
Model Checking Visual Specification of Requirements

Ulka Shrotri, Purandar Bhaduri and R. Venkatesh
TRDDC, Tata Consultancy Services

54 B, Hadapsar Industrial Estate
Pune 411 013, INDIA

{ulkas,pbhaduri,rvenky}@pune.tcs.co.in

Abstract

Visual notations like class diagrams, and use case di-
agrams are very popular with practitioners for capturing
requirements of software applications. These notations un-
fortunately have little or no semantics, and hence cannot
be analysed by tools. Formal notations, on the other hand,
have associated tools that check specifications for stated
properties but are difficult to integrate with software devel-
opment processes in use. Strengths of both approaches can
be exploited by giving formal semantics to popular nota-
tions. Here we propose a novel usage of UML object dia-
grams for specifying pre- and post-conditions for use cases
and capturing global system properties as class invariants.
A translation is defined from object diagrams to the formal
notation TLA+. The TLA+ specification is then formally
verified using the model checker TLC. The proposed nota-
tion is intuitive, expressive and formal. We present a small
case study to illustrate its strengths.

1. Introduction

In this paper, we apply model checking to the problem of
verifying object oriented software requirements specifica-
tions. Formal specification languages like Z and VDM have
been used to specify software requirements, but there are
no fully automated tools for analysing these specifications
as in model checking. On the other hand model checkers
have been used to verify designs of control intensive soft-
ware and hardware systems, and not for analysing require-
ments. We show that with the proper combination of spec-
ification language and model checking tool it is possible to
check software requirements for consistency. Since require-
ments deal with data and states at a high level of abstraction,
the method is more likely to scale up when confronted with
industrial applications.

In object-oriented software development, the Unified
Modelling Language (UML) [2] has become the industry

standard for specifying different models. Use cases are the
primary notation in UML for capturing requirements. Use
case descriptions supplement the static domain model by
describing the behaviour of the system using both dynamic
and functional aspects. The dynamic aspect is the flow of
actions of the system and the user, usually described by se-
quence or collaboration diagrams. The functional aspect is
described by the pre- and post-conditions of the use case
written in natural language. This functional aspect is not
formally integrated with the static structure of the system
described using class diagrams, which results in lack of tool
support for detecting inconsistencies in use case descrip-
tions.

In this paper, we propose a visual, yet formal, nota-
tion for capturing the relation between the functional and
the static structure in requirements, and the use of a model
checking tool to detect inconsistencies in their specification
automatically. We assume that the entities in a use case
are described by a class diagram. Corresponding to each
class we associate an object diagram that specifies a global
invariant satisfied by objects of that class. We also asso-
ciate object diagrams with use cases for specifying their pre-
and post-conditions. Our object diagrams are enriched with
Boolean operators for combining simple conditions, and
also have primitive attributes for specifying state changes in
an object oriented system. The notation is formalised using
the Temporal Logic of Actions.

The Temporal Logic of Actions (TLA) [9] and its associ-
ated specification language TLA+ [10], provide a notation
to specify a system as a set of actions. Each action effects
a change in the global state. The same notation is also used
to specify properties of the global state. This allows for a
natural translation from use cases and global constraints in
object-oriented models to actions in TLA+. While translat-
ing from UML to TLA+ we translate object diagrams as-
sociated with classes as invariant properties, and object di-
agrams associated with use cases into TLA+ actions. Once
models in UML are translated into TLA+, we use the model
checker TLC to catch errors in the translated models. We

demonstrate the translation to TLA+ and the results of us-
ing TLC through a small case study, that of a library sys-
tem. Our experience shows that the formalisation of object-
oriented models in TLA and the use of TLC can catch many
subtle errors in the initial specification [1].

