
Synthesis of Synchronous Interfaces

Purandar Bhaduri
Dept. of Computer Science & Engineering
Indian Institute of Technology Guwahati

Guwahati 781039, India
pbhaduri@iitg.ernet.in

S. Ramesh
India Science Lab, GM R&D Centre

Creator, International Tech Park
Whitefield Road, Bangalore 560066, India

ramesh.s@gm.com

Abstract

Reuse of IP blocks has been advocated as a means to
conquer the complexity of today’s system-on-chip (SoC) de-
signs. Component integration and verification in such sys-
tems is a cumbersome and time consuming process. We
present synchronous interface automata (SIA) as a frame-
work for modelling communication aspects of IP blocks,
to serve as a unifying model in the top-down refinement,
synthesis and verification stages of the design process. We
show how to formally specify component composition and
protocol compatibility in our model, and how we can apply
the model to the problem of synthesising converters for in-
compatible protocols of interaction between IP blocks. Our
model is based on the game theoretic framework of inter-
face automata, suitably adapted for practical modelling of
IP blocks.

1. Introduction

The “design productivity gap”, which refers to the ap-
parent mismatch between our ability to design complex in-
tegrated circuits and what is technologically possible, is a
serious impediment in handling the complexity of today’s
system-on-chips (SoC’s) and embedded systems. To man-
age design complexity and shorten design cycles, design
methodologies that raise the level of abstraction from the
RTL level to the system level have been proposed. These
high level modelling and validation methods have advo-
cated greater reuse of existing intellectual property (IP)
blocks. However, this raises the fundamental problem of de-
sign correctness. In view of the complexity of system-level
designs, it is important to guarantee that composition of IP
blocks is correct by design. In practice, this is a difficult
task, because components often come from different manu-
facturers and are designed at different levels of abstraction
using different protocols of interactions.

Automated design reuse by composing IP blocks has to

address the problem of their incompatibility due to mis-
matches in protocols of interaction. To meet the challenge
of incompatibility of protocols when composing IP blocks,
protocol converters have to be built to ensure correctness.
Various approaches have been proposed for constructing a
converter that resolves protocol mismatches (see [4, 15, 17–
20]). Most of these models are quite simplistic and infor-
mal, and no clear formalisation of the problem of protocol
mismatch exists.

We propose thesynchronous interface automata(SIA)
model as a formalism for specifying the protocol behaviour
of IP blocks. The SIA model is suitable for deriving de-
tailed implementation models from high level abstract spec-
ifications, for verifying compatibility of IP blocks, and for
automatically synthesising converters when there is a mis-
match in protocols. We show how the SIA model gives a
formal foundation to the problem of converter synthesis, by
showing how this problem can be placed in the wider frame-
work of the followinginterface synthesisproblem. We are
given an interfaceP for a known component of the system,
and the interfaceQ for the system as a whole. We have
to find the most general interfaceR, which combined with
P is a refinement ofQ, symbolicallyP ‖ R� Q. This is a
central problem in component based top down design of a
system, and has been investigated previously in other con-
texts [3, 5, 22, 23]. We show that in our SIA framework the
solution is given byR= (P ‖ Q⊥)⊥, whereP⊥ is the inter-
face identical toP, except the roles of input and output are
interchanged. From this general framework we are able to
derive a solution to the specific problem of converter syn-
thesis for mismatched protocols. The formalism for con-
verter synthesis closest to ours is the game theoretic ap-
proach proposed by Passeroneet al. in [17]. We show that
our framework is more general than that of [17] – indeed
the latter formulation is just a special case of the former.

Interface automata are a game based formulation of in-
terfaces – see [9] and [8] for the details. The original in-
terface automata formalism was proposed to model the be-
havioural interface of asynchronously interacting software

modules. A synchronous version, referred to as Moore in-
terface, was proposed in [7] to model interactions between
components typical in hardware. In this paper we give a
new definition of synchronous interfaces that is suitable for
modelling the protocol behaviour of IP blocks. The main
differences between our SIA model and the Moore inter-
faces of [7], are that, we use Mealy rather than Moore ma-
chines, and instead of specifying initial states and transi-
tions in terms of predicates on state variables, we take the
state transition framework, where transitions are triggered
by input signals and emit output signals. The advantage of
the Mealy framework is that our systems satisfy thesyn-
chrony hypothesis, i.e., have zero response time, which is
an useful abstraction at the specification level (see [2]). The
price to pay is the difficulty in composition due to the possi-
bility of causality cycles. We come back to this point later.

The SIA model essentially defines Mealy automata with
explicit input assumptions and output guarantees. Since an
IP block interacts with other blocks to realise a given func-
tionality, reasoning about its correctness requires assump-
tions about its environment. A block behaves correctly, i.e.,
meets its output guarantees, only when its input sequence
satisfies its input constraints. The interplay of input assump-
tions and output guarantees gives rise to a game view of SIA
composition. The game is between players Input and Out-
put, where the role of Input is to provide the right inputs in a
given state so that no incompatibility can arise. Two SIA are
composable only if there is a winning input strategy, which
amounts to theexistenceof an environment which can make
both of them work together. This is in contrast toinput
enabled models, such as the I/O automata framework [14],
where it is required that no input action can ever be refused
in any state. Effectively, the composition operation on SIA
composes input assumptions and output guarantees of two
SIA, and any unmatched assumptions are propagated to the
environment – see [8, 9] for the detailed motivation on the
use of games for composition and refinement for compo-
nents.

