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Abstract

Modern real-time embedded systems are highly hetero-
geneous and distributed. As a result, compositional meth-
ods play an important role in the design and analysis of
such complex systems. One such compositional analysis
method is based on Real-Time Calculus [4, 14]. In this pa-
per, we present an analysis of fixed priority non-preemptive
scheduling with the Real-Time Calculus. Although fixed
priority non-preemptive scheduling was modeled with the
Real-Time Calculus previously [7], we show that the model
gives overly pessimistic results. We also compare our anal-
ysis with the existing holistic scheduling analysis [10, 3]
through an example of a system using a Controller Area
Network (CAN) bus [5]. The proposed method can be auto-
mated by incorporating it in the RTC Toolbox [13].

1. Introduction

The constraints imposed by application requirements in
domains like automotive and avionics very often lead to
complex distributed real-time embedded systems. Such sys-
tems are heterogeneous in terms of the underlying execu-
tion platform, different activation rates and execution de-
mands of tasks and different scheduling and arbitration poli-
cies of processing and communication resources. Based on
abstractions of the given architecture and application, var-
ious analytic methods can be used to obtain hard bounds
on properties of such systems like end-to-end delays, buffer
requirements and throughput. But one of the drawbacks of
these methods is their limited modeling capacity which can
lead to pessimistic (but still correct) results.

One such method is known as “holistic scheduling anal-
ysis” [12, 10] and is based on classical scheduling theory
which uses classical models of task arrivals such as peri-
odic, periodic with jitter, etc. Richter et al. [11] gave a
more general and modular approach to extend the concepts
of classical scheduling theory to heterogeneous distributed
systems. But it is also based on standard event models and

hence is not able to model arbitrary arrival patterns.
A different modular performance analysis approach,

Real-Time Calculus [4], was proposed by Thiele et al. Real-
Time calculus extends the basic concepts of network calcu-
lus [2]. The main advantage of this framework is that it
supports any arbitrary arrival pattern of events and thus is
not restricted to standard event models.

As discussed in [7], fixed priority non-preemptive
scheduling (FPNS) often finds a role in embedded systems.
For example, the Controller Area Network (CAN) [5] in
which messages between electronic control units (ECUs)
are sent on the bus according to FPNS, is used extensively in
automotive applications, with more than 400 million CAN
enabled microcontrollers manufactured each year.

In this paper, we present a method to model the execution
of a set of fixed priority non-preemptive tasks on a resource
with full availability [14] in the framework of Real-Time
Calculus. Our method can be applied for compositional
analysis of a distributed system involving FPNS, and thus
can be used to compute various performance attributes such
as end-to-end latencies and buffer requirements. Note that
[7] also discusses the modeling of FPNS in Real-Time Cal-
culus, but the results are too pessimistic. The bounds that
we provide in this paper are tighter in comparison.

2. The framework of Real-Time Calculus

The key concepts in the framework of Real-Time Cal-
culus [4, 14] are (i) the modeling of the arrival pattern of
tasks (or the event model) which generates demands on the
resources, (ii) the modeling of the service offered by the
resources to the tasks (i.e., the resource model). It can be
used to derive hard upper and lower bounds of various per-
formance criteria such as maximum end-to-end delay expe-
rienced by an event stream or buffer requirements.

Arrival Curves: The event model is captured by the no-
tion of arrival curves. Let R[s, t) be the number of events
that arrive in the time interval [s, t). Then R, the up-
per arrival curve αu and the lower arrival curve αl are re-
lated by αl(t − s) ≤ R[s, t) ≤ αu(t − s),∀s ≤ t with



αl(0) = αu(0) = 0. We write α = [αu, αl] and call it the
arrival curve.

Service curves: The resource model is captured by the
notion of service curves. Let S[s, t) be the number of events
that a resource can service in the time interval [s, t). Then
S, the upper service curve βu and the lower service curve
βl are related by βl(t − s) ≤ S[s, t) ≤ βu(t − s),∀s ≤ t
with βl(0) = βu(0) = 0. We write β = [βu, βl] and call it
the service curve.

