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Abstract In this paper we address the problems of schedule synthesis and timing verifi-
cation for component based architectures in embedded systems. We consider a
component to be a set of tasks with response times that lie within specified inter-
vals. When a set of components is deployed to implement a desired functional-
ity, we want to guarantee that the components can achieve the timing constraints
of the application. We solve the associated synthesis and verification problems
using the framework of timed interface automata and timed games.
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1. Introduction

Component based development has been proposed as a framework for deal-
ing with the complexity of embedded control systems. It is based on the
premise that generic components can be developed so as¢odexin dif-
ferent contexts. While the encapsulation of behaviour in component interfaces
does lead to modularity and enhanced reuse, the verification of non-functional
aspects (such as timing and resource constraints) of an assembly of compo-
nents remains a major challenge.

In this paper we analyse whether a given set of components satisfies the tim-
ing constraints of an embedded control application. We consider a component
to be a collection ofasks which arefunctionallyandlogically related. In turn,
each task has a response time.(the time between task release and com-
pletion) that is guaranteed to lie within a specified interval by the component
implementation. When a set of components is deployed to implement a de-
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sired functionality, we want to guarantee that the components can achieve the
timing constraints of the application. The application-level timing properties
we consider here are thand-to-endiming constraints ofransactions Each
transaction is typically a loop consisting of reading sensors, computing control
inputs and writing to actuators. The constituent tasks of a transaction may be
part of different components. The specific problems we are interested in are (a)
timing verification to ascertain whether the given components can satisfy the
end-to-end timing constraints of the application, ands@f)edule synthesig#

the answer to (a) is yes, to determine a sequence of task release actions that
will lead to satisfaction of the constraints.

We refer to the above problem asmponent schedulingo distinguish it
fromtask schedulinghe staple of real-time scheduling theory. In task schedul-
ing, we already know the deadlines, periods and execution times of tasks, and
want to know whether the tasks can be scheduled to meet their deadlines. In
component scheduling we know that the tasks can be scheduled to meet cer-
tain deadlines (which mawgot be related or derived from the application at
hand), but want to know whether these tasks can be released in such a way
that the end-to-end constraint of a transaction can be met. Task scheduling is
a top-down analysis — from the real-time requirements we identify tasks and
their characteristics, identify the platform and check whether the tasks can be
scheduled. Component scheduling is bottom-up — given the components and
the constituent tasks, along with their pattern of release and completion times,
we want to verify whether they can satisfy the end-to-end constraints. The
component scheduling problem becomes relevant when the tasks are not iden-
tified based on the real-time requirements of the particular application, but the
application itself is built by composing pre-existing components.

Our approach to solving the timing verification and schedule synthesis prob-
lems for components is based on the formalism of timed interface automata
(TIA) [de Alfaro et al., 2002]. We view the problems amed gaméetween
two players — one representing the environment (the schedulepot) and
an adversary representing the system (the compon@uipu). The environ-
ment can decide on when to release tasks for execution, but not their comple-
tion times, which can be decided only by the component. Both players make
certain assumptions about the other player, and deliver certain guarantees. The
overall goal is to check that there is a sequence of allowed moves by the envi-
ronment (release of tasks) which leads to satisfaction of the high-level timing
requirements; in other words, there is a winning strategy for the environment
in the corresponding timed game. The existence of such a winning strategy
guarantees that the components can be used together to satisfy the end-to-end
timing constraints.

Timed games have been used to solve several scheduling problems — see
[Altisen et al., 1999, Altisen et al., 2002] for example. Unlike these works, we
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solve a new scheduling problem that is unrelated to traditional task or job-shop
scheduling. A key feature of our work is that all the timing requirements (both
task characteristics and external timing constraints) are captured using the TIA
formalism, a formalism for compositional reasoning about timed systems. Our
techniques are thereforaodular, and can be applied in @mpositionaland
incrementaimanner.