The main technical contribution of this paper is in
proposing an algebraic framework for composition and re-
finement of SIA, and its use in solving the synthesis prob-
lem described above. We demonstrate the significance of
the problem by showing how it can be used to solve the
converter synthesis problem between mismatched protocols
of interaction of IP blocks.

2. Synchronous Interface Automata

We fix some notation and conventions first. AnI/O-
signatureis a pair [~I ; ~O], where~I = I1, . . . , In and~O =
O1, . . . ,Om are disjoint lists ofinput andoutput variables.
I/O-signatures are used to identify input and output lines
when composing synchronous interfaces, as in Figure 1.

I1
-

- -

-

-

-

-

QP

I O1
I2

U

O2

V
-

Figure 1. Block diagram for P⊗Q

We use the vector notation to denote lists and suppress their
lengths. Each input variableI k is interpreted over a finite
setIk called the domain ofI k, and likewise each output vari-
ableO j is interpreted over a finite setO j . Input values in
the setsIk are denotedi1, i2, . . ., while output values inO j

are denotedo1,o2, We refer to the set~I = I1× . . .× In
interpreting all the input variables as theinput spaceor in-
put alphabet, and~O = O1× . . .×Om as theoutput spaceor
output alphabet.

Definition 1 A synchronous interface automaton(SIA) P
with I/O signature[~I ; ~O] is a tuple (SP,S0

P,AI
P,AO

P ,δP)
where:

• SP is a finite set ofstates.

• S0
P ⊆ SP is the set ofinitial states, which has at most

one element.

• AI
P = I1× I2× . . . In andAO

P = O1×O2× . . .Om are the
input andoutput alphabets.

• δP : SP×AI
P×AO

P → SP is a (partial)transition func-
tion associating a target stateδP(s, i,o) with each state
s∈ SP and input and output valuesi ando, when it is
defined.

The SIAP is said to beemptywhen its set of initial states
S0

P is empty. Empty interface automata arise when incom-
patible automata are composed.

The meaning ofδP(s, i,o) = s′ is that the SIAP can tran-
sit from states to s′ on input i, and perform the outputo.
Although a given pair(s, i) of current state and input value
does not uniquely determine the next state, the triple(s, i,o)
of current state with input and output values certainly does,
when it is defined. This is the property ofobservable non-
determinism. It allows us to treat SIA as deterministic au-
tomata when we forget the distinction between inputs and
outputs by clubbing them together.

Notation We write p
i−→
o

p′ if δ(p, i,o) = p′ for states

p, p′ and input-output action(i,o) in an SIA P. Also, the
set of input and output actions possible at a statep in P

are denotedAI
P(p) = {i | p

i−→
o

p′ for someo andp′} and

AO
P(p) = {o | p

i−→
o

p′ for somei andp′} respectively.

2

Definition 2 An execution fragmentof an SIA P is a fi-
nite alternating sequence of states and input-output values
s0,(i0,o0),s1,(i1,o1), . . . ,sn such thatδP(sk, ik,ok) = sk+1

for all 0≤ k < n. Given two statess,s′ ∈ SP, we say thats′

is reachable from sif there is an execution fragment whose
first state iss, and whose last state iss′. A states′ is reach-
able in P if there exists an initial states∈ S0

P such thats′ is
reachable froms. Let Reach(P) denote the set of reachable
states ofP.

When composing two SIA, the available inputs may need
to be cut down, in order to avoid reaching incompatible
states. This leads to the definition of an input strategy, a pre-
determined way of choosing the input at every state. Note
that our strategies aredeterministic(at every state there is
exactly one choice of input action) andmemoryless(the
choice of input action depends only on the current state and
not on the past history).

Definition 3 An input strategyfor P is a mapπI : SP→ AI
P.

Given an input strategyπI , only a subset of states in
Reach(P) can be reached. Let Reach(P,πI)⊆ SP, thestates
reached under input strategyπI , be defined inductively as
follows:

• S0
P ⊆ Reach(P,πI), and

• for all s∈ Reach(P,πI) ando ∈ AO
P , δP(s,πI (s),o) ∈

Reach(P,πI).

The set Reach(P, p,πI) of states reached underπI starting
from statep in P is defined in the obvious way.

The composition of two SIA is a partial operation, as two
synchronous interfaces may not be compatible. We give
the precise definitions below. Two SIAP andQ with I/O
signatures[~I ; ~O] and[~I ′ ; ~O′] arecomposableif they don’t
share an output variable, i.e.,~O∩ ~O′ = /0.

To define composition, we first define the product of two
synchronous interfaces, just as in the asynchronous case
in [8, 9]. In the definition below, we assume that~I1∩ ~O2 = /0
and ~O1∩~I2 = /0. In the signatures of the composable SIA
P andQ,~I is the list of shared input variables. The output
variables~U of P and~V of Q appear as input variables of the
other automaton, as in Figure 1.