Our choice of TLA and TLC for verifying object mod-
els over other formalisms was motivated by two key fac-
tors. Most model checkers allow only simple data types to
describe states and focus exclusively on attacking the com-
plexity arising out of composing several state machines in
parallel. They do not provide the complex structural con-
straints on states that characterise software systems, object-
oriented or otherwise. TLA, on the other hand, has a rich
set of constructs for describing relationships between data,
as well as transformations of these relations. On the other
hand, formalisms like Z and VDM, which can describe re-
lationships between data adequately, do not have fully auto-
mated analysis tools. Our formalisation of object-oriented
requirements requires the combination of rich data con-
straints with the availability of automated tools, which is
addressed by TLA and TLC to a nicety.

The main contribution of this paper lies in showing how
visual notations familiar to practitioners can be used effec-
tively to describe state properties of a system. An impor-
tant advantage is that both static and dynamic aspects of
models are specified using the same notation. We formalise
the notation in TLA+ allowing usage of tools like TLC to
detect inconsistencies and violation of invariants. Through
examples we demonstrate how it is intuitive and easier to
specify constraints in our notation when compared with the
Object Constraint Language (OCL) [14]. OCL is a textual
language for expressing constraints on UML models. OCL
has two major drawbacks which we address using our for-
malised object model notation. The first is the limited avail-
ability of tools for the automatic verification of constraints
against model diagrams. The second is the difficulty of us-
ing a textual formalism in conjunction with the visual lan-
guages used in the rest of UML. This difficulty is acutely
evident when trying to parse OCL navigation expressions,
one reason why OCL is not widely used among practition-
ers. These comments are based on the current official OMG
version of UML 1.4 [11]. It remains to be seen how the draft
UML 2.0 addresses some of these issues.

Related Work The specification of actions by snapshots
of object configurations before and after an operation is
used by Catalysis [5]. But this notation is used as an
informal documentation tool without any formal seman-
tics. Moreover, snapshots in Catalysis are concrete instance
states, rather than properties of states. The work on con-
straint diagrams [8] and spider diagrams [7] allows pre/post-
conditions and invariants to be expressed visually, using
variants of Euler and Venn-Pierce diagrams and involve the

use of 3D notation to specify constraints. Since these di-
agrams are not based on the graphical elements of UML,
they place the burden of a new and unfamiliar notation on
the average software developer. The visualisation of OCL
constraints using extended collaboration diagrams explored
in [3, 4] also uses collection of objects and links between
them to express properties or constraints. However, their
approach focuses on the use of graph rewriting with rule
expressions to provide a semantics for OCL. The story di-
agrams of FUJABA [6], used for specifying pre- and post-
conditions of methods, are similar to our object diagrams.
The FUJABA tool translates specifications using story dia-
grams to Java code. In contrast to all of the above works,
our proposal is to detect inconsistencies in visual require-
ments specifications automatically using an available model
checker. We do this by translating specifications in a UML-
based visual constraint definition language into a temporal-
logic formalism.

2. The Temporal Logic of Actions

The Temporal Logic of Actions (TLA) was proposed
by Lamport [9] as a logic for specifying and reasoning
about concurrent systems. TLA uses a single logical for-
malism for describing transition systems and formulating
their properties. It is an extension of Linear Time Tempo-
ral Logic to a logic of actions. TLA+ [10] is a complete
specification language based on the logic of TLA.

In TLA actions specify changes in state. A state is an
assignment of values to program variables. The value as-
signed to variable x by state s is written s [[x]]. A state func-
tion f is an expression over program variables, which eval-
uates to s [[f]] in state s . State predicates are Boolean valued
state functions.

In TLA, a behaviour σ is an infinite sequence
〈s0, s1, s2, . . .〉 of states. A terminating behaviour is a spe-
cial case which repeats the final state forever. A pair of
consecutive states (s i , s i+1) in σ is called a step. A state
predicate P(u), involving program variables u, is true for
a behaviour σ if it holds in the initial state s0 of σ, i.e.,
s0[[P(u)]] = TRUE.

