
Nordic Journal of Computing

VERIFICATION OF GIOTTO BASED EMBEDDED
CONTROL SYSTEMS

RAJIV KUMAR PODDAR
PURANDAR BHADURI

Department of Computer Science and Engineering
Indian Institute of Technology Guwahati, Guwahati - 781039, India

{rajiv|pbhaduri}@iitg.ernet.in

Abstract. An implementation of a control system design may not preserve the functional
and timing requirements of the application. Our goal is to verify that an implementation
meets the high-level timing and functional specifications of a control application. We take
Giotto as the implementation model, and verify Giotto models using , a tool box
for modelling, simulation and verification of timed automata. We present a translation
scheme for building timed automata in  for real-time systems written in Giotto.
When translating Giotto to timed automata, we consider timing constraints imposed by the
control application, as well as the characteristics of the implementation platform. These
timing constraints take into account execution times of atomic tasks, worst case execution
times, worst case communication times and jitters. The timed models obtained in this
manner are analysed and the corresponding system’s functional and timing properties are
verified using  .

We develop the translation scheme in two phases. The first is applicable to basic Giotto
models; the latter considers Giotto models with annotations providing information on
scheduling and resource allocation. We demonstrate both phases of the scheme by ap-
plying it to two Giotto models – an elevator control and a hovercraft control system. The
two systems vary in their complexity, their functional and non-functional requirements.
We report on the results of our verification of the Giotto models.

ACM CCS Categories and Subject Descriptors: D.2.4 [Software Engineering]: Soft-
ware/Program Verification – model checking; I.6.4 [Simulation and Modeling]: Model
Validation and Analysis; I.6.5 [Simulation and Modeling]: Model Development – model-
ing methodologies; C.3 Special-Purpose and Application Based Systems – real-time and
embedded systems

Key words: embedded control systems, real-time verification, guided model translation

1. Introduction

A high-level model of a control system is based on abstractions about the behaviour
and the timing requirements of its computer based implementation. Such a model
involves a description of the plant behaviour and the control inputs, using dif-
ferential or difference equations. The control design abstractions include issues
such as concurrent execution, instantaneous computation, zero delay, and perfect
communication between components or between components and the external en-

Received July 7, 2006.

2 R. K. PODDAR, P. BHADURI

vironment, among others. These abstractions enhance the platform independence,
software portability and reuse and reduce the system development complexity.

When a high-level model for the control design is completed, it is implemented
on a particular platform (the word “platform” stands for a hardware configuration
together with a real-time operating system). A number of platform dependent is-
sues, not considered at design level, are resolved during implementation; these
issues include resource allocation (e.g., the distribution of tasks to different pro-
cessors and the scheduling policy), task communication and synchronisation (e.g.,
using shared memory, semaphores or message queues) and achieving the desired
degree of fault tolerance through replication and error correction. These issues vary
from one platform to another.

Since an implementation involves making design decisions that often break the
abstractions, it is possible that the low-level model of computation may not pre-
serve the functional and timing requirements of its high-level counterpart. The
correctness of the implemented system depends upon the degree to which the im-
plementation platform meets these assumptions of the high level model. In the de-
sign of a real-time control system, the implementation may inadvertently introduce
new undesirable properties into the system or destroy desirable ones and therefore,
the implementation needs to be verified against the high-level behavioural require-
ments of the system. We call this functional verification. This includes both the
functionality and timing aspects of the control application, and is independent of
any implementation platform. In contrast, the implementation platform introduces
certain design choices which determine whether all the computation tasks involved
in the control application meet their deadlines. Task scheduling is a major concern
in implementing a real-time control application. We verify whether the set of tasks
in the control application is schedulable under the given platform constraints using
non-preemptive scheduling with first-come-first-served and fixed-priority policies.
We call this scheduling verification.

The challenge, therefore, is to verify that the implementation of a control design
meets the high-level timing and functional specifications of a control application.
In this paper, we present a method to carry out these verification tasks by building
timed models of the real-time system (the implementation). As the implementa-
tion model, we take real-time systems written in Giotto [Henzinger et al. 2001,
2003]. Giotto provides a programming abstraction for hard real-time applications
that exhibit time-periodic and multi modal behaviour, as in automotive, aerospace
and manufacturing control. Fig. 1 explains the embedded control systems devel-
opment process with Giotto [see Henzinger et al. 2001]. The control application
development starts with the control engineer modelling the plant and designing the
control laws using a tool such as Matlab. The control design is handed over to
a software engineer, who implements the functionality and timing of the control
design in Giotto. The Giotto program is then mapped to a given platform (hard-
ware and RTOS) by the Giotto compiler, using optional annotations in the Giotto
program which specify hardware characteristics, mapping of tasks to CPU’s and
the scheduling policy. The Giotto compiler actually generates code for a virtual
embedded machine called E code. After linking, the E code supervises the execu-
tion of functionality code to guarantee the timing behaviour specified by the Giotto

3

Control Application

Platform

Control Design

Giotto Program

Giotto E−machine

Functionality
Timing

Scheduling
Resource allocation

Fig. 1: Embedded control systems development with Giotto.

program. As can be seen from the figure, the goal of Giotto is to separate the func-
tional and timing issues from the platform related issues. The programmer needs to
specify only the functional details and provide the timing parameters like task fre-
quency. The platform dependent issues like resource allocation and task scheduling
are taken care of by the Giotto compiler using optional annotations provided by the
software engineer. This enhances the flexibility in the design process by achiev-
ing platform independence, software portability, and re-use and reduces the system
development complexity.

Although Giotto facilitates enhanced platform-independence, reusability and
portability, it does not offer any guarantees that the functional and timing prop-
erties of the control design are preserved in the Giotto model or the generated code
for a platform. The functionality implemented by the programmer is directly com-
piled to e-code, without verifying whether this actually implements the behaviour
intended at the design time. Our first goal is to verify that the implementation sat-
isfies the high-level functional and timing properties. We propose a scheme which
translates a Giotto program into a network of timed automata, which can be anal-
ysed using [Behrmannet al. 2004]. With, we can verify the
Giotto model for its functional and timing correctness. The proposed translation
scheme can be used as an aid to debugging the system and locating the source of er-
rors. Our second goal is to check for schedulability of the Giotto model on a given
platform. To this end we extend the above scheme to verify the task scheduling
under given platform constraints. In this paper we consider only non-preemptive
scheduling with first-come-first-served and fixed-priority policies. For preemp-
tive scheduling we can use the task automaton approach of Fersmanet al. [2002,
2004], but that is beyond the scope of this paper.

Scheduling verification is performed by checking whether the timed automata
model of the system can reach afail state. In case all of the tasks cannot be sched-

4 R. K. PODDAR, P. BHADURI

uled, at least one of the tasks would be executing beyond its deadline. This situation
will lead the system to enter thefail state. We try to detect whether thefail state
is reached for all possible runs of the system. A run of the system which does not
encounter thefail state gives a way to schedule the system in which all the tasks
meet their deadlines.

Among related work, we cite the work on the tool [see Bertinet al.2001,
Sifakis et al. 2003]. The aim of the project is the design and validation
of embedded real-time code for telecommunication applications. builds a
formal model of the entire real-time application by constructing timed automata
for the system components as well as the environment. The inputs to are
the application and the environment specifications written in the synchronous pro-
gramming language [Berry and Gonthier 1992] with additional real-time
annotations. translates the annotations to timed automata and uses the tem-
poral model checker to verify that the tasks corresponding to the external
 functions can be scheduled on a given platform. It is assumed that the
execution time of the tasks have been instrumented via a profiling tool, and this
data is part of the annotations.