Definition 4 Let P and Q be two composable SIA with
I/O signatures[~I ,~I1,~V ; ~U, ~O1] and[~I ,~I2,~U ; ~V, ~O2]. Thus
AI

P = I × I1×V andAO
P = U ×O1 are the input and output

alphabets ofP, andAI
Q = I × I2×U andAO

Q = V×O2 the
respective alphabets ofQ. Then the productP⊗Q of SIA P
andQ with I/O signature[~I ,~I1,~I2 ; ~U,~V, ~O1, ~O2] is defined
by the tuple(SP⊗Q,S0

P⊗Q,AI
P⊗Q,AO

P⊗Q,δP⊗Q) where

• SP⊗Q = SP×SQ

• S0
P⊗Q = S0

P×SO
Q

• AI
P⊗Q = I × I1× I2

• AO
P⊗Q = U×V×O1×O2

• δP⊗Q((p,q),(i, i1, i2),(u,v,o1,o2)) is defined to be
the pair (p′,q′) if δP(p,(i, i1,v),(u,o1)) = p′ and
δQ(q,(i, i2,u),(v,o2)) = q′, when both are defined.

The block diagram for the productP⊗Q is illustrated
in Figure 1. Note that the above definition and Figure 1 de-
scribe the most general situation. For instance, ifPandQdo
not share any input signal then~I is the empty tuple, soP has
signature[~I1,~V ; ~U, ~O1] andQ has signature[~I2,~U ; ~V, ~O2].

The transition functionδP⊗Q has the following inter-
pretation: whenP⊗Q is in state(p,q) and there is aP-
transition fromp that accepts(i, i1,v) as input and gener-
ates(u,o1) as output and aQ-transition fromq that accepts
(i, i2,u) as input and generates(v,o2) as output, then there
is a transiting from(p,q) that accepts(i, i1, i2) as input and
generates(u,v,o1,o2) as output.

Intuitively, a state(p,q) in the productP⊗Q is locally
compatible if the environment can provide a suitable input
such that bothP andQ can separately satisfy the input as-
sumption of the other SIA in statesp and q respectively.
Otherwise the state is locally incompatible. We say that
two SIA P andQ are compatible, if there is a way to pro-
vide inputs toP⊗Q so that locally incompatible states are
not reached.

Definition 5 Let P andQ be two SIA with I/O signatures
as above. The set oflocally compatible statesof P andQ
consist of all pairs(p,q) ∈ SP×SQ such that the following
two conditions are satisfied:

1. there existi, i1, i2,v for which there is a transition

p
i, i1,v−→
u,o1

p′ in P, and for all sucho1,u, p′, there exist

o2,q′ with q
i, i2,u−→
o2,v

q′ in Q;

2. there existi, i1, i2,u for which there is a transition

q
i, i2,u−→
o2,v

q′ in Q, and for all sucho2,v,q′, there exist

o1, p′ with p
i, i1,v−→
u,o1

p′ in P.

The set Incomp(P,Q) of locally incompatible statesof P
andQ is the set of states inSP×SQ which are not locally
compatible.

A local incompatibility can be avoided if there is a help-
ful environment, which by providing the right sequence of
inputs can steer the automaton away from such a state. The
states from which this is possible are called compatible.

3

Definition 6 Let P andQ be two composable SIA. A state
(p,q) in P⊗Q is compatibleif there is an input strategy
πI for P⊗Q, such that Reach(P⊗Q,(p,q),πI) does not
contain a locally incompatible state ofP⊗Q. We write
Comp(P,Q) for the set of compatible states ofP⊗Q. Two
SIA P andQ arecompatibleif the sole initial state ofP⊗Q
is compatible.

Definition 7 The compositionP ‖ Q of two SIA is defined
by restricting the productP⊗Q to the set of compatible
states:

• SP‖Q = Comp(P,Q);

• S0
P‖Q = S0

P⊗Q∩Comp(P,Q);

• AI
P‖Q = AI

P⊗Q;

• AO
P‖Q = AO

P⊗Q;

• for all s ∈ Comp(P,Q), i ∈ AI
P‖Q(s), o ∈ AO

P‖Q(s),
δP‖Q(s, i,o) = δP⊗Q(s, i,o) if δP⊗Q(s, i,o) ∈
Comp(P,Q), and it is undefined otherwise.

ThusP andQ are considered compatible if there is some
environment in which they can be used together without vi-
olating each other’s input assumption. This is equivalent to
saying that there is a winning input strategy in the product
P⊗Q: an input strategy which avoids all locally incompati-
ble states. The calculation of winning strategy in such safety
games, if one exists, by using thecontrollable predecessors
of a set of statesU and iterative refinement is standard [21].

