
A Proposal for Real-time Interfaces in SPEEDS
Purandar Bhaduri

Indian Institute of Technology Guwahati, India
Email: pbhaduri@iitg.ernet.in

Ingo Stierand
University of Oldenburg, Germany

Email: stierand@informatik.uni-oldenburg.de

Abstract—The SPEEDS project is aimed at making rich com-
ponents models (RCM) into a mature framework in all phases of
the design of complex distributed embedded systems. The RCM
model is required to be expressive enough to cover the entire
development process from requirements to code through design,
and also capture both functional and non-functional aspects. In
this paper we propose a language-based framework for real-time
component interfaces in SPEEDS that is suitable at the ECU layer
when a target processor has been identified, and WCET analysis
done. We assume a discrete time model.

I. INTRODUCTION

While formal models for component interfaces have been in-
vestigated in recent years ([1], [2]), such models for real-time
embedded systems are still in their infancy. As an example,
there is a critical need for real-time interface models in the
automotive industry, where original equipment manufacturers
(OEMs) define the system requirements and architecture, while
the actual development of various components are contracted
to suppliers. Since the components provided by suppliers are
black boxes, it is essential that the OEMs can integrate the
components from a knowledge of their interfaces. However,
for real-time embedded applications, such as in the automotive
domain, it is not enough to model just the external interactions
of components in order to compose them. Timing issues,
such as periods, deadlines, jitter and end-to-end latencies must
be modelled, along with other non-functional aspects of the
behaviour of the component (e.g., reliability, fault-tolerance
and power consumption).

The SPEEDS project [3], [4] is an attempt at making rich
components models (RCM) [5] into a mature framework in
all phases of the design of complex distributed embedded sys-
tems, such as those used in avionics and automotive systems.
The RCM is required to be expressive enough to cover the
entire development process from requirements to code through
design, and also capture both functional and non-functional
aspects. In this paper we propose a real-time component
interface in SPEEDS that is suitable at the electronic control
unit (ECU) layer when a target processor has been identified,
and worst case execution time (WCET) analysis done. We
assume a discrete time model.

Our interface model has two operations. First, two interfaces
can be composed to form a compound interface. This allows
the system integrator to derive the interface of a composed
system from the interfaces of its constituent components.
Second, an interface can be refined by comparing a more
detailed specification against a more abstract one. An interface

refines another, when it can safely be substituted for the latter
in any context. For example, the abstract specification may
require “task 2 must be started within 10ms after task 1
finishes”, and the detailed specification may refine this to “task
2 starts 5ms after task 1 finishes”.

The properties of incremental design and independent im-
plementability are desirable features of an interface-based
design method. The property of incremental design ensures
that component interfaces can be composed into a subsystem
in any order. Independent implementability is supported by
preservation of parallel composition by interface refinement.
This means that if the interfaces of the constituent components
in a system are refined independently, the resultant system will
refine the original one. The two operations of our real-time
interface algebra support incremental design and independent
implementability by satisfying the usual algebraic laws.

Our real-time interface model is a language based for-
malism, based on the control interfaces proposed by Weiss
and Alur [6]–[8]. We assume a discrete time model, where
time is divided into slots of pre-defined equal length. All
scheduling related events, such as task arrivals, completions
and preemptions, take place at these discrete time points.
A schedule on a processor is described by an ω-word that
describes the sequence of tasks that run in the discrete time
slots. An ω-regular language describes the set of all legal
schedules. The operation of composition of interfaces corre-
sponds to substitution followed by intersection, and refinement
is language inclusion. All these operations are regular and are
decidable, albeit with high complexity [9]. Moreover, many
real-time task models (such as periodic, periodic with jitter
etc.) and scheduling strategies (fixed-priority, earliest deadline
first etc.) can be described in this framework.

The main contribution of this paper is a proposal for
enhancing the SPEEDS framework with the notion of a real-
time interface. Currently in SPEEDS real-time requirements
of components can be specified as timed automata. But unlike
the modelling and analysis of behavioural properties, the
current approach to analysing timing properties in SPEEDS
is through global methods at system level, rather than at
the component level. These approaches are based on holistic
scheduling methods [10] for analysing timing properties rather
than compositional assume-guarantee reasoning.