Our work is very similar in spirit and objective to the project. Instead
of , we use Giotto models for verifying timing behaviour. The time-
triggered nature of Giotto is more suitable for automotive, aerospace and industrial
manufacturing applications. Both and Giotto involve timing abstractions
– thesynchrony hypothesis i.e., zero execution time for functional code, in the case
of , andfixed logical execution time with zero delay for reading sensors
and writing actuators in the case of Giotto – that need to be verified for a given
environment and execution platform. We do not model the environment explic-
itly, and assume that tasks are released periodically with a known frequency. Our
verification has two distinct goals – the first is to check the functional and timing
correctness of the Giotto model with respect to the requirements of the control ap-
plication; the second is to verify the schedulability of the Giotto model on a given
platform. The platform characteristics, such as WCET, form part of the Giotto
specifications in the form of annotations, just as in the tool. The objec-
tive of the project is identical to our second goal. However, does
not have anything similar to our first objective of checking the functionality and
timing of a real-time application model against the corresponding control require-
ments in its purview. Unlike we do not have an automated tool to perform
the translation to timed automata at present; it is part of our future work.

The rest of the paper is organised as follows. In Section 2, we describe Giotto
and its modelling language. We present the basic translation scheme for func-
tionality and timing verification in Section 3, the extended scheme for first-come-
first-served and fixed-priority non-preemptive schedulability analysis in Section 4.
Sections 5 and 6 describe applications of the schemes to the Giotto models for two
applications. The paper concludes with the different perspectives of the scheme
and possible extensions in Section 7.

5

2. Giotto

Giotto provides an abstract model and a tool-supported methodology for imple-
menting complex real-time embedded systems on distributed platforms [Henzinger
et al.2001, 2003]. It is suitable for embedded control systems with multi-modal
behaviour, as found in avionics, automotive and industrial control. It is based on
the view that time-triggered task invocations and time-triggered mode-switches
form “an abstract essence of programming real-time control systems”. The time-
triggered nature of task invocations and communications implies that all these ac-
tions are triggered by the tick of a global clock. This assumption leads to timing
predictability, which is essential for hard real-time control systems.

A Giotto model comprises both functionality and timing specifications of the sys-
tem. A Giotto model can also be annotated with the target platform specification,
to guide the Giotto E-machine to compile the system for a particular platform. The
Giotto programmer need not specify how, when and where the tasks are scheduled.
The Giotto compiler handles these implementation details using optional annota-
tions provided by the programmer. Thus the Giotto methodology separates out
the platform independent issues such as functionality and timing from the plat-
form specific concerns such as resource allocation, scheduling and communication
topology. This adds flexibility in the programming and enhances the portability of
the system.

The key features of Giotto are periodic task invocations and time-triggered mode
switches. A Giotto model specifies a set of modes. A mode depicts a high level
state of the system. Each mode executes a set of tasks whose combined effect
determines the behaviour of that mode. A task in the current mode is invoked at
a constant frequency, as long as the program remains in the same mode. A mode
switch has an associated frequency, the frequency at which a condition for the
switch is evaluated. If the condition is true, the mode switch is executed. This
brings a new set of tasks with their associated periods into execution.

A Giotto program also specifies sensor readings and actuator updates. The
different constructs of a Giotto model communicate with each other bydrivers.
Drivers check the pre-conditions for the task executions, actuator updates and mode
switches and accordingly execute or skip the tasks, updates and mode switches, re-
spectively. Drivers also transport the values among ports. According to the Giotto
semantics, a driver execution can not be interrupted as it is executed essentially
instantaneously on the system level. However, a task, representing an application
level computation, consumes a non negligible amount of time. Thus, the Giotto
abstraction integrates scheduled computation (tasks) and instantaneous communi-
cation (drivers).

2.1 The Giotto language

The formal definition of the Giotto language is described in [Henzingeret al.2003].
In practice, Giotto programs can be written in a concrete, C-like syntax. AGiotto
program consists of the following components:

6 R. K. PODDAR, P. BHADURI

Ports Data communication among modes, tasks and other constructs of Giotto
is done using ports. A port is nothing but a typed variable which is persistent in
the sense that the port variable retains its value over time, unless it is updated. The
ports in Giotto are partitioned into mutually disjoint sets of sensor ports, actuator
ports, and task ports. The sensor ports are updated by the environment; all other
ports are updated by the Giotto program. The task ports are further divided into
task input ports, task output ports and task private ports. Giotto also has a set of
mode ports (subset of task output ports) which are used to transfer data from one
mode to the next: these are assigned a value every time the mode is entered. The
task private ports determine the state of the task at any given point of time; these
are accessible only within a task.

A port declaration (p, Type, init) consists of a port namep, a typeType, and an
initial valueinit ∈ Type.

Tasks and task invocations A task t in a Giotto program has a set of input ports
and a set of output ports. Output ports can be shared by tasks as long as they are
not invoked in the same mode but every task has to use its own set of input ports. A
task declaration (t, In,Out,Priv, f) consists of a task namet, a setIn ⊆ InPorts of
input ports, a setOut ⊆ OutPorts of output ports, a setPriv ⊆ PrivPorts of private
ports, and atask function f : Vals[In ∪ Priv] → Vals[Out ∪ Priv]. Vals[P] stands
for the set of valuations forP. The task functionf is implemented by a sequential
program. Giotto supports C and JAVA for implementing the task function.

Giotto tasks are periodic. A task invocation specifies a task frequency (a non-
zero natural number), a task and a driver. The task driver reads the sensor and
mode ports and provides the values for the task input ports. The driver is guarded,
the guard of a driver being a boolean formula on sensor and mode ports. The
invoked task is executed only if the driver guard evaluates to true. The task func-
tion computes the values for the task output ports. The Giotto semantics specifies
two phases of a task invocation – a communication phase,i.e., the driver execution,
which takes logically zero time, and a computation phase,i.e., the task function ex-
ecution, which actually consumes time. According to Giotto semantics, the output
values of the invocation of a task must not be available before its logical execution
period expires. This behaviour of Giotto is referred as Fixed Logical Execution
Time (FLET) concept.

Modes On top of all constructs, a Giotto program has a set of modes. Each
mode has a fixed set of tasks which are invoked periodically. A Giotto program is
in one mode at a time. A mode is repeated after a fixed period of time i.e. a mode
execution is also periodic. The possible transitions from one mode to other modes
are specified by mode switches. A task may be invoked in more than one mode,
but its period remains the same in each mode.

Formally, a mode consists of a mode period, a set of mode ports, a set of task
invocations and a set of actuator updates. Whenever a mode is entered for the
first time, its mode ports are initialised by the mode switch driver function. The
actuators in a mode are periodically updated. We assume that a mode switch does
not logically interrupt the task invocationi.e. a task must not be running when a
mode switch occurs.

7

a
1

ω2

o4

d1

d2

ω3

3d

κ o1 o4 o5

t3

ωswitch , d()

o1 2 o3

f1 t1

t2

f2
a

i1

i2

i3

i4 d4π

Mode m

o

Mode switch

f3i6
i

i5

7

Mode m’

π’

d4
s

ω

Fig. 2: An example Giotto model.