Note The SIA model essentially defines Mealy automata,
the novelty being in the definition of composition using the
game interpretation. It is well known that the synchronous
composition of non-blocking Mealy automata may have
causality cycles– circular dependencies between input and
output signals in the composed Mealy automaton. We as-
sume that all our SIA arestatically typed, i.e., the depen-
dencies between input and output signals are fixed. When
composing two SIA we require that the the combined de-
pendency relation is acyclic. This condition can be enforced
syntactically and checked in linear time – see [10] for de-
tails.

The game view of interfaces leads to a new notion of
refinement calledalternating refinement[1]. Informally,
P� Q (P refinesQ) if all legal inputs ofQ are also legal
for P, and whenP andQ are fed the same legal input,Q
generates more output thanP does. This definition ensures
that wheneverP� Q, P can safely be substituted forQ in
any design without creating any incompatibility.

Definition 8 Let P and Q be two SIA with identical I/O
signatures. Analternating simulationρ from P to Q is a
relationρ⊆SP×SQ such that, for all(s, t)∈ ρ the following
conditions are satisfied:

1. AI
Q(t)⊆ AI

P(s);

2. AO
P(s)⊆ AO

Q(t);

3. (δP(s,a),δQ(t,a)) ∈ ρ for all a∈ AI
Q(t)×AO

P(s),

Given two SIAP andQ with identical I/O signatures, we
sayP refines Q, written P� Q, if the following conditions
are satisfied:

1. AI
Q ⊆ AI

P;

2. AO
P ⊆ AO

Q;

3. there is an alternating simulationρ from P to Q, such
that(s0, t0) ∈ ρ for somes0 ∈ S0

P andt0 ∈ S0
Q.

3. Synthesis of Synchronous Interfaces

For top-down design of SoC’s, we would like to synthe-
sise a componentR that combined with a known component
P realises the specificationQ. In other words, we are inter-
ested in the most general solutionR to P ‖ R� Q when it
exists, and characterise the conditions under which it exists.
By a most general solution we mean, a solutionU , such that
for any solutionV, it is the case thatV �U , which means
V can be substituted forU in any context without leading to
protocol mismatches. In this section we prove that the most
general solution toP ‖ R� Q is given byR = (P ‖ Q⊥)⊥

and a solution exists iffP andQ⊥ are compatible. HereP⊥

is the same asP, except all the input actions inP become
output actions inP⊥ and similarly the output actions ofP
are the input actions ofP⊥.

Note Throughout the section we assume that the list of
output variables ofQ includes all the output variables ofP
and the input variables ofP that are not input variables of
Q: AI

P ⊆ AI
Q∪AO

Q andAO
P ⊆ AO

Q. So any inputs toP will be
provided by an output from the environment ofQ or fromR.
In the latter case, such an input ofP will be an output ofQ.
We fix the I/O signatures of the various interfaces involved,
once and for all:

P : [~I1,~V ; ~U, ~O1]
Q : [~I2,~V ; ~U,~I1, ~O1, ~O2]
Q⊥ : [~U,~I1, ~O1, ~O2 ; ~I2,~V]
P⊗Q⊥ : [~I1, ~O2 ; ~U,~V,~I2, ~O1]
(P ‖Q⊥)⊥ : [~U,~V,~I2, ~O1 ; ~I1, ~O2]
P⊗ (P ‖Q⊥)⊥ : [~I2,~V ; ~U,~I1, ~O1, ~O2]

4

T

0

1

34

5

(Req!,Address!)

(Data?)

0

1

23

(Sel?,Read?,Addr?)

(Enable?)

(RData!)2
SingleRead!)

(Rdy?,
MultiRead!)

(Rdy?,

(Ack?)

(b) Handshake(a) Pipeline

(Req!,Address!,Data?)

(Sel?,Read?,Addr?)

(Req!,Address!)

Figure 2. Two Mismatched Protocols

Notice thatQ andP⊗ (P ‖ Q⊥)⊥ have the same I/O signa-
ture.

First we prove a result about compatibility that is used
in Theorem 1 below. Here we make use of the fact that
if (p,(p′,q)) is a reachable state inP⊗ (P ‖ Q⊥)⊥, then
it follows from the property of observable nondeterminism
that p = p′.

Lemma 1 If P and Q⊥ are compatible, then P and(P ‖
Q⊥)⊥ are compatible.

Proof SupposeP and Q⊥ are compatible, butP and
(P ‖ Q⊥)⊥ are not compatible. This means that for
all input strategiesπI in P⊗ (P ‖ Q⊥)⊥, there exists a
state (p,(p,q)) in Reach(P⊗ (P ‖ Q⊥)⊥,πI) such that
(p,(p,q)) ∈ Incomp(P,(P ‖ Q⊥)⊥). It follows from Defi-
nition 5 that at least one of the following cases must hold:

1. For all i1, i2,v there existu,o1, p′ such thatp
i1,v−→
u,o1

p′

is in P, but there do not existo2,q′ for which

(p,q)
u,v, i2,o1−→

i1,o2
(p′,q′) is in (P ‖ Q⊥)⊥. Now, since

P and Q⊥ are compatible, and(p,q) is a state
in P ‖ Q⊥ by assumption, there existi2,v,o2,q′

such thatq
u, i1,o1,o2−→

i2,v
q′ is in Q⊥.But this implies

(p,q)
i1,o2−→

u,v, i2,o1
(p′,q′) is in P ‖ Q⊥, and hence

(p,q)
u,v, i2,o1−→

i1,o2
(p′,q′) is in (P‖Q⊥)⊥, which is a con-

tradiction.