We provide a notion of contracts which are consistent
with the hybrid automata based contracts in SPEEDS, and
show how to combine them using an operation of contract
composition. We abstract from functional aspects and restrict

expressiveness to partial ordering of events (such as task
release and completion) and timing.

We consider the language-based interfaces described above
as implementations of a component which take into account
the resource constraints of a given platform, such as the
execution time of a task. We define what it means for such an
implementation to satisfy a contract by translating the assump-
tions and guarantees in a contract into the interface language.
Roughly speaking, the satisfaction relation asserts that the
implementation is a subset of the guarantees, when restricted
to the set of assumptions. We show that the satisfaction rela-
tion (between implementations and contracts) is preserved by
parallel composition, and this enables compositional reasoning
about real-time properties.

II. REAL-TIME INTERFACES

A. Introduction

We assume that a set of real-time components are to be
executed on a single processor. Each component has a number
of tasks. The traditional way to specify a component interface
would be to specify the timing characteristics of each task
in the set (e.g., its period, deadline, execution time, etc.).
However, this notion of interface is not compositional. Given
two interfaces, each of which is individually schedulable on
the processor, it’s not clear how to combine this information
to deduce whether two components together are schedulable.
This is because designers are free to use any scheduling
algorithm inside their components to schedule the tasks, and
these are not necessarily known to the system integrator.

Our component interfaces are based on the automata based
interfaces of Weiss and Alur [6]–[8]. Similar ideas on automata
based scheduling frameworks are also presented in [11]. The
idea can be explained as follows. Consider a real-time compo-
nent with two tasks 1 and 2, which are scheduled on a single
processor in discrete slots of some fixed duration. A schedule
for this component can be described by an infinite word over
the alphabet {0,1,2}, where 0 indicates the processor is idle,
and 1 or 2 signifies the corresponding task is running during
the slot. The interface of a component is then an ω-language
(see [9] for an introduction to the theory of ω-languages)
containing all legal schedules. It is the job of the component
developer to ensure that the internal scheduling algorithm
produces a schedule belonging to the set of legal schedules
in the interface. This notion of component interface is com-
positional: composing two interfaces corresponds to language
theoretic operations of substitution followed by intersection.
Schedulability of a set of components on a single processor
corresponds to checking the emptiness of their intersection.

Our interfaces can easily express commonly occurring tim-
ing requirements such as periodic tasks with or without jitter,
etc. Modelling sporadic tasks requires some more machinery,
as task release times have to be somehow recorded. Task
dependencies and mutual exclusion constraints can be taken
care of in the language theoretic setting by just specifying
what the legal schedules are. We will describe abstraction
techniques to deal with the issue of efficiency of representation

of real-time interfaces in a separate paper. Ease of specification
is also an issue, but tool support for translating from user-
centric notations to the language of ω-automata can alleviate
the problem.

B. Related Work

Assume-guarantee interfaces for real-time systems have
been investigated in [12]–[14] among others. The interface
theory in [12] is based on the formalism of timed games, and
extends the interface automata formalism of [1] to the timed
case. The work in [13], [14] are based on Real-Time Calculus
(see [15]), a framework based on a general event and resource
model that can be used to derive hard upper and lower bounds
of various performance criteria.

The paper [16] introduced an open environment for schedul-
ing independently developed real-time applications. It is a
hierarchical scheduling framework where each application can
use any scheduling algorithm to schedule its tasks assuming
a virtual processor of a certain speed. At a lower level the
system uses the earliest deadline first (EDF) policy to schedule
the applications. Exact schedulability conditions for such a
scheduling framework was explored in [17], assuming the
system scheduler knows the deadlines of each individual task
in each of the applications. Note that such a hierarchical
framework is not compositional in our sense, where the
composition of a number of components can be treated as
a single component.