The main novelty of this work is that we define a notion of component
scheduling and propose methods for solving the associated verification and
synthesis problems. Contrary to the classical notion of task scheduling, com-
ponent scheduling deals with transactions involving a set of tasks rather than
separate task instances. In our setting, checking for deadline violation corre-
sponds to checking that the end-to-end constraints of a transaction are satisfied.
Component scheduling is motivated by the fact that modern embedded control
systems are typically built out of existing components. Components consist
of tasks representing component services; transactions are application specific
jobs that span across a set of components. The main technical contribution
of this work is twofold: encodingthe specification of component scheduling
problem as timed interface automata aeductionof the verification and syn-
thesis problem for component scheduling to finding a winning strategy in the
game structure for the associated timed interface automata. Our use of TIA for
modelling both tasks and transactions is novel. So is our use of the formalism
for solving scheduling problems, since we go beyond checking compatibility
of timed components

As an application, we apply our component scheduling framework to the
problem of deriving a static time-triggered schedule for a set of periodic tasks.
We are given a set of processors and a number of tasks with known frequencies,
and execution times lying in fixed intervals. Each task is statically allocated
to a processor, called B8TA node and must communicate with other tasks
through a shared bus. The problemis to find a static schedule on each processor
along with a bus schedule, such that all task and communication deadlines are
met without any task being preempted when executing. The solution using
our approach is worked out on an automotive Adaptive Cruise Control (ACC)
application.

2. The Component Scheduling Problem

The typical design flow in component-based development of embedded sys-
tems is as follows. To implement a giveatureof the system to be built, such
as the adaptive cruise control feature in an automobile, a number of transac-
tions, each consisting of a related set of tasks, is identified. A transaction is
actually a partial order on the tasks reflecting their interdependence. The tasks
comprising a transaction usually span multiple components. The end-to-end
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Figure 1. Components, Tasks and Timing Constraints

timing constraints for each transaction are derived from the feature require-
ments, and must be met by the tasks from different components that constitute
the transaction. This is the essence of the component scheduling problem.

Tasks and task graphs

According to our view, a component is a set of tasks, with each task sat-
isfying certain timing constraints. A component is a black-box which hides
the internal details of how tasks are actually scheduled. The interface only
exposes the timing constraints in the formasfisumptionsbout task release
times andguaranteesabout task completion times. In our setting the release
and execution times of a task may not be strictly periodic, but can lie within a
specified interval. This facilitates modelling of jitter and communication de-
lays and leads to more flexibility in scheduling, as tasks with fixed periods are
too simplistic and lead to pessimistic analysis.

ExaMpPLE 1 (COMPONENTS AND TASKs) Figure 1(a) shows two compo-
nentsC; and Cs. TasksI; belongs to componeidt;, while tasksi, and T3
belong toCs.

Figure 1(b) shows various timing constraints for the tagks7, andT5.
For instance, taskl} cannot be released within the fir8ttime units, which
is an assumption on the environment; we call such a constraiwtffaet con-
straint Once the task? is released, it must complete within 8 time units, a
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guarantee provided by the component; we call such a constraiekanution

time constraint Further, the delay between two successive task-releases has
to be at least 10 time units, again an assumption on the environment; we call
such a constraint @eriod constraint

Task Graphs. We model transactions &ask graphsi.e., partial orders (or
DAG’s) on tasks. The partial ordering reflects the data dependencies between
tasks in a particular transaction: an edge from tAsto T indicates that task

T; must complete before task begins. We associate an end-to-end deadline
with each transaction, as well as constraints on inter-task separation to guaran-
tee freshness of data. The constraints on deadline and the inter-task separation
are collectively referred to asnd-to-end constraintsNote that a transaction
represented by a task graph is periodic, the period being determined by the
sampling frequency of the associated control loop. We assume that the period
of the transaction is given by the end-to-end deadline of the task graph.

ExAMPLE 2 (Task GrRAPH) Figure 2 shows a task graph for a transac-
tion involving component§’; and Cs in Example 1. It says task, must be
released after taskg; andT3; have completed. The transaction has an end-to-
end deadline o4 time units, and a constraint that says must be released
within 6 time units from the completion @§ (to ensurdreshnes®sf data, for
instance).