2. For all u,v, i2,o1 there exist i1,o2, p′,q′ such that

(p,q)
u,v, i2,o1−→

i1,o2
(p′,q′) is in (P ‖ Q⊥)⊥, but p

i1,v−→
u,o1

p′

is not inP. This is clearly not possible by the definition
of product of SIA.

�

Theorem 1 A solution R to P‖ R� Q exists iff P and Q⊥

are compatible.

Proof (⇐) SupposeP and Q⊥ are compatible. By
Lemma 1 so areP and (P ‖ Q⊥)⊥. Take R = (P ‖
Q⊥)⊥. We show that there exists an alternating sim-
ulation ρ betweenP ‖ R and Q that relates their ini-
tial states. Define the relationρ = {((p,(p,q)),q) |
(p,(p,q)) is a state inP ‖ R}. Since (s0

P,s0
Q) is the ini-

tial state of R, (s0
P,(s0

P,s0
Q)) is the initial state ofP ‖

R, and hence((s0
P,(s0

P,s0
Q)),s0

Q) is in ρ. Now suppose,

for the output side,(u, i1,o1,o2) ∈ AO
P‖R((p,(p,q))), and

there is a transition(p,(p,q))
i2,v−→

u, i1,o1,o2
(p′,(p′,q′)) in

P ‖ R. It follows that there exist transitionsp
i1,v−→
u,o1

p′

in P and (p,q)
u,v, i2,o1−→

i1,o2
(p′,q′) in (P ‖ Q⊥)⊥. So

(p,q)
i1,o2−→

u,v, i2,o1
(p′,q′) is a transition inP ‖ Q⊥. Hence

q
u, i1,o1,o2−→

i2,v
q′ is a transition inQ⊥, and thusq

i2,v−→
u, i1,o1,o2

q′

is a transition inQ and((p′,(p′,q′),q′) ∈ ρ by the assump-
tion that(p′,(p′,q′)) is a state inP ‖ R. Likewise, for the

input side, supposeq
i2,v−→

u, i1,o1,o2
q′ is a transition inQ. It

follows thatq
u, i1,o1,o2−→

i2,v
q′ is a transition inQ⊥. SinceP

andQ⊥ are compatible by assumption and(p,q) is a state in

5

P‖R, there must be a transitionp
i1,v−→
u,o1

p′ in P, and therefore

there must be a transition(p,(p,q))
i2,v−→

u, i1,o1,o2
(p′,(p′,q′))

in P ‖ R, and((p′,(p′,q′)),q′) ∈ ρ by the definition ofρ.
(⇒) Suppose a solution toP ‖ R� Q exists. Letρ

be an alternating simulation fromP ‖ R to Q such that
((s0

P,s0
R),s0

Q) ∈ ρ. We useR andρ to construct a winning

input strategy inP⊗Q⊥. It is easy to see that for states
(p, r) in P ‖ R andq in Q, if ((p, r),q) ∈ ρ then (p,q) is
locally compatible inP⊗Q⊥. The winning input strategy
πI (p,q) in P⊗Q⊥ is given by an input move(i1,o2) such
that there exist a stater and valuesv,u,o1,o2 satisfying
((p, r),q) ∈ ρ, (i2,v) ∈ AI

Q(q), (u, i1,o1,o2) ∈ AO
P‖R(p, r),

(p, r)
i2,v−→

u, i1,o1,o2
(p′, r ′) andq

i2,v−→
u, i1,o1,o2

(p′, r ′); otherwise,

πI (p,q) is arbitrary. To show thatπI is winning, we prove
by induction on the definition of Reach(P⊗Q⊥,πI) that
Reach(P⊗Q⊥,πI)∩ Incomp(P,Q⊥) = /0. �

Theorem 2 When the condition stated in Theorem 1 is sat-
isfied, the most general solution to P‖ R� Q is R= (P ‖
Q⊥)⊥.

Proof In the proof of Theorem 1 (If part) we have
already shown thatR = (P ‖ Q⊥)⊥ is a solution. Sup-
poseT is any solution toP ‖ R� Q. We construct an
alternating simulationν from T to (P ‖ Q)⊥ as follows.
By assumption, there exists an alternating simulationρ
from P ‖ T to Q. Defineν = {(t,(p,q)) | ((p, t),q) ∈ ρ}.
Clearly (s0