Another hierarchical approach to scheduling with compo-
sitional analysis using interfaces has been proposed in [18],
[19]. In these papers, an interface abstracts the collective real-
time requirements of a set of periodic tasks into a single
real-time periodic requirement. It is based on necessary and
sufficient conditions for the schedulability of periodic tasks
according to rate monotonic (using a response time analysis)
and earliest deadline scheduling policies. Note that this line
of work assumes very specific task and resource models, such
as periodic and bounded delay. Moreover, the abstraction of a
set of periodic tasks as a single periodic task naturally entails
loss of information and leads to schedulability results that are
too pessimistic.

C. Formalisation of Real-Time Interfaces

We formalise the definitions motivated above by defining an
algebra of component interfaces below. Let T be a global set
of tasks containing the special symbol 0 denoting the empty
task.

Definition II.1. A real-time interface (or simply an interface) I
is a pair (L,T) where T ⊆ T is the set of tasks in the interface
(the alphabet of I) and L ⊆ T ω is an ω-regular language
denoting the set of acceptable or legal schedules of I (the
behaviour of I). We require that 0 ∈ T , i.e., the empty task 0
belongs to every alphabet. ♦

From now on, we refer to a real-time interface simply as
an interface. The intuition behind the definition is that an

interface is the set of schedules that satisfy the component’s
requirements.

Definition II.2. Let S and T be alphabets with S ⊆ T . Define
the function proj(T,S) : T ω → Sω by the unique extension of
the function T → S that is identity on the elements of S and
maps every element of T \S to 0. ♦

In other words, if S ⊆ T then projecting a word over the
larger alphabet T into a word over the smaller alphabet S will
map any symbol from T not belonging to S to 0; symbols
that belong to S are mapped to themselves. Taking the inverse
projection of a word over S will result in a set of words where
any 0 in the word will be replaces by all the letters in T which
are not in S.

Notation: For f : X → Y , A ⊆ X and B ⊆ Y , we write f (A)
for the direct image { f (a) | a ∈ A} and f−1(B) for the inverse
image {x ∈ X | f (x) ∈ B}.

Definition II.3. Given any two alphabets Σ,∆, a substitution
is a function σ : Σ → 2∆∗ assigning some language σ(a) ⊆
∆∗ to every symbol a ∈ Σ. A substitution σ is extended to
a map σ : 2Σω → 2∆ω

by first extending σ to ω-words using
concatenation, and then to ω-languages by letting

σ(L) =
[

w∈L

σ(w),

for every language L ⊆ Σω. ♦

In general, a substitution allows replacing a symbol by a lan-
guage. In our setting, we will replace a symbol by an alphabet.
This will capture the fact that an idle slot (corresponding to
the symbol 0) can be allotted to a task.

Definition II.4. The parallel composition I1 ‖ I2 of two real-
time interfaces I1 = (L1,T1) and I2 = (L2,T2) is the interface
(L,T) defined by L = L′1 ∩ L′2 and T = T1 ∪ T2, where L′1 =
proj(T,T1)−1(L1) and L′2 = proj(T,T2)−1(L2). ♦

Note that L′1 = σ1(L1), where σ1 is the substitution defined
by σ1(t) = {t} for t ∈ T1 \{0} and σ1(0) = T2. In other words,
L′1 is like L1, except that it allows tasks in T2 to run when the
processor is idle. Likewise for L′2. So L = L′1∩L′2 is the set of
schedules over T , whose ‘projections’ are in L1 and L2.

The idea behind the definition is that a schedule is legal in
I1 ‖ I2, if and only if its restriction to T1 is legal in I1 and
its restriction to T2 is legal in I2. It is a kind of intersection
of sets of schedules of I1 and I2, except we allow tasks from
the other set to run when the processor is idle. The parallel
composition is the largest set of schedules that satisfies the
requirement of both the interfaces.

Since ω-regular languages are closed under regular substitu-
tion and intersection, parallel composition of interfaces is well
defined. Moreover, the constructions involved are effectively
computable [9], so parallel composition is computable.

Lemma II.5. When interfaces I1 = (L1,T1) and I2 = (L2,T2)
have the same alphabet T1 = T2 = T , their parallel composition
is given by intersection of behaviours: I1 ‖ I2 = (L1 ∩L2,T).