Another constraint that is implicit in the task-graph is that the transaction
it represents is required to execute an infinite number of timMweaesscon-
straint.
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Figure 2. Task graph and transaction constraints

DEerFINITION 3 A task graph with end-to-end constraingsa triple G =
(T,<r,d)whereT = {Ty,...,T,,}is a set ofm tasks,<7 is a strict partial
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order (i.e., an irreflexive transitive relation) dh andd is a set of constraints
of the formd(7) < C or d(a,b) < C for a,b € |J;<;<,,, {7, ci}, whereC

is an integer. The constraint(7) < C represents an end-to-end deadline of
C time units for the task graph, while the constradtit,, b)) < C represents a
maximum separation @' time units between the two actiomsand b, which
are either the release; of a task7; or the completiorr; of a task7);. We de-
note byll(7") the set of immediate predecessors of tAsk the partial order
(T, <7').

The Problem

The scheduling problem we are trying to solve is: given a set of tasks with
timing constraints on their release and completion, and a task graph with end-
to-end constraints, to find a schedule, i.e., a timed sequence of release actions
(which may depend on the timed sequence of preceding completion actions),
which satisfies the constraints imposed by the task graph. The latter constraints
are: (1) a task can be released only if all its predecessors have completed; (2)
the time duration between the earliest release and the latest completion action is
bounded by the end-to-end deadline of the task graph; and (3) the time duration
between each pair of actions in a specified list is bounded by the corresponding
separation limit.

DEeFINITION 4 Atimed traceon an alphabetd of actions is a sequenee=
(ao, to), (a1,t1),..., where eachn; € A and eacht; € R20, with ¢, <=
t; <= ta.... We callt; the time-stampof the j? action occurrence in the
sequence.

DEerINITION 5 Given a set of taskg with associated timing constraints on
their release and completion actionsyelease-schedule is a function, that
given a time instant for the completion of the task instances released earlier,
assigns a time instamt(r;;) € R=? to the release of th¢" instance of task;

for eachi € {1,...,m} and eachj > 0. Such an assignment must satisfy the
offset and period constraints of each task. Likewissymapletion-scheduleis

a a function, that given the release times of fHeinstance of tasi; and other
tasks started earlier, assigns a time instaii¢;;) € R=° to the completion of
the j™ instance of task; for eachi € {1,...,m} and eachj > 0. Such an
assignment must satisfy the execution time constraint of each task.

Given a release-schedueand a completion-schedute we can define the
outcomeQutcome(o, T) of the two schedules in the usual inductive way. This
is a set of timed traces ove, ., {ri, ci}.

DEeFINITION 6 Given a set of taskg with associated timing constraints on
their release and completion actions, and a task grépbxpressing end-to-
end constraints of a transaction,sgheduler is a release-schedule, such that
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for all completion-schedules, every timed trace € Outcome(o, 7) satisfies
the following conditions:

1 PrecedenceFor every pairT; <7 7} in G, then'™ occurrence of; is
preceded by the'" occurrence of; in , for everyn.

2 End-to-end deadlind~or an end-to-end deadline constraint of the form
d(T) < C, mazx({ts(¢/) — ts(a)}) < C, whereqa, o/ range over all
the n'* occurrences of actions;,r;, respectively inm, for all j,k €
{1...m} and for alln. Herets(«) denotes the time-stamp of action

3 Separation constraint$or every constraint of the formi(a,b) < C,
ts(o/) — ts(a) < C, wherea, o are then'™ occurrences ofi, b respec-
tively inm, for all n.

4 Liveness There is am™ occurrence of;? for everyi € {1...m}, for
everyn.

Intuitively, the above definition captures the fact that a schedule must spec-
ify a correct timed sequence of releasing tasks, no matter how much time the
tasks take for completion, as long as they are within specified bounds. We now
formally define the verification and synthesis problem we are interested in.

DEFINITION 7 Thetiming verificationand schedule synthesjgroblems for
end-to-end constraints are defined as follows. Given a set of faskel a task
graph G, verify that there exists a schedule (i.e., a way of generating release
actions for tasks) that satisfies the end-to-end constraint imo matter when

the tasks complete, as long as they satisfy the given constraimtsynthesise
such a schedule if it exists.