T ,(s0
P,s0

Q)) ∈ ν, since ((s0
P,s0

T),s0
Q) ∈ ρ. Now

suppose(t,(p,q)) ∈ ν i.e., ((p, t),q) ∈ ρ, (u,v, i2,o1) ∈

AI
(P‖Q⊥)⊥((p,q)) and(i1,o2) ∈ AO

T (t). Let t
u,v, i2,o1−→

i1,o2
t ′ be

a transition inT and (p,q)
u,v, i2,o1−→

i1,o2
(p′,q′) a transition

in (P ‖ Q⊥)⊥. This implies thatp
i1,v−→
u,o1

p′ is in P and

q
i2,v−→

u.i1,o1,o2
q′ is in Q. Hence(p, t)

i2,v−→
i1,u,o1,o2

(p′, t ′) is in

P ‖ T. Since((p, t),q) ∈ ρ by assumption, it follows that
((p′, t ′),q′) ∈ ρ, i.e.,(t ′,(p′,q′)) ∈ ν. �

4. Converter Synthesis

In this section we show how the SIA framework and the
interface synthesis procedure described in Section 3 can be
used to synthesise a protocol converter for two IP blocks
that have incompatible protocols of interaction. Our work
is inspired by Passeroneet al. in [17], and should be seen
as both a generalisation and a simplification of that work.

Let P1 and P2 be the SIA describing two mismatched
protocols, such as a sender using a handshake and a re-

ceiver using a serial protocol, as in [17]. We assume that
P1 andP2 have disjoint alphabets. It’s the responsibility of
the designer to specify the exact relationship between the
two, through another SIAS, thespecification. In more de-
tail, the specificationS expresses the causal relationships
between the actions ofP1 andP2, such as between sending
and receiving of a data packet. In addition, the specifica-
tion S captures the capabilities the designer wishes to en-
dow the converter with – how much memory it can use to
store packets before transmitting them, whether it can lose
or duplicate data packets, and so on. See the example below
and [17] for more details.

We think of the specification as accepting inputs from
the two protocols as well as the converter, as shown in Fig-
ure 4. Intuitively, the goal of the converter is to meet the
specification, while satisfying the input assumptions of the
two protocols. Moreover, the converter can control only the
inputs to the protocols and not their outputs. The converter
can be obtained by using our interface synthesis procedure
be as follows. LetP= P1 ‖P2 be the parallel composition of
the two mismatched protocols, which is well formed, since
we assume that the input and output actions ofP1 andP2 are
disjoint. LetSbe a specification expressing the causal rela-
tionship between the two alphabets and what the converter
is allowed and not allowed to do. Then a converterC, if it
exists, is the (most general) solution forC to the interface
synthesis problem instanceP‖C�S⊥. The meaning of this
relation is thatP ‖C is a safe environment forS, that is, the
compositeP ‖ C of protocols plus converter will not give
rise to an incompatibility when combined withS.

The solution we obtain is an extension to the more re-
stricted game theoretic solution forC in [17]. In [17]
the converter synthesis problem investigated is between a
sender and a receiver protocol. The problem is solved as
a game between two players, the protocols and the speci-
fication on one side, and the converter on the other. The
objective of the converter is to read outputs from the sender
and provide inputs to the receiver in such a way that the pro-
tocols and the specification are satisfied. A winning strat-
egy for the game leads to a correct converter. If we unfold
the definition of parallel composition and alternating refine-
ment, we have an identical winning condition to our synthe-
sis problem. Our solution is more general because, we do
not place the restriction that one protocol is the sender and
the other the receiver. Moreover, we don’t have to set up
the game manually as in [17], which seems to involve con-
siderable ingenuity. Instead, the game formulation follows
directly from the general framework presented in this paper.

We illustrate the converter synthesis problem for IP
blocks via an example adapted from [12]. We adopt the
following convention in drawing synchronous interfaces for
IP blocks. When only boolean valued signals are involved,
as is the case in this example, values not mentioned in

6

(T,T)

0

(Address?,T) (T,Addr?)

1

||

1

0

(RData?,T) (T,Data?)

(Address?,Addr?)
(T,T)

(RData?,Data?)
(T,T)

(RData?,Data?)
(T,T)

(Address?,Addr?)

Figure 3. Specification of Converter

a transition are don’t cares (either low or high). Some-
times we indicate a don’t care explicitly by a signalT.
Figure 2 illustrates the synchronous interfaces for two mis-
matched protocols. Figure 2(a) is a protocol called Pipeline,
with input variables [Ack,Rdy,Data] and output vari-
ables [Req,Address,SingleRead,MultiRead], that re-
quests data from specified addresses in memory. When the
protocol wants to read some data it raises the lineReq!
to high, and places the value of the memory address on
Address! , and waits for an acknowledgementAck? in
the following clock cycle. In this simplified example, we
ignore all data values such as addresses, and consider only
boolean control values. In the next clock cycle the proto-
col checks that the signalRdy? is high. If a single read is
desired the protocol reads the inputData? and completes
the transaction. If a sequence of reads is to be performed,
the protocol pipelines the address phase of the next trans-
fer with the current data phase. The protocol stops in state
5 after completing a finite sequence of transfers until it is
ready to begin a fresh read request. Note that in state 2, the
same inputRdy? can lead to two distinct states, but the
output values associated with the transitions are distinct –
SingleRead! in one, andMultiRead! in the other, so
the observable nondeterminism property is satisfied.