Lemma II.6. Parallel composition is associative and commu-
tative:

1) (I1 ‖ I2) ‖ I3 = I1 ‖ (I2 ‖ I3), and
2) I1 ‖ I2 = I2 ‖ I1.

We say that an interface I1 refines I2 when I1 can safely be
substituted for I2 in all contexts. Put another way, I1 is more
detailed than I2, and offers fewer design choices.

Definition II.7. The interface I1 = (L1,T1) refines I2 =
(L2,T2), written I1 � I2, if and only if T2 ⊆ T1 and
proj(T1,T2)(L1)⊆ L2. ♦

In other words, I1 refines I2 when the legal schedules of
I1, on restriction to the alphabet T2, are contained in the legal
schedules of I2. In addition, I1 is able to schedule some tasks
from the set T1 \T2 in the gaps left by schedules in I2. Note
that when T1 = T2, I1 � I2 if and only if L1 ⊆ L2.

Since the inclusion of ω-regular languages is decidable,
checking refinement of interfaces is decidable. The following
results are immediate.

Lemma II.8. Refinement is a partial order.

Lemma II.9. (Compositionality of refinement) I � J implies
I ‖ K � J ‖ K for all interfaces I, J and K.

Proof: In the following, we write (LI ,TI) for the com-
ponents of interface I. Suppose I � J. This implies TJ ⊆
TI and proj(TI ,TJ)(LI) ⊆ LJ . Now, TJ ⊆ TI implies TJ ∪
TK ⊆ TI ∪ TK , so the first condition in Definition II.7 re-
quired to show I ‖ K � J ‖ K is met. To show that the
other condition also holds, we show that proj(TI ,TJ)(LI) ⊆
LJ implies proj(TI‖K ,TJ‖K)(LI‖K) ⊆ LJ‖K . Suppose w ∈
proj(TI‖K ,TJ‖K)(LI‖K). This means there exists a v∈ LI‖K such
that w = proj(TI‖K ,TJ‖K)(v), i.e., w is obtained from v by
replacing letters in the set I \ J by 0. Since v ∈ LI‖K , we
have the following two conditions by the definition of parallel
composition:

proj(TI‖K ,TI)(v) ∈ LI (1)
proj(TI‖K ,TK)(v) ∈ LK (2)

Now, since TJ ⊆ TI , it follows from (1) that proj(TI‖K ,TJ)(v) =
proj(TI ,TJ)(proj(TI‖K ,TI)(v)) ∈ proj(TI ,TJ)(LI) ⊆ LJ by the
hypothesis. From the way w is obtained from v, it follows
that proj(TJ‖K ,TJ)(w) ∈ LJ . From (2) it is immediate that
proj(TJ‖K ,TK)(w) ∈ LK . Hence, w ∈ proj(TJ‖K ,TJ)−1(LJ) ∩
proj(TJ‖K ,TK)−1(LK) = LJ‖K .

Thus, our interfaces satisfy the usual laws for incremental
design and independent implementability.

D. An Example: Scheduling of Periodic Tasks

This section is adapted from [11], which uses ordinary
automata on finite strings to represent and solve scheduling
problems. Consider a set of periodic tasks T = {τ1, . . . ,τn},
where each task τi is characterised by a period pi, an execution
time ci, relative deadline di and phasing ϕi, with di ≤ pi. For

simplicity, we assume that the unit of time is the smallest
time slot that can be scheduled atomically. Assume that the
tasks run on a single processor, and are preemptible, with
no preemption overheads. Consider task τi in isolation, and
assume that it is the only task running. Then the kth instance
of task τi is released at ϕi +(k−1)pi, and to meet its deadline
it must finish execution by ϕi + (k − 1)pi + di. Then the
processor is idle for pi − di time units, following which the
(k + 1)th instance of the task is released. The computation
requirement of the task τi can be expressed in our framework
as the real-time interface Ii = (Li,Ti) where Ti = {0, i} and
Li = 0ϕi [(0di−ci 9 ici)0pi−di]ω, where u 9 v is the shuffle or
interleaving of finite words u and v. The set of tasks T is
schedulable if and only if the language Lπ in the composed
interface Iπ = (Lπ,T) = I1 ‖ I2 . . . ‖ In is nonempty. Note that Lπ

is the set of all legal schedules of the task set T , i.e., schedules
where all the tasks in T meet their deadlines.