The formulas of TLA are built from actions, Boolean op-
erators, and the temporal operator 2. The temporal formula
2P(u) is defined to be true if P(u) holds for all suffixes of
σ, including σ itself. An action A is a Boolean expression
containing primed and unprimed variables. For states s and
t , [[A]](s , t) is defined to be TRUE iff A holds with values
from s substituted for unprimed variables and with values
from t substituted for primed variables. The action A is con-
sidered a temporal formula by letting [[A]](s0, s1, s2, . . .)

equal [[A]](s0, s1). For any state function f , let [A]f
∆

=
A ∨ (f ′ = f), where f ′ is the expression obtained by prim-
ing the free variables in f . A step satisfies [A]f iff it sat-

isfies A or it leaves f unchanged (a “stuttering” action).
The formula 2[A]f asserts that every step is an A step or
leaves f unchanged. The canonical form of a TLA formula
is Init ∧2[N]f ∧F , where Init is a state predicate describ-
ing the initial states of the system, N an action, f a state
function, and F is a fairness condition. In this paper we do
not make use of fairness specifications and all our specifica-
tions have the form Init ∧ 2[N]f .

3. Modelling Requirements in UML

A software system can be modelled as a set of interac-
tions with the environment. Each interaction changes the
state of the system. The requirements model of such a sys-
tem will include a model of interactions between the sys-
tem and the environment, a model of the state and a set of
rules that the system must obey. In UML these can be mod-
elled using use-cases, class diagrams and constraint specifi-
cations respectively. There are other aspects to the require-
ments of a software system like business processes; these
are outside the scope of this paper.

In UML constraints can be specified in the following
ways.

Global Invariants These are rules that hold within the sys-
tem at all times. Association constraints – cardinality
and optional/mandatory specifications – are one way of
specifying them. Global invariants can also be stated
by using a constraint language like OCL. We show how
object diagrams can be used for this purpose.

Rules of Interactions The interactions between the system
and the environment can be constrained by associating
pre- and post-conditions with use cases. These condi-
tions can be specified in UML, using OCL. We specify
both pre- and post-conditions using a single object di-
agram in a clear and concise way.

Class Invariants In UML these can be specified by associ-
ating an OCL expression with a class. Here we illus-
trate how object diagrams can be used for this purpose.

4. Semantics for UML Class and Object Dia-
grams

In this section we describe a translation from UML ob-
ject and class diagrams to TLA+ thus giving these diagrams
an implicit semantics.

Classes and Objects A class type is specified in TLA+ as
a set of records with the field names specifying the at-
tributes of the class. Every class gives rise to a set of
objects of that class. Every element of this set, i.e., an

object of this class, ranges over the set of records cor-
responding to the class. Since objects can be created
or destroyed, a class is modelled as a variable set. For
convenience, we use Ci to refer to a UML class as well
as the corresponding set of records in TLA.

Types and Data Invariants Since TLA does not have the
notion of typing, the type of each attribute and the data
invariants can be captured by straightforward invari-
ants in the TLA+ specification.

Associations and Links In TLA+ links between objects
are specified as variables that range over relations (sets
of tuples) between appropriate sets. The cardinal-
ity and optionality constraints on associations are also
captured as invariants.

Object Diagram An object diagram is a graph of in-
stances. The vertices are objects with data values and
the edges are links, which are instances of associations
in the class diagram. A static object diagram is an in-
stance of a class diagram; it is intended to show a snap-
shot of the detailed state of a system at a point in time.
Here we give a more general semantics to object dia-
grams extended with logical operators, and use them
to specify pre-, post-conditions and invariants. While
modelling requirements, an extended object diagram
may be attached to a class or a use case. When at-
tached to a class it specifies a class invariant. When
attached to an use case it specifies the pre- and post-
condition for the use case. In both cases, an extended
object diagram can be used to represent constraints on
the existence of given objects and links as well as data
attributes of instances of a class.