ExaMmPLE 8 Consider the set of tasks specified in Figure 1 and the task
graph in Figure 2. In this example, the componefifsand C; do meet the
end-to-end constraints of the transaction. A possible schedule for meeting
the requirements would be to release each task according to the timed trace
(r17,2), (r3?,4), (r27,t) wheret is the maximum of the completion times of
Ty and T3, which is guaranteed to be withitd time units. Note that releasing

the taskl; earlier than4 time units (say a8 time units) can lead to a viola-

tion of the freshness constraint (depending on whecompletes its execution,
which the environment cannot control), although the interfacé/fodoes not

itself rule out the possibility.

From the above example it is clear that the two timing analyses mentioned
above can be carried out at the level of tasks rather than components, since they
involve the timing assumptions and guarantees of only individual tasks. How-
ever, the component view would be essential when we consider the following
situations:



m Tasks in a component have resource conflicts due to shared resources
such as buffers.

»  Components may not be “reentrant”, in which case, the execution of two
tasks of the component cannot be overlapped.

= Two different transactions can share the computations of certain tasks;
for example, a sensor component will typically not perform the sensing
task for different transactions separately — the sensor data will be broad-
cast to all the components with tasks that depend on the data.

All these situations can be modelled using the TIA framework, though the
resulting TIA models will be more complex in general. For instance, resource
conflicts can be modelled by using an additional TIA for for modelling the
resource access, and guaranteeing mutual exclusion by allowing synchronisa-
tion with the resource TIA. An example of this kind is treated in Section 5,
where we apply our component scheduling framework to derive a static time-
triggered schedule for a set of distributed tasks.

3. Modelling Component Scheduling with Timed
Interfaces

In this section, we model the tasks, and task-graphs of the previous section
using timed interface automata. Interface automata were presented in [de Al-
faro and Henzinger, 2001] as a formalism for studying compatibility of com-
ponents in armpensystem. Timed interface automata (TIA) [de Alfaro et al.,
2002] were proposed as an extension to model real-time constraints on interact-
ing components. Due to lack of space we cannot present all the relevant details
of the TIA model here. The reader is referred to [de Alfaro et al., 2002] for the
formal definitions and the important properties of the TIA model. Our use of
the TIA framework is novel, and is different from the one in [de Alfaro et al.,
2002]: our goal is to synthesise schedules rather than to check compatibility of
components.

Timed Interface Automata for Tasks

Timed interface automata are syntactically similar to traditional timed au-
tomata as in [Alur and Dill, 1994], with the exception that location invariants
are classified as eith@rput or outputinvariants. The crucial difference lies in
the semantics — timed interface automata correspogdnmedetween players
Input andOutput rather than just labelled transition systems. It is the respon-
sibility of playerInputto ensure that all the input invariants are met; similarly
for the output invariants with respect to playeutput



Schedule Verification and Synthesis for Embedded Real-Time Com;ﬁ‘onents 9

3> 9
x3:=0

T1 x; > 10 T2 x9 > 6
x1:=0 Ty =0

T3

1 <8

Figure 3. TIA for tasksT}, T> andT3

ExaMPLE 9 (TIA) Figure 3 shows timed interface automata corresponding
to the tasks in Example 1.

m The release and completion events of tasks are described using actions
r;7 andc;! of the task;.

» The clock variabler; in the timed interface automaton for tagkkeeps
track of the time elapsed since the last release of the task.

m  The guards on the transitions describe when the actighandc;! may
take place.

= The location invariants describe when certain actiomgsttake place;
for example the location invariari? : z; < 8 is anoutput-invarian{in-
dicated by the labeD), indicating that the output;! must be produced
while z; < 8 holds, otherwise player Output loses the game.

= The guards on the transitions with input actiejY specify that a min-
imum inter-arrival time should be maintained, otherwise player Input
loses the game.

DEFINITION 10 Let7 = {T3,...,T,,} be a set ofn tasks. TheTlA for a

taskT; € 7 (also denoted b¥;) is given by a TIA with a single clock;, input
actionr;? and output action;!. The clock constraints appearing as invariants
and guards express the pattern of release and completion times of the task. We
assume that each TIA; is well-formed, i.e., both players have a strategy to

let time diverge, unless the other player is to be blamed for monopolising the
game from some point on (see [de Alfaro et al., 2002]).