Now consider a fixed priority scheduling (FPS) algorithm,
such as rate monotonic scheduling [20]. Suppose the tasks
τ1, . . . ,τn are ordered in non-increasing order of priority. We
show how to capture the timing requirements of such a task
set T in terms of an interface Ifps in the next paragraph. The
task set T is schedulable using the fixed priority scheme if
and only if Ifps � Iπ, where the interface Iπ is the composition
I1 ‖ I2 . . . ‖ In, as defined above. Since the tasks sets of Ifps
and Iπ are the same, namely T , this amounts to checking the
inclusion of two ω-regular languages.

To derive the ω-regular expression for the interface Ifps, let
us make the simplifying assumption that the phasings of all
tasks are zero, i.e., the first instances of all tasks are released
simultaneously. Let plcm be the least common multiple of
all the periods p1, . . . , pn. It is clear that using fixed priority
scheduling, the schedule will repeat after an interval of plcm
time units. Now let u be the finite word that describes the
schedule in the initial time interval of length plcm using fixed
priority scheduling. Then Ifps = (uω,T ∪{0}).

A similar analysis can be done for scheduling with the
earliest deadline first (EDF) [20] algorithm, using the fact that
the schedule will repeat every plcm time units. We remark on
how our framework can handle more general task models and
scheduling algorithms.

1) Handling of sporadic tasks will require recording the
task release events in addition to the time slices during
which the task runs. Otherwise it will not be possible to
see whether sporadic tasks meet their deadlines. We will
see how to do this with contracts in the next section.

2) Handling a periodic task with deadline d greater than
its period p can be achieved by taking the parallel
composition of m copies of the task with phasings
0, p,2p, . . . ,(m−1)p where m = dd/pe, and then repeat-
ing this pattern forever.

III. ADDING CONTRACTS

One of the shortcomings of our definition of a real-time
interface is that it lacks the notion of a contract. In the
SPEEDS framework components are characterised by formal

contracts, i.e., pairs (A,G) where A is an assumption about
the environment of the component, and G is the guarantee
that the component offers to its environment [4].

For real-time interfaces, both assumptions and guarantees
will talk about bounds on the frequency of task arrivals
and time to completions. In addition, they can capture the
dependencies between tasks, for example, by stating that “task
2 is triggered whenever task 1 completes”.

We equip our component interfaces with contracts as fol-
lows. Both the assumptions A and the guarantees G consist
of task release (or arrival) times as well as task finishing
(or completion) times. These are again modelled using ω-
regular languages, but now the semantics is different from
the real-time interface we discussed in earlier sections. The
alphabet for a given task i for an ω-word is Σi = {0,ai, fi}.
An ω-word corresponds to time points (instants) when either
nothing happens (modelled by 0), a task arrives (modelled
by ai) or finishes execution (modelled by fi). The contract
(A,G), where A = L1 × L2 × . . .Ln and G = L′1 × L′2 × . . .L′n
with Li, L′i being ω-regular words over Σi, specifies promises
on the arrival and finishing times of tasks 1 to n, given the
assumptions on the arrival and finishing times of the same set
of tasks. A dependency between tasks, such as task i triggers
task j, is captured by the occurrence of fi in position k of any
word in Li implying the occurrence of a j in position k +1 of
the corresponding word in L j in the product L1×L2× . . .Ln.

We require that both the assumptions A and the guarantees
G in a contract are subsets of the ω-language (0?ai0? fi)ω, so
that the arrival-completion intervals are disjoint in time. This
means that two instances of a task cannot be active at the same
time.

We now have to reconcile the two views of a real-time
interface – the set of legal schedules in an interface I = (L,T)
and the contract C specified by the pair (A,G). This is captured
by the fact that a task can only execute after it is released,
and it completes execution at the end of the last slot in its
execution. These two constraints can be captured easily by
enforcing certain relations involving the (A,G)-pair and the
interface I. We say that the interface I is an implementation
that satisfies the contract C in case the constraints hold.