Figure 2(b) is an interface, with input variables
[Sel,Read,Addr,Enable] and output variable[RData],
that performs reads from memory addresses, but it uses a
handshake protocol. When it is selected for a read trans-
fer by raising its input linesSel? andRead?, it reads the
address fromAddr? . If the signalEnable? is high in
the next clock cycle, it writes the data on the output line
RData! , and is ready to handle a new read request, while

waiting in state 3. The protocols in Figure 2 are mismatched
and will not work properly unless there is a converter which
mediates between the two.

Now, we need to specify what the converter is allowed
and not allowed to do. We require that the system as a whole
(the two protocols along with the converter) satisfies the in-
terface described by Figure 3. This specification interface is
obtained as the parallel composition of two interfaces. The
one on the left specifies that the converter can send aAddr!
signal to Handshake only after receiving a corresponding
Address? signal from Pipeline. The signal cannot be
sent speculatively, but can be stored in memory and sent at
a later instant. Similarly the interface in the right specifies
that the converter can send aData! to Pipeline, only af-
ter a correspondingRData? signal has been received from
Handshake. Note that every action inFigure 3 is of type in-
put.

The correct converter for the two protocols, as synthe-
sised by our method, is shown is Figure 5.

5. Conclusion and Related Work

We have presented synchronous interface automata, a
game based formalism for reasoning about composition and
refinement of synchronous hardware components, such as
IP blocks in SoC designs. The asynchronous version of the
synthesis problem considered here was solved in [3], using
the interface automata model of [9]. What is remarkable
is, the solutions for the asynchronous and synchronous ver-
sions have the same form, namely the most general solution
to P ‖ R�Q is R= (P ‖Q⊥)⊥.

Our result has a formal resemblance to the language

7

Specification

Pipeline
Protocol

Handshake
Protocol

Converter

Figure 4. Block diagram of protocols, specifi-
cation and converter

equation posed in [22, 23]. In their framework, the largest
solution of the language equationP•R⊆ Q for R is the
languageP•Q whereP•Q is the synchronous (or parallel)
composition of languagesP andQ, andP is the complement
of P. Clearly, there is a formal correspondence between
P•Q and ourP ‖ Q, betweenP and ourP⊥, and between
language inclusion and alternating simulation.

There is also a striking similarity between our work and
the the solution to therectification problemgiven in [5],
using Dill’s trace theory [11]. The results in [5] are appli-
cable to combinational circuits i.e., interfaces without any
state. In [5]P, Q, R are combinational circuits modelled
as I/O relations and|| a composition relation similar to SIA
composition;()⊥ is themirror function that swaps inputs
and outputs and� is theconformance relation. In contrast
to this work, our results are applicable to stateful interfaces
in the form of Mealy machines. Further, the timing model
used in trace theory is asynchronous whereas we use a syn-
chronous timing model. The notion of alternating simula-
tion relation is also different from the conformance rela-
tion. Recent work onagent algebras[6, 16] formalises the
notions of composition and conformance in an abstract al-
gebraic framework, and makes use of the mirror relation in
an essential way. The work provides sufficient conditions
for characterising all controllers that satisfy a specification
when composed with a plant. One possible future work is to
investigate the relationship between agent algebras and our
synchronous synthesis framework.

As we have mentioned in the previous section, our work
is inspired by Passeroneet al. in [17]. Our solution to the
synthesis problem is identical to the one in [17] for the spe-
cial cases considered there for a pair of protocols, one of
which is the sender, and the other the receiver. Our solution
is more general, as it applies to Mealy machines with both
inputs and outputs. In addition, our closed form solution is
more algebraic and hides the details of the game solution
involved in the composition of synchronous interfaces. Our
work can be seen as sharing the same algebraic flavour as
the the work on agent algebras.

As future work, we would like to relax some restrictions

4

0 1

23

(Data!)
(Req?,Address?,

Addr!)

(Req?,Sel!,Address?
Addr!,Read!)

(Ack!,Enable!)

RData?)
(Rdy!,SingleRead?

RData?)
(Rdy!,MultiRead?

Sel!,Read!,Data!,

Figure 5. Converter for the two protocols

we have put on the interface model, such as the require-
ment of observable nondeterminism. Weaker notions of
determinism, such asweak determinism[13] could be in-
vestigated. Other possibilities would be to include the ef-
fect of hiding internal signals and including fairness speci-
fications. An important advance would be to include asyn-
chrony and synchrony within the same framework for mod-
elling SoC designs, as the complexity of today’s circuits
requires locally clocked components that communicate via
asynchronous signals. The work on agent algebras related
to semantic foundations for heterogeneous systems (see
[16]) has a similar goal, and it will be interesting to investi-
gate the connections between the two.

Acknowledgements We thank David Benson for his
comments on an earlier draft and anonymous referees for
their suggestions on improving the presentation of the pa-
per.

References

[1] R. Alur, T. Henzinger, O. Kupferman, and M. Vardi. Alter-
nating refinement relations. InCONCUR 98: Concurrency
Theory, Lecture Notes in Computer Science 1466, pages
163–178. Springer-Verlag, 1998.

[2] G. Berry and A. Benveniste. The synchronous approach
to reactive and real-time systems.Procedings of the IEEE,
79(9), 1991.