o1:C1{new} o2:C2

¬:C1

o1:C1{new} o2:C2

o3:C1{destroy}

l1{new}

l2

l1

l2

{or}

Figure 1. Example Object Diagram

Figure 1 shows an example object diagram that is at-
tached to a use case with o2 as a parameter. As it is a com-
posite diagram with an {or} connector, the pre-condition

of the use case is a disjunction of two conditions. The first
condition says that there must be no instance of C1 linked to
o2 by l2. The second disjunct states that such an object o3
indeed exists. The post-condition in each case is indicated
by the attributes {new} and {destroy}. If the first pre-
condition holds, then an object o1will be created and linked
to o2 by the link l1. If the second pre-condition holds then
the object o3 and link l2 are destroyed, a new object o1
is created, and a new link l1 is set up between o1 and o2.
Note that we have not tagged the link l1 with {new} in the
second diagram, as this can be inferred from the annotation
{new} on o1. The tags {new} and {destroy} on a link
are optional if the link connects an object that is created or
destroyed.

The notation is quite expressive. It can be used to ex-
press universal properties like “all books of a given title t
have been loaned”. This is shown in the object diagram in
figure 2, which says “there is no book with title t that is not
loaned.”

t:Title :Book ¬:LoanhasTitle onLoan

{¬}

Figure 2. A Universal Property

Informally, the algorithm to translate an object diagram
to TLA+ is as follows.

An object diagram is either simple or composite. A com-
posite object diagram is either a ¬ of a diagram or two di-
agrams combined by {or} or {and}. Each of the compo-
nent diagrams is translated to a TLA+ predicate and these
are combined using the corresponding boolean operator in
TLA+.

We now describe how a simple object diagram, such as
the top or bottom parts of Figure 1, is translated to TLA+.
A simple object diagram is a graph < O ,L > with ob-
jects O as vertices, and links L as edges. The vertices and
edges may be additionally decorated with an attribute from
the set {new,destroy,opt,¬}. The attribute {opt} is
just a shorthand for combining simple diagrams involving
optional cases connected by an {or}. Therefore, we treat
{opt} as syntactic sugar and leave it out of this discussion.
We view a simple object diagram as stating a boolean con-
dition on the state of the system. The attribute {new} is
not relevant in evaluating this condition, as it refers to the
post-state of a use case. The condition asserted by a simple
diagram is translated into TLA+ as the assertion that a cer-
tain set of tuples of objects defined by the diagram is non-
empty. More formally, given an object diagram < O ,L >,
let O = O1 ∪O2 and L = L1 ∪L2 be partitions of O and L,

where O1 and L1 consist of objects and links that are either
undecorated or decorated with {destroy} and O2 and L2

consist of objects decorated with {new}. In TLA+ we de-
fine a set of tuples < o1, . . . , ok > consisting all objects in
O1, constrained by the following conditions:

1. Each oi to belong to set C i where oi is an instance of
UML class Ci .

2. For each link l i in L1, that connects two objects o l and
om , in O1 we require that the tuple < o l , om > belong
to the set l i .

3. The negation ¬:C requires the non-existence of any
object of class C having the associated links.

If this set of tuples < o1, . . . , ok > is non-empty, we say
that the condition stated by the diagram is true of the current
state.

In addition to describing a condition on a state, an object
diagram also describes the post-state of a use case, provided
the pre-condition of the use case holds. The post-state is de-
scribed using the attributes {new} and {destroy}. Ob-
jects tagged with {new} result in the addition of a new ob-
ject in the post-state to the set corresponding to its class. All
links with that object as an end point update the correspond-
ing sets. All objects and links tagged with {destroy} are
removed from the corresponding sets in the post-state.

The general translation scheme is illustrated through the
library case study described below. The case study also
demonstrates how object diagram as a notation and its trans-
lation to TLA+ can be used for the specification and analy-
sis of business applications.