The relation between contracts and interfaces is provided
by a map α that translates the assumptions and guarantees
into interface languages. We define α on individual ω-words,
and then extend the definition to ω-languages by pointwise
union. Note that α will send a single word to a set of
words. Suppose task i has computation time ci. For a word
w = 0x1 ai0x2 fi0x3ai0x4 fi . . . in A or G, its translation α(w), an
interface language over the alphabet {0, i}, is the set of words
0x1(ici−1 9 0x2+1−ci)i0x3(ici−1 9 0x4+1−ci)i Notice that the
translation of w involves the execution time ci for task i, an
implementation level concept. While α can be defined for
arbitrary task arrival and completion times as shown above,
we illustrate the definition on a periodic task model.

Example III.1. Suppose we want to model a periodic task i
with period pi, zero phasing, and relative deadline di. Assume

that di ≤ pi. This is captured by the contract (A,G) where A =
(
S

s+t=pi−1 ai(0s) fi(0t))ω and G = (0?ai0≤di−1 fi)ω. Suppose
task i has execution time of ci on the processor. The translation
of A is given by α(A) = (ici 90pi−ci)ω and that of G by α(G) =
(0?(ici 90di−ci))ω.

The language of the real-time interface of the periodic task
in Example III.1 is given by Li = [(ici 9 0di−ci)0pi−di]ω. The
interface Li, seen as an implementation, satisfies the contract
C = (A,G) if and only if α(A)∩Li ⊆ α(G). This is consistent
with the following definition of an implementation M satisfy-
ing a contract C = (A,G) in [4], modulo the translation α.

Definition III.2. [4] Let C = (A,G) be a component. An
implementation M of the component satisfies (A,G), written
M � (A,G), if and only if M∩A ⊆ G. Here M, A and G are
all sets of traces (sequences).

Note that If A = L1 × L2 . . .× Ln then the translation of
A is given by α(A) =

T
1≤i≤n proj(T,Ti)−1(Li), where T =

{0, . . . ,n} and Ti = {0, i}, in keeping with the spirit of our
definition of parallel composition of interfaces.

The parallel composition of contracts C1 = (A1,G1) and
C2 = (A2,G2) with the same set of tasks, numbered 1 to
n, can be defined as follows. If Ai = Li

1 × Li
2 . . .× Li

n and
Gi = Li

1
′ × Li

2
′
. . .× Li

n
′ for i = 1,2, then the composition

C = C1 ‖ C2 is the pair (A,G) given by A = L1 ×L2 . . .×Ln

where Lk = (L1
k ∩L2

k)∪(L1
k
′∩L2

k
′) for 1≤ k≤ n, and G = L′1×

L′2 . . .×L′n where L′k = L1
k
′∩L2

k
′ for 1 ≤ k ≤ n. This definition

of contract composition is consistent with the definition in [4]:

Definition III.3. Let C1 = (A1,G1) and C2 = (A2,G2) be
contracts. The parallel composition C = (A,G) = C1 ‖ C2 is
given by

A = (A1∩A2)∪¬(G1∩G2),
G = G1∩G2

♦

Example III.4. Suppose C1 = (A1,G1) and C2 = (A2,G2)
are two contracts over the arrival and finishing times of
just one task, so that the alphabet Σ is given by {0,a, f}
where we drop the subscript 1 for ease of presentation.
Suppose the assumption A1 is (

S
s+t≥4 a(0s) f (0t))ω , which

says that the task arrives at most once every 5 time units,
describing a sporadic task with a minimum separation be-
tween arrival times. Similarly, suppose the guarantee G2 is
(
S

s+t≥9 a(0s) f (0t))ω, which says the task arrives at most
once every 10 time units. Further, assume that G1 and A2
impose no constraints, so that G1 = A2 = (0?a0? f)ω. Then
the composition of the contracts C1 and C2 will be C = (A,G)
where A = (A1 ∩A2)∪ (G1∩G2) = (0?a0? f)ω and G = G2,
i.e., the composed contract imposes no assumptions on the
environment, as the assumption in C1 is already met (i.e.,
discharged) by the guarantee in C2.