[3] P. Bhaduri. Synthesis of interface automata. InThird In-
ternational Symposium on Automated Technology for Verifi-
cation and Analysis (ATVA 2005), volume 3707 ofLecture
Notes in Computer Science, pages 338–353. Springer, 2005.

[4] G. Borriello, L. Lavagno, and R. B. Ortega. Interface syn-
thesis: A vertical slice from digital logic to software com-
ponents. InInternational Conference on Computer Aided
Design (ICCAD-98), pages 693–695. ACM Press, 1998.

[5] J. R. Burch, D. Dill, E. Wolf, and G. D. Micheli. Modeling
hierarchical combinational circuits. In M. Lightner, editor,
Proceedings of the IEEE/ACM International Conference on

8

Computer-Aided Design, pages 612–617. IEEE Computer
Society Press, 1993.

[6] J. R. Burch, R. Passerone, and A. L. Sangiovanni-
Vincentelli. Notes on agent algebras. Technical Report
UCB/ERL M03/38, EECS Department, University of Cal-
ifornia, Berkeley, 2003.

[7] A. Chakrabarti, L. de Alfaro, T. Henzinger, and F. Mang.
Synchronous and bidirectional component interfaces. In
CAV 02: Computer-Aided Verification, Lecture Notes in
Computer Science 2404, pages 414–427. Springer-Verlag,
2002.

[8] L. de Alfaro. Game models for open systems. InProceed-
ings of the International Symposium on Verification (Theory
in Practice), volume 2772 ofLecture Notes in Computer Sci-
ence. Springer-Verlag, 2003.

[9] L. de Alfaro and T. Henzinger. Interface automata. InPro-
ceedings of the Ninth Annual Symposium on Foundations of
Software Engineering, pages 109–120. ACM Press, 2001.

[10] L. de Alfaro, T. Henzinger, and F. Mang. The control of syn-
chronous systems. InCONCUR 00: Concurrency Theory,
Lecture Notes in Computer Science 1877, pages 458–473.
Springer-Verlag, 2000.

[11] D. L. Dill. Trace Theory for Automatic Hierarchical Verifi-
cation of Speed-Independent Circuits. ACM Distinguished
Dissertations. MIT Press, 1989.

[12] V. D’Silva, S. Ramesh, and A. Sowmya. Bridge over trou-
bled wrappers: Automated interface synthesis. InVLSI De-
sign, pages 189–194. IEEE Computer Society, 2004.

[13] V. D’Silva, S. Ramesh, and A. Sowmya. Synchronous proto-
col automata: A framework for modelling and verification of
SoC communication architectures. In2004 Design, Automa-
tion and Test in Europe Conference and Exposition (DATE
2004), pages 390–395, 2004.

[14] N. A. Lynch and M. R. Tuttle. Hierarchical correctness
proofs for distributed algorithms. InProceedings of the Sixth
Annual ACM Symposium on Principles of Distributed Com-
puting, pages 137–151, 10–12 Aug. 1987.

[15] S. Narayan and D. D. Gajski. Interfacing incompatible pro-
tocols using interface process generation. InProc. of the
32nd Design Automation Conference, June 1995.

[16] R. Passerone.Semantic Foundations for Heterogeneous Sys-
tems. PhD thesis, EECS Department, University of Califor-
nia, Berkeley, 2004.

[17] R. Passerone, L. de Alfaro, T. Henzinger, and
A. Sangiovanni-Vincentelli. Convertibility verification
and converter synthesis: Two faces of the same coin. In
Proceedings of the International Conference on Computer-
Aided Design, pages 132–139. IEEE Computer Society
Press, 2002.

[18] R. Passerone, J. A. Rowson, and A. Sangiovanni-
Vincentelli. Automatic synthesis of interfaces between in-
compatible protocols. InProc. of the 35th Design Automa-
tion Conference, June 1998.

[19] D. Shin and D. D. Gajski. Interface synthesis from protocol
specification. Technical report, CECS Technical Report 02-
13, April 2002.

[20] J. Smith and G. D. Micheli. Automated composition of hard-
ware components. InProc. of the 35th Design Automation
Conference, June 1998.

[21] W. Thomas. On the synthesis of strategies in infinite games.
In 12th Annual Symposium on Theoretical Aspects of Com-
puter Science, volume 900 ofLecture Notes in Computer
Science, pages 1–13. Springer, 1995.

[22] N. Yevtushenko, T. Villa, R. K. Brayton, A. Petrenko,
and A. Sangiovanni-Vincentelli. Solution of parallel lan-
guage equations for logic synthesis. InProceedings of
the 2001 International Conference on Computer-Aided De-
sign (ICCAD-01), pages 103–111. IEEE Computer Society,
2001.

[23] N. Yevtushenko, T. Villa, R. K. Brayton, A. Petrenko, and
A. Sangiovanni-Vincentelli. Solution of synchronous lan-
guage equations for logic synthesis. InProceedings of the
4th Conference on Computer-Aided Technologies in Applied
Mathematics, pages 132–137, 2002.

9