2.2 An example Giotto model

Fig. 2 shows an example Giotto model. It has two modes of operationm andm′.
The modem consists of two taskst1 andt2. It has four mode portso1, o2, o3 and
o4. A task driver reads the mode and sensor ports and initialises the input ports
of a task. In the given model, the task driverd1 reads the mode portso1, o3 and
initialises the input portsi1 andi2 of the taskt1. The task driverd2 reads the mode
port o2 and sensor ports and initialises input portsi3 and i4 of the taskt2. The
two tasks are implemented by the functionsf1 and f2 and have frequenciesω1 and
ω2. The modem has a mode period ofπ ms. The modem′ has one taskt3 and a
mode period ofπ′ ms. This system has one actuatora which is updated by actuator
update driverd4 in both modes.

There is a mode switch from the modem to the modem′, specified by mode
switch driverd5. The driverd5 initialises the mode portso1, o4 and o5 of tar-
get modem′. The mode porto1 is initialised by a constant (denoted byκ), o5 is
initialised by the value of the mode porto3 and mode porto4 retains its value.

Every driverd (whether a task driver, an actuator update driver or a mode switch
driver) has a driver guardgd which is a boolean formula representing the precondi-
tion for the corresponding action, and a driver functionfd which generally updates
the values of the target ports ifgd evaluates totrue. If gd is false, the corresponding
action is ignored.

3. From Giotto to : functionality and timing

In this section, we propose a translation scheme from Giotto to for the
verification of Giotto models. According to the translation scheme every compo-
nent of a Giotto model (e.g. task invocation, driver, mode-switch) is translated to a
network of timed automata in.

8 R. K. PODDAR, P. BHADURI

 [Behrmannet al.2004] is a toolbox for modelling, simulation and veri-
fication of real-time systems jointly developed by Uppsala University and Aalborg
University. It has been applied successfully in case studies ranging from com-
munication protocols to multimedia applications [Huneet al.2000, Lindahlet al.
2001, Iversenet al. 2000, David and Yi. 2000]. is based on the theory
of timed automata [Alur and Dill 1990, 1994]. The timed automata in
are equipped with bounded integer variables, structured data types, channel syn-
chronisation, channel and process priorities. A system is modelled in as
a network of timed automata; uses the CCS parallel composition opera-
tor [Milner 1989] to compute the product automaton on-the-fly during verification.
The query language of, used to specify properties to be checked, is a
subset of CTL (computation tree logic) [Clarkeet al.1999].

Before we explain the translation scheme, we show a network of timed
automata for the Giotto model given in Fig. 2 resulting from the application of the
translation scheme. We have the following timed automata.
◦ We translate the modes and mode switches into one timed automaton as

shown in Fig. 3. The given model has two modes and one mode switch
from modem to the modem′. The corresponding timed automaton shows
two locations, one for each mode. It has one edge from modem to modem′
representing the mode switch. The locations have self loops indicating the
fact that the system may stay in the current mode at the end of the mode pe-
riod. The mode switch is enabled if the mode switch driver guardgd5 of the
driver d5 evaluates totrue. A mode switch driver guard represents the exit
condition of the mode. It is a boolean-valued condition on the sensor ports
and the mode ports of the mode. The mode switch occurs only when the exit
condition evaluates totrue. The mode switch can be enabled only when one
mode period is finished, as represented by the clock guardx = π and the
invariantx ≤ π. If the mode switch edge is taken, the driver functionfd5 is
executed; this initialises the mode ports of the target modem′. The clockx is
reset, the flags (which are explained below) used in the target mode are reset
to zero, and the variablecurrmode is set to target modem′.
◦ Fig. 4 and Fig. 5 show the timed automata for the task driverd1 and the task

function f1 of the taskt1. We have similar automata for the other tasks as
well. Every task in the Giotto model is translated into two timed automata –
one for the task driver and the other for the task function. The automaton for

x≤ π

x gd5
= π ∧

currmode := m’
x= π ∧ ¬ g

d5
x := 0, flag1 := 0,

0flag2 :=

m’m

fd5
, x := 0, flag3 := 0,

Fig. 3: Timed automaton for Giotto mode switch.

9

fd1

gd1

g
d

1

∧ flag1 = 0

L

currmode = m∧∧ flag1 = 0
run!

¬ ∧

currmode = m

Fig. 4: Timed automaton for Giotto task
driver.

x ≤ σ1

x = σ1
f1

start

exec

x := 0,
run?

flag1 := flag1 + 1

Fig. 5: Timed automaton for Giotto task func-
tion.

the task driver has one location and two edges – one edge is enabled (referred
to as positive edge) when the task driver guard gd1 for the task driver d1 is
true, otherwise the other edge (referred to as negative edge) will be taken.
The guard on the edge checks if this task is to be executed in the current
mode m (currmode = m).
The invariant on location exec of the task function automaton and the clock
guard on the outgoing edge forces the task execution to last for its logical
execution period (σ1 is the logical execution period for task t1). The clock x
is reset and task function f1 provides the output values. The synchronisation
channel run! calls the task function automaton.
We use the integer variables flagi to control the task executions. Consider a
scenario in which a mode has a mode period of 100ms. This mode consists
of one task whose task period is also 100ms and an actuator whose update
frequency is 1. A task is translated to two automata – one for the task driver
and other for the task function. The two automata are connected through a
synchronisation channel in which the task driver is at the calling end and the
task function is at the callee end. For the above specification of the system,
at time 100ms, four processes are enabled – (a) a task function execution, (b)
an actuator update, (c) a mode switch and (d) a task driver execution for the
next mode period (a mode repeats execution of tasks in every mode period).
Now, according to the Giotto semantics, process (a) has the highest priority
and it must take place first, followed by process (b), then by process(c) and
finally by process (d). We specify the same priority order in  for the
above processes. But, since the task function and the task driver automata are
connected through a synchronisation, after the task function executes, -
 gives preference to the task driver over the actuator update and mode
switch. Hence the actual priority order is violated. To overcome this prob-
lem, we use one integer variable flagi for each task, which is incremented by
the task function automaton as soon as it starts executing. The task driver
execution begins only when the flag is zero. This is again set to zero by the
mode switch automaton, hence forcing the task driver execution only after

10 R. K. PODDAR, P. BHADURI

the mode switch to maintain normal priority order.

◦ Other constructs of Giotto model – actuator updates and sensor readings –
are also translated into timed automata. These are explained later on.

The Giotto semantics prescribes the priorities among the various actions. Task
functions have the highest priority. Next comes the actuator update, followed by
the sensor readings. This is followed by a mode switch, which has precedence over
a task driver execution. These priority orders can be specified for different timed
automata in the system definition part of the  specification.

We develop the translation scheme from Giotto to  in two phases. The
first considers the basic constituents of Giotto model and translates the detailed
computation steps such as task functions and various driver functions. The mod-
elling of detailed computation steps is essential for verification of the functional
and timing specification. To do this, the complete system behaviour has to be
embedded in the resulting system of timed automata. The second goal of our ver-
ification is to analyse schedulability with respect to a particular platform using
non-preemptive scheduling with first-come-first-served and fixed-priority policies.
This requires appropriate modifications to the former scheme in order to model
features of the platform. The translation schemes are based on the syntax of Giotto
components.

We divide the all Giotto constructs into four sets:
◦ MS: set of mode switches.

◦ TI: set of task invocations.

◦ AU: set of actuator updates.

◦ SR: set of sensor readings.
All ports declared in the Giotto program are denoted by typed variables in the
 specification. The translation scheme is defined as a set of four functions,
where each function maps a Giotto construct to one or more timed automata. In
the following TA denotes the set of timed automata.
◦ Mode translation function ΦMS : ℘(MS) → TA, i.e., a set of mode switches

is translated to a single timed automaton.

◦ Task invocation function ΦT I : TI → TA × TA.

◦ Actuator update function ΦAU : AU → TA.