The following lemma states that the satisfaction relation
between implementations and contracts is compositional.

Fig. 1. Timed Automaton of a Task Interface

Lemma III.5. If the interfaces I1 and I2 satisfy contracts C1
and C2 respectively, then the interface I1 ‖ I2 satisfies C1 ‖
C2.

IV. AN EXAMPLE

To show an application of the approach, two simple
UPPAAL1 models have been constructed manually that utilise
the formalism of timed automata with additional counters
to represent the intended interface languages. The models
“discretise” time by introducing a global periodic tick event
that the automata of the model synchronise with.

We model the activation and the execution of a periodic task
(with period P, relative deadline D and computation time C)
by the synchronous product of two automata (cf. Figure 1).
We use a total of three counters to represent the scheduling
problem for a single task. The input to the task automaton is
the arrival a.

The counters are used as follows. The first counter zc keeps
track of the number of time slices the current instance of the
task has executed. Whenever the counter reaches the execution
time c of the task, it is reset. The second counter zd counts
the total time elapsed since the current instance of the task
was released. Whenever its value reaches the deadline d of
the task, and the first counter has not reached the execution
time requirement c, an error state is entered. Counter zd is
reset whenever zc is reset. In order to perform its time keeping
function, the second counter is incremented whenever it is non-
zero (and below the deadline d), or when the task is released.
For convenience, the counters zc and zd actually store one
plus the actual value, in order to distinguish epochs when the
task is active (i.e., has been released and not completed) from
the ones when the task is inactive; in the latter case the two
counters should not change their values. We need just two
states (i.e., locations) in the automaton on the right, one for
normal operation and the other an error state. In addition to
the two counters described above, a counter zp is needed to
mark the periods of the task. The task is schedulable if and
only if there exists an infinite path along which the error state
is not reachable, i.e., the CTL formula EG(¬error) holds.

For the example, an additional automaton has been con-
structed representing a contract. To keep things simple, the

1Although UPPAAL is a tool for dense time models, it is simple to use and
efficient enough for the case studies.

Fig. 2. Timed Automaton of a Guarantee

assumption is set to true, and the guarantee specifies a
maximum deadline for a task (cf. Figure 2). For simplicity the
contract automaton re-uses the counter of the task automaton.

For the first example, we verified (the obvious fact) that a
single task with period 10 and execution time 5 is schedulable,
and that it satisfies the given contract. For the second example,
we constructed a model with a second task with the same
execution characteristics, and repeated the schedulability and
satisfaction verification against the contract.

As expected, verification showed that both properties are
satisfied in the second case as well. We could also verify
that neither schedulability nor contract satisfaction holds when
either the execution time of the task is increased, or the
deadline defined by the contract is reduced.

Schedulability of task 1.
Satisfaction of task 1 against contract.
Schedulability of (task 1 ‖ task 2).
Satisfaction of (task 1 ‖ task 2) against contract.

TABLE I
PERFORMED VERIFICATIONS

V. CONCLUSION AND FUTURE WORK

In this paper we have proposed a real-time interface for
the SPEEDS framework. In future work, we plan to address
several limitations of the interface language and the language
of contracts. For instance, the interface language cannot spec-
ify dependencies between tasks when only upper and lower
bounds and not exact values for their execution times are
known. Moreover, there is a loss of information in the transla-
tion between contracts and the interface language concerning
the visibility of arrivals and completion times of tasks. This
loss of expressive power leads to an approximate analysis of
schedulability. These are issues for future investigation.

ACKNOWLEDGEMENTS

We thank Werner Damm for sharing his insights and provid-
ing helpful suggestions and encouragement. Discussions with
S. Ramesh, Prahlad Sampath, Alexander Metzner and Matthias
Büker have clarified many issues. The first author gratefully
acknowledges the support from the University of Oldenburg
and AVACS, and OFFIS for hosting him during the work.

REFERENCES

[1] L. de Alfaro and T. Henzinger, “Interface automata,” in Foundations of
Software Engineering. ACM Press, 2001, pp. 109–120.

[2] L. de Alfaro and T. A. Henzinger, “Interface-based design,” in Engi-
neering Theories of Software-intensive Systems, Marktoberdorf Summer
School, NATO Science Series. Springer-Verlag, 2004.