5. Case Study: A Library System

We now formally describe using TLA+, a library system
specified using UML and the Catalysis notation in [13].
This example highlights the object diagram notation and its
translation to TLA+, as well as the advantages of early veri-
fication using model checking. Indeed many subtle errors in
our initial specification of the library system were detected
by the use of the model checker TLC.

5.1. Informal Description

We start with an informal description of the library sys-
tem as presented in [13]. This description had gaps and am-
biguities, that were uncovered by our formal visual specifi-
cation and the use of the TLC model checker.

A library maintains a collection of books. Members be-
longing to the library borrow and return books. A member
may also reserve a title if all books bearing that title have
been issued to other members. On return of a book, if there

cLoan
BookTitle

Member

Loan1 0,1

1

0..*

10..*

1

0..*

1 1..*

0,1

0,1

heldFor

loans

Claim

claimFor

hasTitle

hasClaim

Figure 3. Class Diagram for Library

MODULE Relations
Defines binary relations between sets with cardinality and optionality constraints, for defining associations between classes.

Rel(X,Y)
∆

= SUBSET (X × Y) SUBSET A is the set of all subsets of A.

First(R)
∆

= {t[1]: t ∈ R}

Second(R)
∆

= {t[2]: t ∈ R}

OneToOne(R)
∆

= ∧ ∀ x ∈ First(R), y1,y2 ∈ Second(R) : <x,y1> ∈ R ∧ <x,y2> ∈ R ⇒ y1 = y2
∧ ∀ y ∈ Second(R), x1,x2 ∈ First(R) : <x1,y> ∈ R ∧ <x2,y> ∈ R ⇒ x1 = x2

OneToMany(R)
∆

= ∀ y ∈ Second(R), x1,x2 ∈ First(R) : <x1,y> ∈ R ∧ <x2,y> ∈ R ⇒ x1 = x2

ManyToOne(R)
∆

= ∀ x ∈ First(R), y1,y2 ∈ Second(R) : <x,y1> ∈ R ∧ <x,y2> ∈ R ⇒ y1 = y2

MandatoryFirst(R,X,Y)
∆

= ∀ y ∈ Y : ∃ x ∈ X: <x,y> ∈ R

MandatorySecond(R,X,Y)
∆

= ∀ x ∈ X : ∃ y ∈ Y: <x,y> ∈ R

MandatoryBoth(R,X,Y)
∆

= MandatoryFirst(R,X,Y) ∧ MandatorySecond(R,X,Y)

Figure 4. The Relations Module

are pending claims for that title, then the book is held for
one of the members having a claim. Members may also
cancel their claims.

A class diagram for the library system is shown in Fig-
ure 3. The meaning of the associations is as follows:

hasTitle(bk,ttl) The title of book bk is ttl.

cLoan(bk,ln) Book bk is currently loaned on loan ln.

loans(mem,ln) Loan ln belongs to the set of loans of
member mem.

hasClaim(mem,clm) Claim clm belongs to the set of
claims of member mem.

heldFor(bk,clm) Book bk is held for claim clm.

claimFor(clm,ttl) Claim clm is for title ttl.

The classes and associations of the library system shown
in Figure 3 are modelled in TLA+ using variables as fol-
lows.

MODULE Library
TLA specification for the library system

EXTENDS Relations, Naturals, FiniteSets

Variables for names of classes

VARIABLES Book, Title, Member, Claim, Loan

Variables for Associations

VARIABLES heldFor, hasTitle, claimFor, hasClaim
VARIABLES loans, cLoan

The cardinality and optionality requirements on the as-
sociations in the class diagram in Figure 3 are captured by
the invariants shown in Figure 5. The required definitions
are in the module Relations in Figure 4.

The invariants of the library system consist of the invari-
ants on the cardinality and optionality of the associations in
Figure 3 together with an invariant on class Book: if a book
bk is not loaned to any member and there are claims against
the title t of the book for which no book is held, then the
book must be held for some claim c. This is shown visually
by the object diagram in Figure 6, which is attached to the
class Book. Informally the diagram asserts that a particu-
lar set of 3-tuples is empty (indicated by the ¬ at top left

Association Invariants
Type invariants for associations expressing cardinality and optionality. Rel, OneToOne, ManyToOne, OneToMany, MandatoryFirst and MandatorySecond
are declared in module Relations.