◦ Sensor reading function ΦS R : SR → TA × TA.
In the remaining part of this section, we illustrate these functions. We use the
following notations in the rest of the paper:

A clock guard gc is a conjunctive formula of atomic constraints of the form x ∼ n
or x − y ∼ n for x, y ∈ C, ∼∈ {≤, < . =, >,≥} and n ∈ N. C is a finite set of
real-valued variables standing for clocks. We use B(C) to denote the set of
clock constraints.

A mode guard gm is a disjunction of boolean expressions of the form ‘currmode =
MODE’ , MODE being the mode in which the given task occurs.

11

A driver guard in Giotto is a boolean function which is a precondition for the cor-
responding function execution. We have three driver guards – mode switch
driver guard gmd, task driver guard gt and actuator update driver guard ga.

A clock reset rc resets one or more clocks to zero.

Flag reset(s) flagr resets certain flags to zero. The flags are the integer variables
used for controlling the task invocations in a mode as explained earlier in this
section.

Actuator update function fa updates the actuator ports.

Driver function fd is executed whenever a driver guard evaluates to true and gen-
erally initialises the target ports.

Task function ft implements the task.

The variable currmode is of type bounded integer and is used to keep track of
the current mode. The symbol � denotes the boolean true and we use none for an
empty action. Clocks are represented by letters x, y, z etc..

The following subsections will describe each function. We will explain the re-
sulting timed automaton. In  a timed automaton over an action alphabet Σ
and a set of clocks C is defined as a tuple 〈N, l0, E, I〉 where
◦ N is a finite set of locations (or nodes),

◦ l0 ∈ N is the initial location,

◦ E ⊆ N × B(C) × Σ × 2C × N is the set of edges and

◦ I : N −→ B(C) assigns invariants to locations.
We shall denote an edge by a tuple 〈l, g, a, r, l′〉 where

l is the starting location;
g is a guard;
a ∈ Σ is an synchronisation action;
r is a set of clock resets, extended with assignments and updates; and
l′ is the ending location.

3.1 Mode translation function ΦMS

At the top level of a Giotto specification, is a mode which consists of task invo-
cations, actuator updates and mode switches. These constituents of a mode are
declared in other parts of the specification. We shall take mode switches into con-
sideration in this part of the translation. Task invocations and actuator updates will
be dealt with in the following sections. We shall translate the set of mode decla-
rations (mode switches in particular) into a single timed automaton; an example is
shown in Fig. 6. The configuration of the system being translated, at any point of
time, can be determined by this timed automaton.

12 R. K. PODDAR, P. BHADURI

x ≤ π

x = π ∧ ¬ gmd

x = π ∧ gmd

rc, flag r

x = π ∧ gmdfd, rc, flagr, fd, rc, flagr,

mode 1

currmode := mcurrmode := m’

mode 2 mode n

Fig. 6: Mode switch.

Each mode switch (in Giotto) (ωswitch,m′, d) ∈ Switches[m] consists of a mode-
switch frequency ωswitch ∈ N, a target mode m′ ∈ Modes, and a mode driver d ∈
Drivers.

The timed automaton 〈N, l0, E, I〉, which results from applying ΦMS to a given
collection of mode switches, is defined by
◦ Each location in N corresponds to a mode in the system.

◦ The initial location l0 corresponds to the initial mode.

◦ There are two types of edges in E – one edge for each mode switch and one
self loop on every location i.e. mode.

(1) An edge corresponding to a mode switch takes the control to target mode
and is of the form
〈m, (gc ∧ gmd), none, r, m′〉

where the set r includes clock resets rc, driver function fd, flag resets
flagr and an assignment currmode := m′, which sets the currmode to
the target mode. The flag reset flagr resets all flags used for controlling
the task invocations in a mode to zero. This automaton does not have
any synchronisation action.

(2) A self loop edge is taken to keep the control in the current mode, when
a mode switch is not enabled. This edge is of the form
〈m, (gc ∧ ¬gmd), none, (f lagr, rc), m〉.

◦ There is one clock invariant I(l) on each location l of the form clock <=
mode period. This, coupled with the clock guard gc on edges, ensures that a
mode switch occurs, if at all, exactly at the end point of a mode period.

3.2 Task invocation function ΦT I

A mode specifies the invocation of the tasks it contains. A task invocation (ωtask,
t, d) consists of a task frequency ωtask, a task t and a driver d. We use σ to denote

13

fd

gt ∧ gm ∧ flag = 0

∧ gm ∧ flag = 0¬ gt

L

run!

Fig. 7: Task driver.

f1

x = σ

x ≤ σ

start

exec

x := 0,
run?

flag := flag + 1

Fig. 8: Task function.

task period (= mode period/ωtask). We have two timed automata (shown in Fig. 7
and Fig. 8) for two parts of a task invocation – task driver and task function.

The timed automaton Atd for the task driver has
◦ one location L,

◦ the initial location is L,

◦ two edges:

(1) 〈L, (gt ∧ gm ∧ flag = 0), run!, fd, L〉, the synchronisation action run
calls the corresponding task function automaton.

(2) 〈L, (¬gt ∧ gm ∧ flag = 0), none, ∅, L〉.
The integer variable flag controls the execution of task driver at the start of
a mode period. The first edge is taken when driver guard evaluates to true.
In this case, this edge is synchronised with the first edge of the task function
automaton.

◦ an empty invariant (i.e. �) in every location.
The timed automaton Atf for the task function has the following components:
◦ two locations start and exec,

◦ the initial location start,

◦ two edges:

(1) 〈start, �, run?, (rc, flag := flag + 1), exec〉: this edge is synchronised
with the edge of the task driver automaton.

(2) 〈exec, gc, none, ft, start〉.
Here ft is the task function associated with the task. The task function is
performed on the second edge to match with the FLET concept of Giotto
specification – the output values of the function should not be available before
its logical execution time finishes. The variable flag is incremented on the
first edge if task frequency is one, otherwise it will be incremented on the
second edge.

◦ The automaton has one invariant on location exec to ensure the task execution
for the corresponding task period.

14 R. K. PODDAR, P. BHADURI

a

≤ α

r
c

y =α ∧ ¬ ga ∧ gm

fd

y =α ∧ g ∧ g
m fa

, y := 0
start

update

y

Fig. 9: Actuator update.

3.3 Actuator update function ΦAU

An actuator update is similar to a task invocation except that the former takes log-
ically zero time. An actuator update (ωact, d) consists of an update frequency
ωact ∈ N and a driver d. We denote the interval between two consecutive actuator
updates by α (= mode period/update frequency). The function which updates the
actuator is specified within the actuator declaration part of the Giotto specification.
The timed automaton for an actuator update (see Fig. 9) consists of
◦ two locations start and update,

◦ the initial location start,

◦ three edges:

(1) 〈start, (gc ∧ ga ∧ gm), none, fd, update〉.
(2) 〈update, �, none, r, start〉, the set r includes clock resets rc and actua-

tor update function fa. The location update is committed, so no waiting
is allowed in this location.

(3) 〈start, (gc ∧ ¬ga ∧ gm), none, rc, start〉, this edge is taken when
actuator driver guard evaluates to false and actuator is not be updated.

◦ an invariant in location start to ensure actuator update at the right point of
time.

3.4 Sensor reading function ΦS R

We will have two timed automata for each sensor – one for the environment of the
sensor and another for the sensor’s controller. Whenever there is any value for the
sensor, the environment automaton will send the value to the controller automaton
which, in turn, will save the sensor value in variables to be used later on. If the sen-
sor is of periodic time triggered nature, the environment automaton will have only

15

one edge. If the sensor reading is non-periodic in nature, the environment automa-
ton will have more than one edge. Every edge of this automaton is synchronised
with the only edge of the controller automaton.