Arrival and service curves can also be described in terms
of the amount of resources, such as the number of process-
ing or communication cycles, instead of number of events
as above. The resource based service curve β(∆) denotes
the resource units available in any time interval of length
∆. Similarly, the resource-based arrival curve α(∆) de-
notes the requests in terms of resource units that arrive in
any time interval of length ∆.

Greedy Processing Component: In Real-Time Calcu-
lus, the greedy processing component (GPC) [7, 14, 4] is
an abstract component that is triggered whenever an event
is available on the input event stream (described by the ar-
rival curve α) and produces a single output event stream
(described by the arrival α′). At every event arrival, a task is
instantiated to process the incoming event. Events are pro-
cessed in a greedy fashion in first-in-first-out order, while
being restricted by the availability of processing resources
described by the service curve β. Let Emax and Emin de-
note the execution demand in terms of the maximum and
minimum resource units required for processing one event.
Then the GPC can be modeled as: α′u = dmin{(αu ⊗
βu) � βl, βu}e, α′l = bmin{(αl � βu) ⊗ βl, βl}c, β

′u
=

max{(βu − αl)�0, 0}, and β
′l

= (β
l − αu)⊗0, where

β
′

denotes the remaining service available to process other
event streams, and the workload transformations are βu =
β

u
/Emin, βl = β

l
/Emax, αu = Emax.αu, and αl =

Emin.αl. See [2] for the definitions of ⊗, �, ⊗, and �.
Refer to [4, 14] for a discussion of these results on the GPC.

The worst case response time WR (time between ac-
tivation and completion) experienced by any event on the
event stream and the maximum number of events in the in-
put queue Buffer can be determined as follows [4, 14]:

WR ≤ Del(αu, βl) (1)

GPC

β

α′α

β
′

Figure 1. Greedy processing component

Buffer ≤ Buf (αu, βl) (2)

where Del(αu, βl) = sup∆≥0{inf{µ ≥ 0 : αu(∆) ≤
βl(∆+µ)}} and Buf (αu, βl) = supλ≥0{αu(λ)−βl(λ)}.

The end-to-end response time r experienced by an event
with upper arrival curve αu that is processed on N consec-
utive GPCs with lower service curves βl

1, . . . , βl
N is (see

[14]):
r = Del(αu, βl

1 ⊗ . . .⊗ βl
N ) (3)

3. Modeling FPNS with Real-Time Calculus
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Figure 2. Modeling FPNS in Real-Time Calcu-
lus

Assume a set T of n tasks τ1, τ2, . . . , τn with unique,
fixed priorities (τ1 has the highest priority while τn has the
lowest priority) executing on a resource with service curve
β. The input event stream of task τi is described by αi.
We also assume that each job of task τi requires a fixed Ei

units of resource or equivalently, Ci units of time for execu-
tion. Each task τi produces an output event stream α′i given
by the equations modeling the GPC in the previous section.
The main focus of this paper is to find βi, the service avail-
able to task τi. Figure 2 depicts the situation. Note that this
is more complicated than fixed priority preemptive schedul-
ing (FPPS) where the service γi = [γu

i , γl
i] available to task

τi is given by (see [14])

γu
i = max{(βu −

i−1∑
j=1

αl
j)�0, 0} (4)

γl
i = (β

l −
i−1∑
j=1

αu
j )⊗0 (5)
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Figure 3. Computation of β
l

2 according to
Eq. 7 and WR2 for task set T1

According to [7], FPNS can be modeled as depicted in
Figure 2 with the service curves as:

β
u

i = min{βu
, γu

i + Ei} (6)

β
l

i = max{0, γl
i − max

i<j≤n
Ej} (7)

We show that the upper service curve β
u

i (given by Eq. 6)
offers more service and the lower service curve β

l

i (given by
Eq. 7) offers less service than what is actually offered by the
resource to task τi, thus leading to pessimistic results. In the
following section, we give a procedure for finding β

u

i and
β

l

i which are tighter than the equations 6 and 7.