From Task Graph to Specification Automaton

To solve the component scheduling problem, we use TIA in two distinct
ways — first, to model the timing properties of tasks as presented above, and
second to model a task graph for a transaction. We call the TIA for a task graph
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Figure 4. Specification automaton for task graph in Figure 2

a specification automatonBefore describing the procedure for obtaining a
specification automaton from a task graph, we give an example.

EXAMPLE 11 (SPECIFICATION AUTOMATON) The specification automa-

ton corresponding to the task graph in Figure 2 is shown in Figure 4. It uses
a clockz to record the time since the transaction was started, and a cjock

to record the time sinc&3; completed. The specification automaton has each
r; and¢; asinputactions — it is an observer which detects violations of timing
constraints by flagging an error state, and does not generate any output action
(except the special actioend!). It specifies all the legal runs of the environ-
ment (the scheduler) and the components that do not violate the end-to-end
timing constraints.

There is an input invariani; : x < 14 associated with every location in the
specification automaton, except the one on the extreme right (whichfiadhe
location). This represents the fact that meeting the end-to-end timing deadline
is the responsibility of player Input. For brevity, we use a statechart-like nota-
tion: an invariant associated with a super-location (the dotted oval in Figure 4)
represents an invariant on all the locations contained in the super-location. Vi-
olation of the input invarianf; leads to a timed error state, where the progress
of time is blocked. Similarly, the violation of the input invaridpt: y < 6
in the oval shaped location signifies violation of the freshness constraint and
leads to a timed error state. The output actiend! is a new action not shared
by any other automaton which signifies the end of the transaction.

We following the ideas in [Abdeddia et al., 2003] to obtain the specifi-
cation automaton from a task graph. First, we build a specification F;IA
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for each taskr;, consisting of three locations, corresponding to the task states
waiting, executingandcompleted The transition from thevaiting to theexe-
cuting state is taken when the specification TIA for the taskE{f;) are all

in their final locations.

DErFINITION 12 Let G = (7,<7,d) be a task graph. For
every task 7, € 7T its associated specification TIA is P, =

(Qi, gt g™ i, AT A9, Inw!, Inw®, 1) with the set of location®); =

{p?,pl,p?}, the initial location ¢t = pY, the final locationg™* = p2,

the set of input actiongL, = {r;?, ¢;?}, the set of output actiond? = (), and

the set of transitions; include the tuples

(p?a /\ p?arlr)’(mpzl)
T;€I(T;)

and
(p117 true, Ci?a (Da pzz)

The global specification automaton is obtained as a composition of the in-
dividual specification automata. The composition can be treated as composi-
tion of ordinary timed automata since the components have no shared actions.
The composition ensures that the release actions of tasks do not violate the
precedence constraints in the task graph. Next, we add some clocks and clock
constraints, both as guards on transitions as well as location invariants, to take
care of the end-to-end constraints in the task gr@pk (7, <r,d). For the
end-to-end deadline constraiiy < C, there is a clock, and an input in-
variantl, : t. < C on all the locations of the composed automaton except its
final location. For a separation constraint of the fafta,b) < C, there is a
clockt,, which is reset on every transition with the action latoednd an input
invariantl,, : t,;, < C on all locations that are sources of transitions labelled
with actionb. Finally, there is a transition labelled with the output actiaml!
from the final location of the composed automaton to the initial location which
resets the clock..

The specification automaton in Figure 4 is actually obtained by applying
some optimisations on the result of the above transformation on the task graph
in Figure 2: the release actiong’ andry? do not appear in Figure 4. A general
optimisation scheme based on chain coverings of a partial order is presented in
[Abdeddam et al., 2003].

4. Timing Verification and Schedule Synthesis

In this section, we explain how the timing verification and schedule synthe-
sis problems can be viewed as an instance of a timed game (see [Maler et al.,
1995, de Alfaro et al., 2002]) between playénput (the environment) and
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Output(the system). Further, synthesising a schedide a timed sequence of
task release actions that obeys the precedence constraints in the task graph and
leads to all the end-to-end constraints being satisfied, corresponds to finding a
winning strategy fotnputin such a game.

As in all timed games, there are two kinds of moves available to each player:
a player can either let time progress, as long as this does not violate an invariant
for the player, or make a discrete transition to a new state when the associated
guard becomes enabled. Thus a move of pldiput (a controllableaction)
either triggers a task; via actionr;? or allows time to elapse in a location.
Similarly a move ofOutput(anuncontrollableaction) either completes execu-
tion of a taskKI; via actiong;! or allows time to elapse in a location.