4. From Giotto to : task scheduling

In this section, we extend the translation scheme to Giotto implementations on
a given platform, which requires us to consider the resources available on the
platform in performing scheduling verification. Specifically, we look into the
non-preemptive scheduling of tasks using first-come-first-served and fixed-priority
schemes on a particular platform. Given a Giotto model, the worst case execution
time (WCET) of tasks and the resources available (this is what we call a platform),
we translate them to a network of timed automata and verify whether the given
system is schedulable under the given platform constraints. If the answer to the
verification question is yes, we get a possible schedule and if not, we can locate the
source of error.

In this translation scheme, functions which actually implement the tasks, are
not translated, as here we are only interested in their timing properties like task
frequency and WCET. Further, we don’ t require sensor readings any more, for
we are not concerned about functionality. Instead, we have timed automata for
resource management. We explain the scheme with one type of resource. It can
be extended for multiple resource types by having one timed automaton for each
resource type. We omit all details about driver guards, driver functions and task
functions from the automata in the following discussion.

We define a function Φres, mapping a set of resources to a set of timed automata,
one automaton for one type of resource. The set of all resource types is denoted
by RES. This part of the translation scheme is defined as a set of four functions,
where each function maps a Giotto construct to one or more timed automata.
◦ Mode translation function ΦMS : ℘(MS) → TA.

◦ Task invocation function ΦT I : TI → TA × TA.

◦ Actuator update function ΦAU : AU → TA.

◦ Resource management function Φres : RES → TA.

4.1 Resource management function Φres

The corresponding timed automaton for one resource type is shown in Fig. 10. It
consists of
◦ four locations {L, A, B,C},
◦ the initial location L, with all locations other than L being committed,

◦ E, the following list of edges:

(1) 〈L, �, request?, ∅, A〉
(2) 〈A, isFree(), ack?, alloc(), L〉
(3) 〈A, ¬isFree(), wait?, add2wait(), L〉
(4) 〈L, �, release?, ∅, B〉

16 R. K. PODDAR, P. BHADURI

¬ isWaiting()

¬ isFree()

isFree()

A B

L

release?
ack!

alloc()

wait!
add2wait()

request?

isWaiting()
select()

ack!
remFrmWait(),

alloc()

C

rel()

Fig. 10: Resource management.

(5) 〈B, ¬isWaiting(), none, ∅, L〉
(6) 〈B, isWaiting, none, select(), C〉
(7) 〈C, �, none, (remFrmWait(), alloc()), L〉

The edge 1 is taken when a request for the resource arrives, leading to lo-
cation A. The function isFree() checks if any resource is available. If it is
available, it is allocated through edge 2 using function alloc(). The function
alloc() updates an array resToProcess[] of size equal to the number of re-
source instances. When a resource is allocated, the corresponding process’s
id is entered into this array. If the resource is unavailable, the requesting task
is added to the wait list (edge 3) by function add2wait(). This function up-
dates an array which has the id’s of the waiting processes. Now, when any
task releases the resource, edge 4 is taken. The function rel() removes the
process id from the array resToProcess[]. The function isWaiting() checks if
any task is waiting for the resource by looking in the waiting list array. If a
task is waiting, edge 6 selects one of the waiting tasks and edge 7 allocates
the freed resource to this task. If no task is waiting for the resource, edge 5
simply returns the control to initial location.

◦ This automaton has no invariant.
This automaton maintains a variable nop for the number of tasks to which resources
are allocated, and a variable wp denoting the number of processes waiting for the
resources.

The resources are allocated on first-come-first-served basis or by a fixed-priority
policy. If several processes are waiting for the resource, we can select one using any
strategy. Once a resource is allocated, it is released only after the process finishes
its execution (as is shown in the task function automaton later in this section). Thus
the scheme captures a non-preemptive scheduling strategy.

17

4.2 Mode translation function ΦMS

This function is similar to the one described in Section 3. A variable notk is used
here to denote the number of task instances in one mode period. Here, by a task
instance we mean an execution of a task in one mode period. After every mode
period, this is set to number of task instances in the target mode. The variable
notk is decremented in the task automaton. As shown in Fig. 11, if after a mode
period, nop or notk is non-zero, the control will lead to the fail location from where
control cannot escape. This non-zero value shows that some tasks are running
while the mode is being switched and this violates our assumption that the mode
period should be an integer multiple of the LCM of all task periods in that mode.
This leads to the conclusion that the system is not schedulable under the given
platform constraints. The timed automaton has the following components:
◦ The locations correspond to the modes of the system. In addition there is a

fail location.

◦ The initial location corresponds to the initial mode.

◦ There are three types of edges in this set – one edge for each mode switch,
one self loop on every location i.e. mode, and one edge leading to the fail
location from every mode.

(1) The first kind of edge takes the control to the target mode and is defined
by
〈m, (gc ∧ nop = 0 ∧ notk = 0), none, r, m′〉

where the set r consists of clock resets rc, flag resets flagr and assign-
ments currmode := m′ and notk := n[m′], where n[m] denotes the num-
ber of task instances in mode m.

gc ∧
(nop ≠0 ∨ notk ≠0)

x = π ∧

x = π ∧ nop = 0 ∧ notk = 0

rc, flagr,

rc, flagr,

x ≤ π
mode 1

mode nfailmode 2

notk = 0∧nop = 0

notk := n[m’],
currmode := m’

notk := n[m]

Fig. 11: Mode switch.

18 R. K. PODDAR, P. BHADURI

(2) The self loop edge is taken to keep control in the current mode, when a
mode switch is not enabled for the current mode. This edge is defined
as
〈m, (gc ∧ nop = 0 ∧ notk = 0), none, r, m〉. where the
set r includes the clock resets rc, flag sets flagr and assignment
notk := n[m].

(3) The third kind of edge, corresponding to the fail condition, is defined as
〈m, (gc ∧ nop � 0 ∨ notk � 0), none, ∅, fail〉.

◦ There is one clock invariant on each location of the form clock ≤
mode period. This, coupled with the clock guard gc on edges, ensures that
the mode switch occurs, if at all, exactly at the end point of mode period.

4.3 Task invocation function ΦT I

We have two timed automata (shown in Fig. 12 and Fig. 13) for the two parts of a
task invocation – task driver and task function.

The timed automaton Atd for the task driver has
◦ four locations start, A, B and waiting,

◦ the initial location is start,

◦ the edges listed below

(1) 〈start, (gm ∧ flag = 0), request!, rc, A〉,
(2) 〈A, �, ack?, ∅, B〉,
(3) 〈A, �, wait?, ∅, waiting〉,
(4) 〈waiting, �, ack?, ∅, B〉,
(5) 〈B, �, run!, ∅, start〉.

A task requests the resource through edge 1. If the resource is available,
it is acknowledged by the resource automata on edge 2 and then the task
driver calls the task function by run on edge 5. If the resource is currently
unavailable, edge 3 takes the control to the waiting state. Edge 4 is enabled
when the resource becomes available to this task.

◦ this automaton has no invariant.
The timed automaton Atf for the task function has
◦ three locations start, pass and exec,

◦ the initial location start,

◦ three edges:

(1) 〈start, �, run?, (rc, flag := flag + 1), exec〉 : this edge is synchronised
with the edge of the task driver automaton.

(2) 〈exec, gc, release!, ∅, pass〉,
(3) 〈pass, gc, none, notk := notk − 1, start〉.