First, we show that β
l

i in Eq. 7 gives pessimistic results.
Consider the task set T1 consisting of three periodic tasks
τ1, τ2 and τ3 executing on a resource, with computation
times Ci of 1, 3 and 1, and periods Ti of 3, 9 and 4 re-
spectively. Let us assume that it takes x resource units to
process a task of x time units. Thus, Ei = Ci in this case.
Then, the lower service offered to the task τ2, i.e., β

l

2 (using
Eq. 7) and the upper arrival curve of τ2, i.e., αu

2 , are shown
in Figure 3.

The actual worst case response time WR2 for task τ2 is
5, assuming the continuous scheduling model and its analy-
sis presented in [3]. Hence, in any time interval of duration
WR2 = 5, task τ2 should get at least E2 = 3 resource
units. But according to Figure 3, in any time interval of 5
units, task τ2 gets a lower bound of 2 resource units, and the
WR2 using Eq. 1 comes out to be 6. Thus, β

l

i according to
Eq. 7 leads to pessimistic results. It turns out that β

u

i ac-
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Figure 4. Computation of β
l

2 (resulting curve)
from γl

2,1 (curve I) for task set T2 according to
our method

cording to Eq. 6 also leads to pessimistic results, since the
computation of α′ depends on β.

3.1. FPNS assuming discrete scheduling

In this section, we give a procedure for computing the
service curves β

l

i and β
u

i for FPNS assuming the discrete
scheduling model [1, 6], given the service curves γl

i (Eq. 5)
and γu

i (Eq. 4) for FPPS. We do not know whether a closed
form analytic expression can be given for β

l

i and β
u

i .
In the discrete scheduling model, the maximum block-

ing time experienced by task τi due to lower priority tasks
being executed when task τi is activated is given by bi =
maxi<j≤n(Cj − dtu), for 1 ≤ i < n and bn = 0, where
dtu is the discrete time unit. In terms of resource units, let
this blocking be Bi, i.e., Bi = bi.Ei/Ci.

To obtain β
l

i, compute γl
i,1 = max{0, γl

i − Bi} and
apply Procedure 1 shown below with I = γl

i,1. To obtain
β

u

i , apply Procedure 1 with I = γu
i .

Procedure 1: Let the input curve be I .
Let point Z be the origin.

1. Start with point Z. Move along the time interval axis to
find the point where I starts increasing. Let this point
be X . If the curve I increases at a constant slope from
point X extending infinitely to the right, then exit the
procedure. Otherwise, there is a finite segment of the
curve which is increasing at a constant slope.

2. If the service offered by the increasing curve segment



starting at point X is not a multiple of Ei, then extend
that segment (with the same slope Ei/Ci) by the least
amount such that the resulting segment offers a service
which is a multiple of Ei. Suppose this extension is up
to point Y (see Figure 4). From point Y make the re-
sulting curve constant up to the point where it touches
I . Let this point be (the new) Z. Now, go to step 1.

3. If the service offered by the increasing curve segment
starting at point X is a multiple of Ei, then let the end-
point of that increasing curve segment be the (new)
value of point Z. Now, go to step 1.

To illustrate the above procedure, consider the task set T2

consisting of three periodic tasks τ1, τ2 and τ3 with compu-
tation times Ci of 1, 2 and 2, and periods Ti of 3, 4 and
15 respectively, with the discrete time unit as 1. Figure 4
shows how we obtained β

l

2 from γl
2,1.
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Figure 5. Worst case response time of task τ3

for task set T3

As another example, consider the task set T3 consisting
of three periodic tasks τ1, τ2 and τ3 with computation times
Ci of 2, 2 and 2, and periods Ti of 5, 7 and 7 respectively
with the discrete time unit as 1. In this case, the worst case
response times come out to be 3, 5 and 7 respectively. These
results are identical to those obtained by using the analysis
of [6]. Figure 5 shows how we calculate the worst case
response time WR3 for task τ3.