AssociationInvariants
∆

=

∧ heldFor ∈ Rel(Book,Claim) ∧ OneToOne(heldFor)
∧ hasTitle ∈ Rel(Book,Title) ∧ ManyToOne(hasTitle) ∧ MandatoryBoth(hasTitle,Book,Title)
∧ claimFor ∈ Rel(Claim,Title) ∧ ManyToOne(claimFor)

∧ MandatorySecond(claimFor,Claim,Title)
∧ hasClaim ∈ Rel(Member,Claim) ∧ OneToMany(hasClaim)

∧ MandatoryFirst(hasClaim,Member,Claim)
∧ loans ∈ Rel(Member,Loan) ∧ OneToMany(loans) ∧ MandatoryFirst(loans,Member,Loan)
∧ cLoan ∈ Rel(Book,Loan) ∧ OneToOne(cLoan)

∧ MandatoryFirst(cLoan,Book,Loan)

Figure 5. Invariants on Associations

of the figure), with each tuple consisting of a book bk, a
title t and a claim c1. These tuples satisfy the constraints
that there exists a link hasTitle between bk and t, a link
claimFor between c1 and t and no link heldFor be-
tween a book object and claim c1. The diagram also says
that there does not exist a claim object (indicated by the ¬
prefixing :Claim) having a link heldFor with bk, nor
does there exist any loan object linked to bk by cLoan.
The TLA+ specification corresponding to this rule is given
below.

t:Title bk:Book ¬:Claim

c1:Claim ¬:Book ¬ :Loan

hasTitle

claimFor

heldFor

cLoanheldFor

{¬}

Figure 6. Invariant on Class Book

Claim Rule
Invariant on class book

BookInvariant
∆

=

∀ b ∈ Book :
LET
tuple1

∆

=

{ <bk,t,c1> ∈ Book× Title × Claim :
∧ bk = b
∧ <bk,t> ∈ hasTitle
∧ <c1,t> ∈ claimFor
∧ ¬∃ c ∈ Claim : <bk, c> ∈ heldFor
∧ ¬∃ l ∈ Loan : <bk,l> ∈ cLoan
∧ ¬∃ bk1 ∈ Book : ∧ <bk1,t> ∈ hasTitle

∧ <bk1,c1> ∈ heldFor
}
IN Cardinality(tuple1) = 0

Our library system consists of four use cases - Borrow,
Return, Reserve and Cancel. For each use case we give an
informal description of the functionality followed by the vi-
sual specification. Due to lack of space we omit the corre-
sponding TLA+ specification, except for the use case Bor-
row.

Borrow(m,b) Any member m can borrow a book b as long
as it is not loaned to or held for any other member.
Once a book has been loaned to a member the cLoan
association is updated appropriately. The visual speci-
fication of this is shown in Figure 7. The specification
states that a new loan object will be created along with
the associations shown and the claim object c1 will be
destroyed at the end of this use case. The correspond-
ing TLA+ specifications is given below.

¬:Loan

b:Book ¬ :Claim

l1:Loan{new} m:Member

b:Book c1:Claim{destroy}

l1:Loan{new} m:Member

cLoan

heldFor

cLoan
loans

heldFor

cLoan
loans

hasClaim

{or}

Figure 7. Object Diagram for Borrow

Borrow Use Case
TLA specs for borrow use case

Borrow1(m,b)
∆

=

LET
tuple

∆

=

{ <bk,m1> ∈ Book× Member :
∧ bk = b
∧ m1 = m
∧ ¬∃ c ∈ Claim : <bk, c> ∈ heldFor
∧ ¬∃ l ∈ Loan : <bk,l> ∈ cLoan