The clock guard on edge 2 and invariant on location exec ensure the task
executes for its worst case execution time, after which the resource is released
by edge 2. Then, the task passes the remaining time on location pass because

19

gm ∧ flag = 0

waiting

start

wait?

A
ack?

run!

B

request!
x := 0

ack?

Fig. 12: Task driver.

x ≤ σ

release!
y = WCET

x = σ
notk := notk − 1

y ≤

start

exec

y := 0,
run?

flag := flag + 1

pass

WCET

Fig. 13: Task function.

the task output should be available only after its logical period expires. If the
task frequency is one, flag is incremented on edge 1, else it is incremented on
edge 3.

◦ two invariants on locations exec and pass to ensure the task execution for the
corresponding task period.

4.4 Actuator update function ΦAU

This function is exactly the same as that of the scheme in the previous section.

5. Case study: an elevator system

We illustrate the first translation scheme in Section 3 for verification of functional-
ity, by applying it to an existing Giotto model for an elevator system (provided
along with Giotto tool distribution, see http://embedded.eecs.berkeley.
edu/giotto/demo.html). The system is verified against some properties using
.

The system modelled in Giotto consists of one elevator which serves five floors.
Each floor has a request button that a user presses to get the elevator to come to
that floor and open its doors. This system is subject to verification of the following
properties

Safety The elevator never moves with its doors open.

Liveness The requests to be delivered from a particular floor are eventually ser-
viced.

20 R. K. PODDAR, P. BHADURI

Mode 4: Open

OpenTask()

LTCall()

DownTask()

Mode 3 : DownMode 5 : Close

CloseTask()

InitTask() UpTask()

Mode 2: Up

GTCall()

E
Q

C
all()

Mode 1 : Idle

Fig. 14: Components of a elevator system.

5.1 The structure of the elevator system

The elevator system has five modes of operation (see Fig. 14). In each mode Idle,
Up, Down, Open and Close, there is one task which has frequency 1. The system
has one sensor to read the requests from each floor using GetButtons. There are
two actuators, Motion and Door which use the update functions PutMoveMotor
and PutDoorMotor. Each actuator is updated once in one round of every mode.
The elevator is in Idle mode initially. There are three possible mode switches from
this mode depending upon three mode switch drivers PGTC, PLTC, PEQC each of
which uses one condition CondPosGTCall, CondPosLTCall and CondPosEQCall.

If the elevator is at the requested floor, the system control moves to Open mode,
else it moves either to Up or Down mode. Up mode has one task TaskUp, which
sets the required parameter tmotion to be read by actuator drivers Move and Door.
Similarly, Down has one task TaskDown which sets the required parameters to take
the elevator down. After reaching the required floor, the control moves to the Open
mode, in which the task TaskOpen sets the tdoor parameter. This mode has a switch
to the Close mode, which in turn switches to the Idle mode. The period of each
mode is 500ms and every mode has one task with frequency 1, so at a time only
one task is executed. Each task has a period of 500ms.

5.2 Translating Giotto model into network of timed automata

We show the translation to for the elevator system described in Section 5.1
using the translation scheme described in Section 3. The system has five tasks, so
we have ten automata for the task invocations. Fig. 15 and Fig. 16 stand for the
task Idle. These and the following figures are  timed automata which are
slightly different from the timed automata used in the earlier sections. In an -
 timed automaton, the initial location is double circled and a C-like notation
is used for guards and assignments instead of standard mathematical notation. The
currmode variable is used to keep track of the current mode. An integer variable
flag ensures the execution of a task only after the mode switch drivers are executed
and is incremented by the task function automaton. This variable is reset by the

21

idle

currmode == IDLE && flag1 == 0
call_idle!

Fig. 15: Task driver for task Idle.

exec cidle<=500

start

cidle==500
Idle()call_idle?

cidle := 0,
flag1++

Fig. 16: Task function for task Idle.

up

currmode == UP && flag2 == 0
call_up!

Fig. 17: Task driver for task Up.

exec cup<=500

start

cup==500
Up()call_up?

cup := 0,
flag2++

Fig. 18: Task function for task Up.

mode switch automaton.
Fig. 17 and Fig. 18 refer to the task Up. Other task invocations have similar

translations.
Fig. 19 and Fig. 20 represent the timed automata for the actuator updates. Ac-

cording to Giotto semantics, an actuator update is an instantaneous communication
and takes logical zero time. This is exhibited by the committed locations in the two
timed automata. The updatemotion and updatedoor actions represent the actuator
functions PutMoveMotor and PutDoorMotor.

Fig. 21 is a timed automaton corresponding to all the mode switches. Since the
elevator system has five modes, the automaton has five locations. Every location
has one self edge to represent the fact that control is resumed in the same mode.
Edges between different locations represent mode switches. Each such edge first
checks the mode switch driver guard. If a mode switch edge is taken, the currmode

motioncact_move<=500

cact_move == 500
m := tmotion

updatemotion(),
cact_move := 0

Fig. 19: Actuator Motion.

doorcact_door<=500

cact_door == 500
d := tdoor

updatedoor(),
cact_door := 0

Fig. 20: Actuator Door.

22 R. K. PODDAR, P. BHADURI

idle

cm <= 500

up

cm <= 500

down
cm <= 500

open

cm <= 500

closecm <= 500

cm == 500 && false
cm := 0,
flag := 0

cm == 500 && false
cm := 0, flag := 0

cm == 500 &&
!buttons[position]
cm := 0,
flag := 0

cm == 500 &&
!buttons[position]
cm := 0,
flag := 0

cm == 500 && CondPosLTCall()
cm := 0,
currmode := UP,
flag := 0

cm == 500 && CondPosGTCall()
cm := 0,
currmode := DOWN,
flag := 0

cm == 500 && CondPosEQCall()
currmode := OPEN,
cm := 0,
flag := 0

cm == 500 &&
buttons[position]
cm := 0,
currmode := OPEN,
flag := 0

cm == 500 && buttons[position]
currmode := OPEN,
cm := 0, flag := 0

cm == 500 && true

currmode := CLOSE,
cm := 0, flag := 0

cm == 500
&& true
currmode := IDLE,
cm := 0,
flag := 0

cm == 500 && !CondPosLTCall() &&
!CondPosGTCall() && !CondPosEQCall()
cm := 0,
flag := 0

Fig. 21: Timed automaton for mode switches of elevator system in Fig. 14.

variable is updated and the clocks used in the target mode are reset. This automaton
represents the controller of the whole system.

Sensors are updated by the environment. The environment can provide the values
periodically or non periodically, but Giotto samples the sensors periodically. We
used several different sensor reading timed automata to simulate the environment’s
periodic and non periodic behaviour.

5.3 Results

The system expressed in Giotto is vulnerable to a starvation problem i.e. the live-
ness property described above doesn’ t hold for the system. This is because of the
Giotto policy of determining a mode switch. According to the Giotto semantics, all
mode switches are deterministic i.e. at a given point of time, only one mode switch
is enabled. Now consider the following scenario. The elevator is in Idle mode at
the third floor (floor 2) and there are requests from floor 0 and floor 4. The Giotto
policy is to first service the requests from the floor which is above the current floor,
so the elevator reaches the fifth floor. Right after the elevator reaches the fifth floor,
there is a request from the fourth floor. The elevator comes down to the fourth
floor. Meanwhile, a request comes from the fifth floor (recall, the request from
the ground floor has not been serviced yet). After coming to the fourth floor, the
system checks for any request from the above floors and finds one from the fifth,

23

so it goes to the fifth floor. Now, if this sequence of requests from the fifth and the
fourth floors is continued with a very short time delay, the elevator will never reach
the floor 0, hence violating the liveness property.