The game structure for the schedule synthesis and verification pralelem
the graph on which the game is played (calleiiheed interfacdn [de Alfaro
etal., 2002]), is obtained from the product of the timed interface automaton for
each task and the specification automaton obtained from the task graph. The
specification automaton has arput invarianton several locations capturing
the end-to-end constraints. Violation of this invariant leads ton@d error
state The winning plays are those sequences of states in the game graph that
avoid the error state, and in addition complete the transaction infinitely often,
i.e., the goal involves both safetyandlivenesscondition. Finding a schedule
for a given set of components that meets the end-to-end constraints of a task
graph then amounts to finding a winning strategylifiquutin the corresponding
timed game.

ExaMPLE 13 (TIMED GAME STRUCTURE) For our running example, the
product of the timed interface automata for the tagksl; andT5 in Figure 3

with the specification automaton in Figure 4 represents the game structure on
which the timed game is played. The fact that there exists a schedule satisfying
the end-to-end constraints means that player Input has a winning strategy in
the game.

In the rest of this section we elaborate on the solution to the timing verifica-
tion problem in terms of winning strategies for a timed game. In the following
discussion, we assume we are given a set of tdsks {71,...,7,,} and a
task graphz = (7, <7, d) on the setl. The global specification automaton
for the task grapld-, defined in Section 3, is denoté&d:.

Consider the product TIA' = T1 ® T ... ® T,, ® T, i.e, the joint be-
haviour of all the TIA's corresponding to the tasks together with the speci-
fication automaton. Intuitively, the game struct(j] corresponding to the
TIA T has the set of statds;, so, ..., s, s) where each componest is a
pair (¢;, v;) of a location inT; and a clock valuation over the single clogk
and likewises is a pair(q, v) of a location inT; and clock valuation over the
clockst. andt,;, wherea, b range over the the actions c; (see the paragraph
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in Section 3 following Definition 12). The input and output transition relations
of [T] encode the possible moves of the corresponding player at a given state,
and the new state that results, in the combined system ohtlasks and the
specification automaton. Each transition is caused either by an immediate ac-
tion (release or completion of a tagk) or a timed action, where the player
chooses to let time elapse. The available moves of a player in a state must con-
form to the location invariants for the player in the source and target location
and the enabled transition in the source location for each componer;TIA

An input strategy is a partial function from sequences of states to the set of the
enabled moves fdnputin the final state of the sequence. So an input strategy
is a way to specify the times at which the release actions for tasks occur, given
the completion times for instances of tasks released earlier, while conforming
to all the constraints imposed by the TIA for each tdskLikewise, one can
define an output strategy.

Given an input and an output strategy, one can define the resulting
set of outcomes starting from the initial statg of [T (see [de Alfaro
et al.,, 2002]). These are finite and infinite sequences of the forms
S0, 1,91, 81, @2,Y2, - - . Whereq; is the move made by player, € {I,0}
in states;. A winninginput strategy in7’] is one for which all possible out-
put strategies lead to outcomes which avoid reaching all timed error states.
Clearly, a winning input strategy corresponds to what we call a schedule (see
Definition 8), except the liveness property may not be satisfied. In particular,
an outcome can be empty — if no tasks are released there are no constraints to
violate (assuming there are no input invariants in the TIA for the tasks, as is
the case in Figure 3).

The following procedure takes care of the liveness problem. We take the
composition (see [de Alfaro et al., 2002]) of the TIA corresponding to each
task and the TIA for the task graph, and then find a winning input strategy for
the goal(1¢ t"* (which says that the final location of the task graph com-
ponent in the product is reachable) in the result. Intuitively, the composition
Ty || To... || T || Tc represents all schedules that satisfy the end-to-end
constraints of the task grah, without necessarily satisfying the liveness con-
straint; the latter is taken care of by the ga&p +"*. Details of how such
games can be solved using symbolic fixed point computations can be found in
[Maler et al., 1995, de Alfaro et al., 2002]. The correctness of the procedure is
captured by the following theorem.