3.2. FPNS assuming continuous scheduling

In this section, we give a procedure for computing the
service curves β

l

i and β
u

i for FPNS assuming the continuous
scheduling model [3], given the service curves γl

i (Eq. 5)
and γu

i (Eq. 4). As in the discrete scheduling case, we do
not know whether a closed form analytic expression can be
given for β

l

i and β
u

i .
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Figure 6. γl
2, γl

2,2, and β
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2 for task set T4

In the continuous scheduling model, the maximum
blocking time experienced by task τi due to lower priority
tasks is given by bi = maxi<j≤n(Cj), for 1 ≤ i < n and
bn = 0. In terms of resource units, let this blocking be Bi,
i.e., Bi = bi.Ei/Ci.

Strictly speaking, this blocking time is a supremum (and
not a maximum) for tasks τi, 1 ≤ i < n because the block-
ing lower priority task has to start an amount of time ε be-
fore the release of task τi. So, the actual maximum blocking
time for task τi, 1 ≤ i < n is bi − ε where ε > 0 and ε is
infinitesimally small.

To obtain β
l

i for 1 ≤ i < n, apply Procedure 2 shown
below with I = γl

i and let the resulting curve be γl
i,2. Then,

β
l

i = max{0, γl
i,2 −Bi}.

Procedure 2: Let the input curve be I .

1. Start with the origin of I . Move along the time inter-
val axis to find the first point where the curve offers a
service of Bi. Let this point be X .

2. If the curve I increases at a constant slope from point
X extending infinitely to the right, then exit the proce-
dure. Otherwise, there is a finite segment of the curve
which is increasing at a constant slope.

3. If the curve I is not increasing from point X , offer
an Ei amount of service starting at point X (with the
slope Ei/Ci). Let the end-point of this newly added
service be point Y (see Figure 6). From Y , make the
resulting curve constant till it touches I . Let this point
be the (new) value of point X . Go to step 2.



4. If the curve starts increasing from point X and if the
service offered by the increasing curve segment is not
a multiple of Ei, then extend that segment (with the
slope Ei/Ci) by the least amount such that the result-
ing segment offers a service which is a multiple of Ei.
Suppose this extension is up to point Y . From point
Y , make the resulting curve constant up to the point
where it touches I . Let this point be the (new) X . Go
to step 2.

5. If the curve starts increasing from point X and if the
service offered by that increasing curve segment is a
multiple of Ei, then let the end-point of that increasing
curve segment be the (new) value of point X . Go to
step 2.

To obtain β
l

n, apply Procedure 1 (see Section 3.1) with
I = γl

n. To obtain β
u

i for 1 ≤ i ≤ n, apply Procedure 1
with I = γu

i .
To illustrate the above procedure, consider the task set

T4 consisting of five periodic tasks τ1, τ2, τ3, τ4 and τ5 with
computation times Ci of 1, 1, 2, 2, and 0.5 and periods Ti

of 3, 4, 10, 10, and 50 respectively. Figure 6 shows how
we obtained γl

2,2 from γl
2, and finally β

l

2. The worst case
response times come out to be 3, 4, 8, 9.5, and 59.5 respec-
tively. These results are identical to those obtained by using
the analysis of [3].

