence property pattern listed above is chosen) is as
follows.

If each user-defined event in the set Y contains at most N internal events
then the algorithm explicitly checks N |Y | combinations. We manage this ex-
ponential complexity by putting an upper limit on the number of events in Y
(e.g., |Y | ≤ 10), which is satisfactory in practical situations. The earlier pa-
per [5] presents similar algorithms for basic MSCs and their analysis. Again,
the algorithm is efficient and does not explicitly check all possible finite lin-
earizations of H. The algorithm can be modified when X or Y contain negative
user-defined events. In addition to tracing and consequence, we have defined
other templates to specify more varieties of properties, such as precedence.
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Algorithm 3 hmsc consequence b

input HMSC H; {actually H is the flattened MSC-graph for an HMSC}
input finite non-empty sets X, Y of positive user-defined events in H
output true if for all runs σ of H, there exists an internal event x in

⋃
X

and some permutation Y 1 of internal events in
⋃

Y such that σ contains
x • Y 1 as a sub-sequence (tracing); false otherwise
{γ(a) denotes the set of internal events in user-defined event a}
for (i = 1; i ≤ |X|; i++) do
{check every internal-event in

⋃
X}

for every internal event x ∈ γ(X[i]) do
{Is x followed by all elements of Y in some order in all runs of H?}
for every combination L =< e1, e2, . . . , e|Y | > s.t. ei ∈ γ(Y [i]) do

if (φ(x)==φ(ei) for every ei ∈ L) then
if (x precedes ei for every ei in L) then

return(true);
end if

else
if (must followed by(H, startH , endH , x, L)) then

return(true); {x is the one}
end if

end if
end for

end for{x is not followed by all elements of Y }
end for
return(false);

4 Conclusions and Further Work

The approach of specification of system behaviour by listing examples of its
interactions is gaining widespread acceptance during the requirements anal-
ysis phase. Consequently, it is important to analyse scenario-based system
specifications to detect errors early and to gain confidence in the system re-
quirements. Message sequence charts and high-level message sequence charts
provide a rigorous yet intuitive formalism for specifying such scenarios of sys-
tem behaviour. HMSCs provide hierarchical and modular composition facili-
ties for constructing complex scenarios from basic ones. Other notations like
UML use cases and sequence diagrams have been given formal semantics in
terms of HMSCs. Several techniques have been proposed for analysing scenar-
ios specified by HMSC: race condition detection, missing scenario detection
and formal verification. Although the general problem of formal verification
of properties of HMSCs is intractable, in this paper, we proposed simple and
intuitive templates for stating common types of properties and algorithms for
verifying them.

For further work, we need to add more templates for expanding the kinds
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of properties that can be specified. We can look at using a restricted linear
temporal logic (or regular expressions) for stating properties of HMSCs. The
approach certainly restricts the expressive power for stating properties of HM-
SCs but might gain in efficiency of verification algorithms. Verification of live
sequence charts [6] or MSCs with timing properties [26] is also of considerable
interest.
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A Linear Time Semantics of Basic MSC Notation

A.1 The Basic MSC Notation

We present here only some essential features in the MSC notation; we omit
features like actions, inline expressions and gates etc. In an MSC, entities
stand for instances (or processes) and events typically represent sending and
receiving of messages by processes - there are also other kinds of events such
as those related to timers. The meanings of an instance and a message depend
on the system being described. An instance does not necessarily stand for a
computer program; it refers to some active agent or entity. A message does
not necessarily represent an actual data message; it may refer to some kind
of exchange of information. A message has a name and no further structure
or details (in the simplest case). An MSC is not concerned with the actual
mechanism or channels of the message transmission, except to assume that
the messages are always delivered in the order without any loss or corrup-
tion. Further, the send is non-blocking i.e., the sender does not wait until the
receiver receives the message.

Figure A.1 shows an MSC that depicts a simple interaction among 3 in-
stances named valve, controller and pressure gauge. Each vertical line for
an instance denotes the events that happen within the instance; the topmost
event is the earliest event (within the instance) and so on downwards in time.
This temporal ordering of events for an instance is called its local order. The
visual distance between the events within a local order is immaterial. In Fig-
ure A.1, the valve and pressure gauge processes send their respective status to
the controller using messages named status close and status high pressure
respectively. The controller then issues an open command to the valve using
the message named cmd open. Note that the MSC depicts only one scenario;
many other scenarios are possible e.g., one where the valve is open, pressure is
low and the controller issues command to close the valve. The MSC is enclosed
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valve pressure gauge controller

status available

t1

status close

status high pressure

t1

cmd open

msc Steam Boiler

Fig. A.1. Basic MSC

in a rectangular frame and has a name (Steam Boiler in this example).

The MSC notation allows one to avoid any particular ordering of a subset
of events for a process, by using a construct called co-region. A co-region
is indicated by a dotted line segment along the vertical line for the process
and the events within this dotted line are unordered. Figure A.1 shows a
co-region for controller in which the controller does not impose any order on
the receipt of the status close message from valve and status high pressure
message from pressure gauge (these messages may be received in any order).