The other flaw we detected in the elevator system is an unwarranted time delay
of one period of Idle mode. After reaching the mode Close, the system goes to
the Idle mode irrespective of any pending request. According to our analysis, the
system may directly jump to the Up or Down mode according to the request, thus
saving one Idle mode period time.

6. Case study: Hovercraft

Here we apply the second translation scheme for schedulability analysis in Sec-
tion 4 to a hovercraft system in Giotto [Marco et al. 2004]. This system shows
more complex behaviour than the elevator system, in terms of number of tasks a
mode has and the control laws that govern the system behaviour. As described in
Section 4, the computational steps in the task functions are omitted.

In this system, the user provides a location that serves as a target for the hov-
ercraft, which will move to that selected location under its own power. A Giotto
model for controlling a hovercraft simulator with two degrees of freedom is de-
scribed in [Marco et al. 2004]. The program computes the position of the hov-
ercraft, computes the power for the left and right jet engines and then moves the
hovercraft toward the target destination and orientation.

6.1 The structure of Hovercraft system

Fig. 22 illustrates the structure of hovercraft system. It has four modes: initially the
system resides in Idle mode. When the target is positioned somewhere, the hover-
craft switches to any one of Rotate, Forward or Point modes. Every mode has one
task errorTask which continuously determines the difference of the target position
and angle with respect to the hovercraft’s position and angle. This information,

Mode 1 : Idle Mode 2: Forward

Mode 3: Rotate Mode 4 : Point

IdleTask()

ErrorTask() ErrorTask()

ErrorTask()ErrorTask()

ForwardTask()

RotateTask() PointTask()

goForward()

goPoint()

goRotate()

goR
otate() go

Id
le

()

goIdle()

goPoint()

go
Fo

rw
ar

d(
)

goForward()

goIdle()

goPoint()
goRotate()

Fig. 22: Components of a hovercraft system.

24 R. K. PODDAR, P. BHADURI

stored in the errorX, errorY , errorAngle and targetDirection variables, is used by
other functions.

The mode Forward has one more function forwardTask(), which uses
the above information to calculate the turn and thrust values. The tasks
turnTowardsTargetTask() and turnToTargetTask() in modes Rotate and Point, re-
spectively, do the same function. These turn and thrust values are used by the
actuator driver functions ComputeLeftJetPower() and ComputeRightJetPower() to
compute the left and right engine’s power. These power values are actually applied
to the left and right engines by the PutRightJet and PutLeftjet functions, respec-
tively.

The hovercraft has six sensors - positionX, positionY , and angle are for the hov-
ercraft’s position; targetX, targetY and targetAngle are for the target’s position.
Every mode has a mode period of 200 ms. All the task invocations, actuator up-
dates and mode switches have frequency 1 in every mode.

6.2 Translating the Hovercraft system into a network of timed automata

We now describe the translation of the hovercraft control system according to the
second scheme described in Section 4. This system has five tasks, so we have a
total of ten timed automata for task invocations. The tasks automata for the task
Idle are shown in Fig. 23 (task driver) and Fig. 24 (task function). The task id 1
for the task Idle is used by the resource management automaton. This task has a
worst case execution time of 100ms and a logical execution time of 200ms, as can
be seen in the timed automata for the corresponding task function.

This system has two actuators - Left jet and Right jet. The functions
ComputeLeftJetPower() and ComputeRightJetPower() on the first edges of the au-
tomata are driver functions which compute the left and right jet’s power. The sec-
ond edges apply this power to the actuators by the actuator update functions. The
actuators are updated every 200ms in every mode as can be seen in Fig. 25 and
Fig. 26.

Fig. 27 depicts the timed automaton for mode switches. It has five locations –
one for each mode and one fail location. The mode period is 200ms for each mode.

waiting

getErr

id == 1
ack?

id == 1
wait?

id == 1
ack?

callIdle!

currmode==IDLE && flag1 == 0
request!
id := 1,
cidle := 0

Fig. 23: Task driver for task Idle.

pass

cidle<=200

exec

c1<=100

start

c1 == 100
release!
id := 1

cidle == 200
Idle(), notk--

callIdle?
c1 := 0,
flag1++

Fig. 24: Task function for task Idle.

25

LeftJetcleft<=200

PutLeftJet(),
cleft := 0

cleft == 200
ComputeLeftJetPower()

Fig. 25: Actuator Left jet.

RightJetcright<=200

PutRightJet(),
cright := 0cright == 200

ComputeRightJetPower()

Fig. 26: Actuator Right jet.

fail

Idle cm<=mprd

Point

cm<=mprd

Rotate
cm<=mprd

Forward

cm<=mprd

cm==mprd &&
(nop!=0 or notk!=0)

cm==mprd &&
(nop!=0 or notk!=0)

cm==mprd &&
(nop!=0 or notk!=0)

cm==mprd &&
(nop!=0 or notk!=0)

cm==mprd && goForward()
&& nop==0 && notk==0
updateForward()

cm==mprd && goRotate()
&& nop==0 && notk==0
updateRotate()

cm==mprd && goPoint()
&& nop==0 && notk==0

updatePoint()

cm==mprd && goIdle()
&& nop==0 && notk==0

updateIdle()

cm==mprd && goIdle()
&& nop==0 && notk==0
updateIdle()

cm==mprd && goForward()
&& nop==0 && notk==0
updateForward()

cm==mprd && goIdle()
&& nop==0 && notk==0

updateIdle()

cm==mprd && goForward()
&& nop==0 && notk==0

updateForward()

cm==mprd && goRotate()
&& nop==0 && notk==0

updateRotate() cm==mprd && goPoint()
&& nop==0 && notk==0
updatePoint()

cm==mprd && goIdle()
&& nop==0 && notk==0

updateIdle()

cm==mprd && goPoint()
&& nop==0 && notk==0

updatePoint()

cm==mprd && goRotate() &&
nop==0 && notk==0

updateRotate()cm==mprd && goForward()
&& nop==0 && notk==0

updateForward()

cm==mprd && goPoint()
&& nop==0 && notk==0

updatePoint()

cm==mprd && goRotate()
&& nop==0 && notk==0
updateRotate()

Fig. 27: Timed automaton for mode switches of hovercraft system in Fig. 22.

There is one edge from every mode to the fail location. This edge is enabled at
the end of a mode period if either of nop and notk (these variable are described in
Section 4) is non-zero. The update functions (updateIdle, updateForward etc.) on
the edges of the mode switch automaton set the corresponding flags, reset the clock
and update the value of currmode variable.

For this system, we consider an implementation platform with two processors.

26 R. K. PODDAR, P. BHADURI

wp != 0
id := waitlist[0]

wp == 0

ack!
remFrmWait(),
alloc()

!isFree()
wait!

add2Wait()

isFree()
ack!

alloc() release?
rel()

request?

Fig. 28: Resource: processor.

The timed automaton shown in Fig. 28 manages the allocation and release of these
processors. The resources are allocated on the basis of first-come-first-served and
fixed-priority non-preemptive scheduling policies.

6.3 Results

To begin with, we take a platform which has one processor. We take a WCET of
100ms for each task, while the logical execution time for every task is 200ms. All
tasks have equal priorities. Now, we try to verify the following counter schedula-
bility property for the Idle mode:

A�(ModeSwitch.Idle⇒ A�ModeSwitch.fail)

where, ModeSwitch is the timed automaton representing mode switch and fail is
the location in that automaton as described in Section 4.