}
l1

∆

= CHOOSE l ∈ allLoans : l /∈ Loan
IN
∧ Cardinality(tuple) > 0
∧ Loan ′

= Loan ∪ {l1}
∧ cLoan ′

= cLoan ∪ { <b,l1> }
∧ loans ′

= loans ∪ { <m,l1> }

Borrow2(m,b)
∆

=

LET
tuple

∆

=

{ <bk,m1, c1> ∈ Book× Member × Claim:
∧ bk = b
∧ m1 = m
∧ <bk,c1> ∈ heldFor
∧ <m1,c1> ∈ hasClaim

}
l1

∆

= CHOOSE l ∈ allLoans : l /∈ Loan
IN
∧ Cardinality(tuple) > 0
∧ Loan ′

= Loan ∪ {l1}
∧ cLoan ′

= cLoan ∪ { <b,l1> }
∧ loans ′

= loans ∪ { <m,l1> }
∧ Claim ′

= Claim \
{c1 ∈ Claim: <b,m,c1> ∈ tuple}
∧ heldFor ′

= heldFor \
{ <b,c1> ∈ heldFor : <b,m,c1> ∈ tuple}

∧ claimFor ′
= claimFor \

{ <c,t1> ∈ claimFor : <b,m,c> ∈ tuple }
∧ hasClaim ′

= hasClaim \
{ <m,c> ∈ hasClaim : <b,m,c> ∈ tuple}

Borrow(m,b)
∆

=

Borrow1(m,b) ∨ Borrow2(m,b)

Return(m,b) A member m may return a book b that is is-
sued to her. On return the book becomes available
to other members, unless there is an unfulfilled claim
against the title of the book. An unfulfilled claim is
one with no book being held for it. If there is such a
claim then the book is held for it. The corresponding
object diagram is shown in Figure 8. The {new} tag
added to heldFor states that this link will be created at
the end of this use case. The {opt} tagged to object c
indicates that this object may or may not exist. This is
easier than combining specifications using {or}.

Reserve(m,t) If no book of a particular title t is available

b:Book l:Loan{destroy} m:Member

t:Title c:Claim{opt} ¬:Book

cLoan loans

hasTitle

heldFor{new}

heldForclaimFor

Figure 8. Object Diagram for Return

m:Member c:Claim{new}

¬:Claim t:Title

t:Title ¬:Loan

b:Book ¬ :Claim

hasClaim

claimForhasClaim
claimFor

cLoan

heldFor

hasTitle

{and}

{¬}

Figure 9. Object Diagram for Reserve

for borrowing a member m may opt to make a claim
against that title. The visual specification is shown in
Figure 9.

Cancel(m,t) A member m who has a claim against a title
t can cancel his claim. If at the time of cancellation a
book is held for him, then the book should be held for
some unfulfilled claim against the title, if any; if there
is no such claim, then the book held for this member
should become available. The object diagram for the
specification is shown in Figure 10.

Analysis with TLC After translating the specification to
TLA+ we ran the model checker TLC on the resulting spec-
ification. Several errors were detected in the initial specifi-
cation of the library system by running TLC. All these errors
were caught as instances of invariant violation. By inspect-
ing the error trace generated by TLC we were able to locate
the source of the error. We list two of these errors by stating
them as requirements which were missing in our original
specification, not presented in this paper.

m:Member c:Claim{destroy}

¬:Book t:Title

m:Member c:Claim{destroy}

¬:Book b1:Book

c1:Claim{opt} t:Title

hasClaim

heldFor

claimFor

hasClaim

heldFor

claimFor
heldFor heldFor{new}

hasTitle

{or}

Figure 10. Object Diagram for Cancel

1. In the invariant shown in Figure 6, the initial specifica-
tion did not require that there be no other book held for
the claim against the title t, i.e., the lower-left held-
For link was missing.

2. In the step Cancel(m,t), if a book with title t
is held for member m, and there are more unfulfilled
claims for the title, the book should be held for one of
them.