THEOREM 14 A schedule satisfying the end-to-end constraints is a win-
ning strategy for Input in the game structufd’] for the TIA given by the
productT =Ty ® Ts ... ® T,,, ® Tez, with the goal

[OGood([T1], ..., [Tm], [Tc])] N (t-div U blame®) N O¢ tfinal
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where Good([T4], . .., [Tm], [T¢]) is the set of all states in the game struc-
ture for the productT that are not immediate error states,div is the set of
outcomes along which time divergéggme® is the set of all outcomes where
player Output monopolises the game, afit* is the set of all states whose
Ts-component has the final location of the specification autom@&gan

Implementation.  Currently, there is no implementation of timed interface
automata. In order to experiment with our component scheduling framework,
we hand-coded our TIA using the timed game automata (TGA) inuthe

PAAL TIGA tool [UPPAAL TIGA, 2006, Cassez et al., 2005]. Unfortunately,

the synchronisation behaviour of TGAUPPAAL TIGA is quite different from

that of TIA. As a result, the task graphs cannot be represented as specification
automata any more. Instead the precedence constraints have to be encoded
using shared boolean variables, and the end-to-end deadline has to be speci-
fied as part of the winning condition.€., goal) for the controller. Note that

this encoding inUPPAAL TIGA breaks the nice compositionality properties of

the TIA framework. Also, the specification language used®PAAL TIGA

for expressing goals is not very expressive, especially with respect to liveness
constraints. The results of our experiments usingutheAAL TIGA tool are
described in the next section.

5. Application: Time-triggered Schedule Synthesis

The time-triggered architecture (or TTA, see [Kopetz and Bauer, 2003]) is
a platform for distributed implementations of hard real-time systems used in
automotive and avionics applications. It consists of a number of processors,
called TTA nodes, that communicate by passing messages over a shared bus.
The computation tasks running on the TTA nodes use the shared bus using a
time-division multiple-access (TDMA) discipline based on a static schedule
which recurs periodically. The problem of deriving a time-triggered schedule
for a set of tasks is as follows (see [Caspi et al., 2003]). We are given a set of
m periodic taskgT1, ..., T,,} andn processors. Every task is statically allo-
cated to a processor. The tagkhas periodP; and is allocated to processor
host;. Its execution time lies in the intervdl, u;]. Tasks can model compu-
tations as well as messages. There is a special processor modelling the bus —
all tasks corresponding to messages are allocated to that processor. There is
a precedence relation among tasks defined by data-flow constraints. This re-
lation includes a computation task and a message task when the former is the
sender of the message. Likewise, a message task precedes the computation task
that is the receiver of the message. Tasks cannot be preempted once they start
running. Tasks also have relative deadlines among them to model end-to-end
constraints. These are of the fotin— 6; < C, whered; € {s;,e;}, wheres;
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Figure 5.  Synchronisation automaton for enforcing non-preemptive serial execution of tasks
T; ande

is the start time and; is the completion time of task;. The problem is to find

a static schedule for the bus for transmission of messages, and a schedule for
each TTA node for the tasks that are allocated to that node, so that all timing
constraints are satisfied.

In order to apply our framework to this problem, we start with a TIA for each

processor (TTA node or bus). Since each task is periodic, and has a best-case
computation timé; and a worst-case execution timg we can model it using
TIA, as in Section 3. However, now we have the complication that several tasks
can be allocated to a single processor, and tasks cannot be preempted. This
constraint can be captured using a simple device: just take the compaosition of
the tasks allocated to a single process with a synchronising automaton which
enforces the execution of only one task at a time. For every two Gsksd
T; allocated to the same processor, such a synchronising automaton is shown
in Figure 5. Intuitively, the automaton serialises the executiofi;aind 7.
This example illustrates the case where a component (see the description in
Section 2) corresponds to a set of tasks with resource constraints among them.
The resource constraint here is the non-preemptive nature of task execution,
and a component describes the set of tasks allocated to a processor.

Note that the constraint that each task can run only in its allocated slot is
taken care of by the strict periodicity constraint. If the tasks do not have the
same period, we can take the Icm of the periods to be the working period,
and create multiple instances of each task to fit the period. New precedence
constraints must be added between these new instances to indicate their order.