The property states that, whenever the Idle mode is reached, all the paths from
this mode will lead to fail location. So, if the system is schedulable in this mode,
the above property must not be satisfied. The  verification engine reports
that the property is not satisfied for the given system, i.e., the given elevator system
is schedulable for the given platform.

We check the counter schedulability property for each mode:

A�(ModeSwitch.Forward ⇒ A�ModeSwitch.fail)

A�(ModeSwitch.Rotate⇒ A�ModeSwitch.fail)

A�(ModeSwitch.Point ⇒ A�ModeSwitch.fail)

None of the properties is satisfied, leading to the conclusion that the system is
schedulable in all modes on the given platform.

To test the system further, we take two processors. Since this system has only two
tasks in each mode, we include a dummy task in each mode to make the scheduling
problem non-trivial (two tasks can be trivially scheduled on two processors). Every
task can be executed on any of the processor, every task has the same WCET on
both the processors. For example, we take a WCET of 100ms for every task, while
the logical execution time for every task is 200ms. The counter schedulability
property for every mode is not satisfied, i.e., the system is schedulable since two of
the tasks can be executed on one processor and the third task on the other.

27

Now, we change the WCET of one task (for e.g., of mode Rotate) to 200ms and
of the other to 150ms, retaining the WCET of 100ms for the third task. This time
the property for the mode Rotate is satisfied and all others are not satisfied. Upon
exploring the trace, we find the following reason for the failure - in the Rotate
mode, the task with WCET 200ms is allocated to one processor and the task with
WCET 150ms is allocated to the other. After 150ms, the second task releases
the processor which is allocated to the third task with WCET 100ms. Since this
task has already waited for 150ms, it can not finish its execution before its logical
execution time deadline of 200ms. There are other traces witnessing the failure of
the same property.

We carried out the same experiments for fixed-priority scheduling and obtained
similar results. In , priorities can be assigned in the system definition line.

7. Conclusion

The software implementation of a control system design on a platform is always
susceptible to errors due to the various layers of abstraction involved in the design
process. It is possible for a system designed by a control engineer to be flawless
in terms of its high level behaviour specified by the control laws, and yet exhibit
incorrect or unexpected behaviour when implemented using software. Thus a ver-
ification of the implementation against the high-level control specification is nec-
essary for the end reliability and robustness of the system.

We propose a general scheme to translate a Giotto model into a network of timed
automata so that its high level functional requirements can be verified using -
. The translation scheme takes into account the syntactical structure of Giotto
constructs and various timing parameters. We also extended the scheme to ver-
ify the schedulability of the system under given platform constraints using non-
preemptive scheduling policies. These schemes are quite general – they can be
applied to any control system that can be modelled in Giotto. Of course, the func-
tionality of the tasks has to modelled explicitly in  in each case.

Our work suffers from several limitations. ’s inability to support ad-
equate libraries for implementing complex mathematical functions limits us to
model relatively simple systems. We have made an assumption that the mode
period of a mode must be equal to the LCM of the task periods of all tasks in
that mode. Relaxation of this assumption is part of future work. Further, in il-
lustrating the schemes we have considered the task frequency to be one. This is
not a serious limitation, however, as the schemes can be easily extended for fre-
quency more than one by chaining the task driver automata. We have already
mentioned that we consider only non-preemptive scheduling in this paper. Verifi-
cation of the schedulability of a set of tasks using preemptive scheduling schemes
in the framework of timed automata has been investigated by Fersman et al. [2002,
2004] by using the notion of task automata. The same method can be adapted to
our verification of schedulability of Giotto tasks.

Our future work includes the automation of the scheme presented here and ex-
tending the scheduling scheme for more resource types and complex platforms.

28 R. K. PODDAR, P. BHADURI

A platform specification consists of a number of processing elements, the worst
case execution time for tasks and worst case communication times (WCCT). For
simplicity, we have assumed the WCCT to be zero. The worst case execution times
vary from one processor to another. In this paper we have considered all the pro-
cessors of the same type, i.e., a computation has the same WCET on all processors.

In summary, this paper is an attempt to bridge the gap between control law design
and real-time implementation, by offering verification options at an intermediate
layer (the Giotto model) that can check both platform independent and platform
dependent properties.

References

A, R.  D, D. L. 1990. Automata for modeling real-time systems. In Proc. of the 17th
International Colloquium on Automata, Languages and Programming Automata, ICALP90,
Volume 443 of Lecture Notes in Computer Science. Springer, 322–335.

A, R.  D, D. L. 1994. A theory of timed automata. Theoretical Computer Science 126, 2,
183–235.

B, G., D, A.,  L, K. G. 2004. A Tutorial on UPPAAL. In International School
on Formal Methods for the Design of Computer, Communication and Software Systems, SFM-
RT 2004, Volume 3185 of Lecture Notes in Computer Science. Springer, 200–236.

B, G.  G, G. 1992. The Esterel Synchronous Programming Language: Design, Se-
mantics, Implementation. Science of Computer Programming 19, 2, 87–152.

B, V., C, E., P, M., P, J., S, J., V, P., W, D.,  Y, S. 2001.
TAXYS=Esterel+Kronos. A tool for verifying real-time properties of embedded systems. In
Proc. of the 40th IEEE Conference on Decision and Control , Volume 3. IEEE, 2875–2880.

C, E. M., G, O.,  P, D. 1999. Model Checking. MIT Press.
D, A.  Y., W. 2000. Modelling and analysis of a commercial field bus protocol. In Proc. of

the 12th Euromicro Conference on Real Time Systems. IEEE Computer Society Press, 165–
172.

F, E., P, P.,  Y, W. 2002. Timed Automata with Asynchronous Processes:
Schedulability and Decidability. In Proc. of the 8th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, Volume 2280 of Lecture Notes in
Computer Science. Springer–Verlag, 67–82.

F, E.  Y, W. 2004. A Generic Approach to Schedulability Analysis of Real-Time Tasks.
Nordic Journal of Computing 11, 2, 129–147.

H, T. A., H, B.,  K, C. M. 2001. Embedded Control Systems Development
with Giotto. In Proc. of the International Conference on Languages, Compilers, and Tools for
Embedded Systems. ACM Press, 64–72.

H, T. A., H, B.,  K, C. M. 2003. Giotto: A Time-triggered Language for
Embedded Programming. Proceedings of the IEEE 91, 1, 84–99.

H, T., L, K. G.,  P., P. 2000. Guided synthesis of control programs using
UPPAAL. In Proc. of the IEEE ICDCS International Workshop on Distributed Systems Verifi-
cation and Validation. IEEE Computer Society Press, 15–22.

I, T. K., K, K. J., L, K. G., L, M., M, R. G., M, S. K.,
P, P.,  T, C. B. 2000. Model-checking real-time control programs – Ver-
ifying LEGO mindstorms systems using UPPAAL. In In Proc. of 12th Euromicro Conference
on Real-Time Systems. IEEE Computer Society Press, 147–155.

L, M., P, P.,  Y, W. 2001. Formal design and analysis of a Gear Controller.
International Journal on Software Tools for Technology Transfer 3, 3, 353–368.

M, A. A., S,  W, A. 2004. Giotto Tutorial. Tech. report, UCB/ERL M04/30,
University of California at Berkeley.

M, R. 1989. Communication and Concurrency. Prentice Hall.
S, J., T, S.,  Y, S. 2003. Building models of real-time systems from application

software. Proceedings of the IEEE 91, 1, (Jan.), 100–111.