In order to catch these errors, it was sufficient to run TLC
on a model with just four books with three titles and four
members. The set of all loans and claims were also limited
to sizes of four and ten. It took TLC one minute and forty
seconds on a 1.4 GHz Pentium 4 machine, with 512 MB
RAM, to detect that the model presented here is error free.
The presence of errors is usually detected in a much shorter
time. We believe that these results are encouraging, even
though the object model itself is quite small.

6. Conclusion

We have presented a visual notation with associated for-
mal semantics and shown its usefulness in the rigorous anal-
ysis of requirements specified using UML. The main contri-
bution of this paper is the combination of UML visual syn-
tax with model checking based automated analysis to check
for consistency in requirements. We have tried the approach
on a real life financial negotiation system with 14 classes
and 38 invariants. The number of constraints involving as-
sociations were much higher than the those involving class
attributes, which were also modelled. We found errors in
the specification by model checking the specification of one
complex use case. Based on this experience we believe that

the method will scale. As future work, we plan to integrate
this method with the UML modelling tool MasterCraft [12].

7 Acknowledgements

We thank Prof. Mathai Joseph for his guidance and en-
couragement throughout the project. Thanks are also due to
Ashok Sreenivas, Prahlad Sampath and Sreedhar Reddy for
giving us valuable comments on the draft.

References

[1] P. Bhaduri, R. Venkatesh, and P. Sampath. Specification and
verification of object models with TLA and TLC. Technical
report, TRDDC, Mar. 2003.

[2] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Mod-
eling Language User Guide. Addison-Wesley, 1998.

[3] P. Bottoni, M. Koch, F. Parisi-Presicce, and G. Taentzer.
Consistency checking and visualization of OCL constraints.
In A. Evans, S. Kent, and B. Selic, editors, UML 2000, vol-
ume 1939 of LNCS, pages 294–308. Springer, 2000.

[4] P. Bottoni, M. Koch, F. Parisi-Presicce, and G. Taentzer. A
visualization of OCL using collaborations. In M. Gogolla
and C. Kobryn, editors, UML 2001, volume 2185 of LNCS,
pages 257–271. Springer, 2001.

[5] D. D’Souza and A. Wills. Objects, Components and Frame-
works With UML: The Catalysis Approach. Addison-
Wesley, 1998.

[6] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story
diagrams: A new graph transformation language based on
UML and Java. In H. Ehrig, G. Engels, H.-J. Kreowski,
and G. Rozenberg, editors, Proc. Theory and Application
to Graph Transformations, volume 1764 of LNCS. Springer,
1998.

[7] J. Howse, J. Molina, F. Taylor, S. Kent, and S. Gill. Spider
Diagrams: A Diagrammatic Reasoning System. Journal of
Visual Languages and Computing, pages 299–324, 2001.

[8] S. Kent. Constraint Diagrams: Visualizing Assertions in
Object-Oriented Models. In OOPSLA’97, pages 327–341.
ACM Press, 1997.

[9] L. Lamport. The temporal logic of actions. ACM Transac-
tions on Programming Languages and Systems, 16(3):872–
923, May 1994.

[10] L. Lamport. Specifying Systems: The TLA+ Language
and Tools for Hardware and Software Engineers. Addison-
Wesley, 2002.

[11] OMG. The Unified Modeling Language (UML) Specifi-
cation - Version 1.4, Sept. 2001. Joint submission to the
Object Management Group (OMG) http://www.omg.
org/technology/uml/index.htm.

[12] Mastercraft. Tata Consultancy Services. http://www.
tata-mastercraft.com.

[13] Business modelling study – the library. TriReme
International Ltd. white paper. Available at
http://www.trireme.com/whitepapers/
process/business_modelling.html.

[14] J. Warmer and A. Kleppe. The Object Constraint Language:
Precise Modeling with UML. Addison-Wesley, 1998.