Many scenarios relate message flows with timing constraints. It is possible
to easily specify such scenarios in the MSC notation using three special events:
timer set, timer reset and timeout. The timer set event is denoted by an
hourglass symbol connected to the timeline of a single process. The timer
reset event is denoted by a cross connected to the timeline of a process. The
timeout event is denoted by connecting the hourglass symbol of the timer to
the process timeline by a bent line. Each timer has a unique name. Naturally,
for each timer, the timer reset and timeout events must be preceded by the
timer set event. In Figure A.1, the controller starts a timer t1 before waiting
for the messages from valve and pressure gauge instances. In this particular
scenario, the controller receives both the messages before the timeout and
then resets the timer t1.

A condition is an informal descriptive mechanism in the MSC notation
used to display a state or situation that must be reached by either a single
instance or a group of instances. A condition is written as a text label within a
hexagonal box, which is placed either on a single instance or across a group of
instances. If a condition C is placed on a single instance P then the execution
of P does not proceed to the next event (below the condition on the local order)
until the condition is reached. That is, the condition C is a pre-requisite for
the next event in the instance. If the condition C is placed across a group of
instances P1, . . . , Pk, then all the k instances must achieve local states in which
the condition C is satisfied; only after that state is reached, can any of the k
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instances proceed further in their respective local orders. In such a case, the
condition C can be thought of a synchronisation mechanism useful to ensure
that the instances P1, . . . , Pk reach the same state before proceeding further.
In Figure A.1, instances valve and pressure gauge share a condition called
status available; only when both these instances reach a state that satisfies
this condition, can they proceed further with their local orders.

What exactly is the scenario specified by the basic MSC in Figure A.1? It
may appear that the MSC represents only one sequence of events; in fact it
represents several actual event sequences each of which captures the intended
behaviour. To understand this clearly, we formally define the linear time
semantics of a basic MSC.

A.2 Linear Time Semantics of Basic MSCs

The MSC notation discussed so far is called a basic MSC to distinguish it from
the HMSC defined later. We now formally define the linear time semantics of
a basic MSC in terms of the associated partial order and the set of runs [2,6,5].
With each instance i in a given basic MSC m, we associate an ordered sequence
0..lmax(m, i) of finite number of discrete locations, which are numbered from
the top of the instance to the bottom. Each location on an instance i in
basic MSC m, denoted < i, l >m, is associated with an event, which may
be sending or receiving of a message, a condition, or timer events set, reset,
timeout. We drop the subscript m when the basic MSC is clear from the
context. The semantics of a basic MSC m is defined in terms of the partial
order ≤m induced by m on the set of its locations < i, l >. The partial order
is obtained from the following precedence relation Rm:

• visual order along an instance line: < i, l > Rm < i, l + 1 > unless the
two consecutive locations are in a co-region

• send of a message precedes its receipt: if < i, l > is a send event and
< i′, l′ > is the corresponding receive event for the message, then < i, l >
Rm < i′, l′ >

• shared condition induces synchronisation barrier: if locations < i, l >
and < i′, l′ > refer to the same condition c, then < i, l > Rm < i′, l′ +1 >

• events within a co-region have no order among them: suppose < i, l >, <
i, l + 1 >, . . . , < i, l + k > are events in a co-region. If l > 0 (i.e., there
is at least one event before the co-region) then < i, l − 1 > Rm < i, l >,
< i, l − 1 > Rm < i, l + 1 >, . . . ,< i, l − 1 > Rm < i, l + k >. Also,
if k < lmax(i, m) (i.e., there is at least one event after the co-region)
then < i, l > Rm < i, l + k + 1 >,< i, l + 1 > Rm < i, l + k + 1 >,
. . . ,< i, l + k > Rm < i, l + k + 1 >.

We assume that the basic MSC m is well-formed so that the relation Rm is
acyclic. We call Rm the precedence relation of the basic MSC m. The partial
order ≤m is the reflexive transitive closure of Rm.
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e3e7

e4

e8

e5

e6

e1

c1

e2

e1 = valve sends status_close to controller
e2 = controller receives status_close from valve
e3 = pressure_gauge sends status_high_pressure to controller
e4 = controller receives status_high_pressure from pressure_gauge
e5 = controller sends cmd_open to valve
e6 = valve receives cmd_open from controller
e7 = set timer t1 
e8 = reset timer t1
c1 = condition correct_status_available

Fig. A.2. Precedence graph for the basic MSC in Figure A.1

Definition A.1 The semantics of a basic MSC m is the set of all runs (i.e.,
linearizations) of the partial order ≤m.

This implies that we have interleaving semantics for concurrency: any two
events that are incomparable in the partial order can happen in any order.
Note also that each run of a basic MSC is a finite sequence of events and
each basic MSC has only a finite number of such finite runs. The precedence
graph in Figure A.2 depicts the precedence relation Rm among the locations
(events) in the basic MSC of Figure A.1. The vertices of this precedence graph
stand for events; there is a directed edge from event u to event v if u directly
precedes v i.e., uRmv. An event v cannot occur until all preceding events have
occurred. If the MSC is well-formed then the corresponding precedence graph
is a directed acyclic graph (DAG).
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