[3] “SPEEDS:SPEculative and Exploratory Design in Systems engineering,”
2008, http://www.speeds.eu.com.

[4] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone,
and C. Sofronis, “Multiple viewpoint contract-based specification and
design,” in Formal Methods for Components and Objects, ser. LNCS,
vol. 5382. Springer, 2007, pp. 200–225.

[5] W. Damm, A. Votintseva, A. Metzner, B. Josko, T. Peikenkamp, and
E. Böde, “Boosting re-use of embedded automotive applications through
rich components,” in Proceedings of Foundations of Interface Technolo-
gies, ser. Electronic Notes in Theoretical Computer Science. Elsevier
Science, 2005.

[6] G. Weiss and R. Alur, “Automata based interfaces for control and
scheduling,” in Hybrid Systems: Computation and Control, 10th Inter-
national Workshop, HSCC, ser. LNCS, vol. 4416. Springer, 2007, pp.
601–613.

[7] R. Alur and G. Weiss, “Regular specifications of resource requirements
for embedded control software,” in IEEE Real-Time and Embedded
Technology and Applications Symposium. IEEE Computer Society,
2008, pp. 159–168.

[8] ——, “RTComposer: a framework for real-time components with
scheduling interfaces,” in Proceedings of the 8th ACM & IEEE Interna-
tional conference on Embedded software, EMSOFT 2008, Atlanta, GA,
USA, October 19-24, 2008. ACM, 2008, pp. 159–168.

[9] W. Thomas, “Automata on infinite objects,” in Handbook of Theoretical
Computer Science, J. van Leeuwen, Ed. Elsevier Science Publishers
B. V., 1990, ch. 4, pp. 133–191.

[10] K. Tindell and J. Clark, “Holistic schedulability analysis for dis-
tributed hard real-time systems,” Microprocessing and Microprogram-
ming, vol. 40, pp. 117–134, April 1994.

[11] D. Geniet and G. Largeteau, “WCET free time analysis of hard real-
time systems on multiprocessors: A regular language-based model,”
Theoretical Computer Science, vol. 388, no. 1-3, pp. 26–52, 2007.

[12] L. de Alfaro, T. A. Henzinger, and M. Stoelinga, “Timed interfaces,” in
Embedded Software, Second International Conference, EMSOFT 2002,
ser. LNCS, vol. 2491. Springer, 2002, pp. 108–122.

[13] T. A. Henzinger and S. Matic, “An interface algebra for real-time com-
ponents,” in Proceedings of the 12th Annual Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE Computer
Society, 2006, pp. 253–266.

[14] S. Chakraborty, Y. Liu, N. Stoimenov, L. Thiele, and E. Wandeler,
“Interface-based rate analysis of embedded systems,” in International
Real-Time Systems Symposium (RTSS’06). IEEE Computer Society,
2006, pp. 25–34.

[15] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in International Symposium on
Circuits and Systems, ISCAS 2000. IEEE Computer Society, 2000,
pp. 101–104.

[16] Z. Deng, J. W.-S. Liu, L. Zhang, S. Mouna, and A. Frei, “An open
environment for real-time applications,” Real-Time Systems, vol. 16, no.
2-3, pp. 155–185, 1999.

[17] G. Lipari and S. Baruah, “A hierarchical extension to the constant
bandwidth server framework,” in Proceedings of the Real-Time and
Embedded Technology and Applications Symposium (RTAS). IEEE
Computer Society, 2001, pp. 26–35.

[18] A. Easwaran, I. Shin, O. Sokolsky, and I. Lee, “Incremental schedula-
bility analysis of hierarchical real-time components,” in Proceedings of
the 6th ACM & IEEE International conference on Embedded software,
EMSOFT 2006. ACM, 2006, pp. 272–281.

[19] I. Shin and I. Lee, “Compositional real-time scheduling framework with
periodic model,” ACM Trans. Embedded Comput. Syst, vol. 7, no. 3,
2008.

[20] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. ACM, vol. 20, no. 1, pp. 46–61,
1973, January.