The end-to-end constraints can be modelled as TIA as in Section 3. The
composition of all the TIA involved, if defined, gives us a feasible schedule
for the execution of the tasks. However, the schedule is not static, since it is
anlnput strategy in which input moves can depend on previous output moves.
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Figure 6. Adaptive Cruise Control

To extract a static schedule, we can take the specification of execution times
as worst case execution times of tasks (worst case communication times for
messages) instead of intervals. This restricts the choices for phaytput—

tasks can complete only after a fixed known duration after they start.

Discussion. Various approaches to the problem of synthesising a static time-
triggered schedule based on constraint solving, branch-and-bound techniques
and mixed integer linear programming (MILP) have been proposed in the lit-
erature — see [Schild and ¥z, 2000, Caspi et al., 2003, Zheng et al., 2005]
for example. Because of disjunctions in mutual exclusion constraints, when
posed as an optimisation problem, the feasible region is not convex (see [Caspi
et al., 2003]). The typical workaround is either to use backtracking techniques
based on branch-and-bound search (as in [Caspi et al., 2003]), or code the
problem using binary decision variables and use a MILP solver (as in [Zheng
etal., 2005]). The latter technigue involves guessing a large corgtawhich
should be as small as possible for feasibility reasons.

It is not clear whether our approach is more scalable than the above ap-
proaches. For a definitive answer, we need an implementation of TIA that we
can use to carry out experiments on real-life time-triggered systems. Our ex-
pectation is that using on-the-fly techniques of [Cassez et al., 2005] we can
effectively conquer the inherent EXPTIME-complexity of the timed control
synthesis problem for reachability and safety objectives.

ExXAMPLE 15 (ADAPTIVE CRUISE CONTROL) This example is adapted
from [Kandasamy et al., 2003] and [Zheng et al., 2005], except we require
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Source | Target | Delay
(ps)

Ty Ty 350
T3 Ty 650
Ts Ts 1425
Ty Ts 500
Ty Ts 500
Ts T7 500
Ts Ts 500

Figure 7. WCCT for messages in ACC

Bus send24 send14 send35 send46 send45 send68 send57 ‘
ECU T4 T6 T5
Actuator ‘ T8 ‘ ‘ T7
T1
Sensor [
T3
0 300 1150 2575 3075 3575 4525 4575 4725
Time (ps)

Figure 8. Time-triggered schedule for ACC example

task scheduling on an ECU to be non-preemptive. ddagptive cruise-control
(ACC) feature in an automobile automatically adapts the speed of the vehicle
to the speed and distance of the vehicle in front. The ACC application involves
the timely interaction among a number of tasks that are distributed, and must
interact by sending messages. These tasks can be grouped as follows:

= Sensors

T1: Object distance and speed
T5: Vehicle speed
T5: Throttle position

= Controllers

Ty: Desired speed
Ts: Desired throttle position
Ts: Desired brake position
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= Actuators

T7. Throttle actuator

Ty: Brake actuator

Figure 6(a) shows the physical architecture of the system — all sensors and
actuators are directly connected to the bus, and one ECU (electronic control
unit) hosts all the controller tasks. Figure 6(b) shows the task graph, with the
WCET (worst case execution time) of each task appearing below the task name.
The end-to-end deadline of the entire transaction is the same as the period, i.e.,
A725us.

Figure 7 shows the WCCT (worst case communication time) of the mes-
sages. The time-triggered schedule synthesised by our method is shown in
Figure 8.

6. Conclusion

Component based development poses new problems for embedded control
systems software. Traditional real-time scheduling theory has been successful
in investigating whether a set of tasks can be scheduled on a given platform
using the characteristics of the tasks and the platform. The underlying as-
sumption is that the task characteristics have been derived from the application
requirements. Since today’s embedded systems are not monolithic, but are
built using pre-designed components which are composed to realise a given
functionality, what is needed is a new approach that combines task scheduling
within a component with what we call component scheduling. This paper is an
attempt to define and solve the component scheduling problem.

As future work, we would like to have an implementation of timed interface
automata in order to carry out experiments to demonstrate the scalability of our
approach. Experiments on small examples based on hand-coding of TIA using
UPPAAL TIGA have been encouraging.
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