4. Example based on CAN Bus
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Figure 7. Example network of ECUs commu-
nicating through a CAN bus [9]

In this section, we apply the results of the previous sec-
tion for a compositional analysis of a system using a CAN
bus. The system we analyze is shown in Figure 7. It is
adapted from [9] and consists of three ECUs, one CAN bus,
eight tasks (τi) mapped on different ECUs and five mes-
sages (mi) mapped on CAN bus as shown in Figure 7. Tasks
and messages are referred to as objects. Tasks on ECUs ex-
ecute according to the FPPS policy whereas messages are

τ1 activated τ1 completed and m2 activated

τ1

m2

τ3

m4

τ5

WR2

r2

WR5

r5

Figure 8. ri and WRi

transmitted on the CAN bus according to the FPNS policy.
If tasks τi and τj are executing on the same ECU, then task
τi has higher priority than task τj iff i < j. Similarly, mes-
sage mi has higher priority than mj iff i < j. The compu-
tation times for tasks and transmission times for messages
are shown inside the circles in Figure 7. Three computation
paths are defined, o14 − o15, o16 − o17 and o18 − o19. The
objects follow an event-based activation mode, i.e, the acti-
vation of an object is always driven by the completion of its
predecessor, except the first tasks in the paths (which are τ1,
τ6, and τ9). For example, task τ1 is activated periodically at
every 15 time units, and its completion causes activation of
message m2, whose completion in turn causes activation of
task τ3.

The paper [10] discusses the holistic scheduling analysis
of FPPS and applies it to a distributed system. Note that
it gives tighter bounds than the original holistic scheduling
analysis proposed in [12]. The schedulability analysis of
FPNS is discussed in [3] and is applicable to the CAN bus.
The schedulability analysis of CAN is also discussed in [5]
which is based on a pessimistic variant of [3].

Recall from Section 2 that ri is the worst case response
time of the object i with reference to the first object in the
path, i.e., it is the end-to-end latency experienced by an
event between the first object in the path and the object i.
Also recall that WRi is the worst case response time of ob-
ject i with reference to its activation. Figure 8 explains the
notions of WRi and ri for the topmost path o14 − o15 in
Figure 7.

Applying the holistic scheduling analysis of [10, 3], the
values of Ti (period), Ji (jitter) and ri for each object i are
shown in columns 2, 3 and 4 of Table 1. Note that these
results are not the same as that of [9] as the latter are based
on [12] and are thus pessimistic.

In the framework of Real-Time Calculus, we use the
analysis of FPPS for the ECUs and the method presented
in the previous section for CAN bus for the compositional
analysis of the system shown in Figure 7. The number of
buffers, WRi and ri for each object i are computed accord-



Holistic analysis Real-Time Calculus
Object i Ti Ji ri Buffer i WRi ri

τ1 15 0 8 1 8 8
m2 15 0 12 1 4 12
τ3 15 2 20 1 8 20
m4 15 2 26 1 6 26
τ5 15 6 32 1 6 32
τ6 40 0 22 1 22 22
m7 40 16 30 1 8 30
τ8 40 22 60 2 42 60
τ9 30 0 130 5 130 130

m10 30 128 140 4 14 140
τ11 30 136 168 6 104 168
m12 30 158 190 3 22 190
τ13 30 178 210 3 44 210

Table 1. Comparison between analysis re-
sults using the methods of [10, 3] and that
of Real-Time Calculus. Note that the results
of holistic analysis are not the same as that
mentioned in [9].

ing to equations 2, 1 and 3 and are shown in columns 5,
6 and 7 of Table 1. Note that our results are the same as
the one obtained by using the holistic scheduling technique
of [10, 3]. This leaves open the question whether the two
methods give identical results in all cases. This investiga-
tion is part of ongoing work.

5. Conclusions

In this paper, we modeled the execution of tasks on a re-
source with fixed priority non-preemptive scheduling. The
proposed analysis can be used in the Real-Time Calculus
(RTC) Toolbox for modeling non-preemptive fixed priority
scheduling. The resource considered in this paper is a re-
source with full availability. Modeling hierarchical schedul-
ing such as FPNS/TDMA (Time Division multiple access)
which is used in TT-CAN [8] is part of future work.
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