
Improving Performance of a Path-Based
Equivalence Checker using Counter-Examples

Ramanuj Chouksey∗, Chandan Karfa† and Purandar Bhaduri‡
Department of Computer Science and Engineering,

Indian Institute of Technology Guwahati, 781039, India
Email: ∗r.chouksey@iitg.ac.in, †ckarfa@iitg.ac.in, ‡pbhaduri@iitg.ac.in

Abstract—Path-based equivalence checkers (PBECs) have been
successfully applied for verification of programs from diverse
domains and at various stages of high-level synthesis. These ver-
ifiers can be sound but not complete. Therefore, non-equivalence
cases require further investigation of the two programs being
compared by some human expert. In this work, we show how
a counter-trace (cTrace) can be generated in the case of non-
equivalence reported by the PBEC. We show how a Bounded
Model Checker (CBMC) can be used to find suitable initialization
values for input variables (i.e., a counter-example) for a given
cTrace. With our counter-example generation framework, we
show how a strong non-equivalence decision can be taken in a
PBEC. We also show that some false negative cases of the PBEC
can also be revealed using this framework. Experimental results
demonstrate the usefulness of our method.

Index Terms—Equivalence Checking, Finite State Machine
with Datapath (FSMD), CBMC, Counter-example Generation.

I. INTRODUCTION

High-level synthesis (HLS) is the process of translating a
behavioral description into a Register Transfer Level (RTL)
description [1]. HLS tools are large and complex software
systems and are very often written without formally proving
their correctness. Many path-based approaches [2]–[8] have
been proposed for verification of the scheduling phase of
HLS where each behavior is represented by a finite state
machine with datapaths (FSMD) [1]. In general, path-based
approaches decompose each FSMD into a finite set of finite
paths and the equivalence of FSMDs is established by showing
path level equivalence between two FSMDs. In the case of
non-equivalence, these approaches do not provide informa-
tion sufficient for debugging the issue. A counter-example
which will demonstrate the non-equivalence between the input
behavior to HLS (i.e., source behavior) and the scheduled
behavior generated by HLS (i.e., transformed behavior) will
add significant value to the adoption of such PBECs. In this
case, PBEC can report “Not equivalent” instead of “May
Not be equivalent” Equivalence checking of programs is an
undecidable problem in general. Therefore it is possible that
a PBEC may produce a false negative result, i.e., a PBEC
may report that two behaviors “May Not be equivalent” but
these two behaviors are actually equivalent. The process of
generating a counter-example helps to identify some false
negative cases of a PBEC. Thus, a counter-example generation
procedure helps to improve the performance of a PBEC.

Specifically, the contributions of the paper are as follows:

1) We show how the equivalence information of the en-
hanced value propagation (EVP) based PBEC [8] can be
used to find a cTrace in the case of non-equivalence
reported by the PBEC.

2) We show how the CBMC [9] tool can be used to find a
suitable counter-example for a given cTrace.

3) We show how to improve the performance of the PBEC
using this counter-example generation framework.

4) An enhanced version of PBEC [8] after incorporating our
counter-example generation scheme is also presented.

To the best of our knowledge, this is the first work which
reports a cTrace in the case of non-equivalence and uses it to
produce a counter-example and improve the performance of
PBECs during verification of the scheduling phase of HLS.

The rest of this paper is organized as follows. Section II
describes an FSMD model and the EVP method. Section III
focuses on cTrace generation. Section IV presents how that
cTrace can be used to produce a counter-examples using
CBMC. Section V and VI finally delve into how cur-
rent PBECs can be enhanced by incorporating our counter-
example generation technique. Experimental results are given
in Sec. VII. Section VIII contains a summary of the related
work. Section IX concludes the paper.

II. THE FSMD MODEL AND PATH-BASED EQUIVALENCE
CHECKING

This section briefly explains the FSMD model and the EVP
method [8]. The details can be found in [5], [8].

An FSMD is defined as a 7-tuple 〈Q, q0, I, V,O, f : Q ×
2S → Q, h : Q × 2S → U〉, where Q is the finite set of
states, q0 is the reset state, I is the set of input variables, V
is the set of storage variables, O is the set of output variables,
f is the state transition function, h is the update function of
the output and the storage variables. Here U represents a set
of storage and output assignments and S represents a set of
relations over arithmetic expressions and Boolean literals.

A computation of an FSMD is a finite walk from the reset
state q0 to itself, and q0 should not occur in between. The
papers [5], [8] breaks down an FSMD into smaller segments
by introducing cutpoints so that each loop in an FSMD is cut
at at least one cutpoint. A path α is a finite sequence of states
from a cutpoint to another cutpoint without an intermediate
occurrence of a cutpoint. The condition of execution Rα of
a path α is a logical expression over I

⋃
V such that Rα is



satisfied by the (initial) data state of the path iff the path α
is traversed. The data transformation rα of a path α over V
is the tuple 〈sα, θα〉; the first member sα represents the value
of the variables vi after the execution of the path in terms
of the initial data state of the path; the second member θα
represents the output list along the path α. Two paths α and
β are equivalent denoted by α ' β if Rα ≡ Rβ and rα = rβ .
A finite set of paths P = {α1, α2, . . . , αk} is said to be a
path cover of an FSMD M if any computation µ of M can
be looked upon as a concatenation of paths from P [10].

An FSMD M0 is contained in another FSMD M1, sym-
bolically M0 v M1, if there exists a finite path cover
P0 = {α1, α2, . . . , αl} of M0 for which there exists a set
P1 = {β1, β2, . . . , βl} of paths of M1 such that αi ' βi,
1 ≤ i ≤ l. Two FSMDs M0 and M1 are said to be
computationally equivalent (M0 ≡ M1), if M0 v M1 and
M1 vM0.

The EVP method [8] is based on propagating the mis-
matched variable values (as propagated vectors) over a path
to the subsequent paths until the values match or the final path
segments end in the reset state without a match. During the
course of equivalence checking of two behaviors, two paths,
α and β say, (one from each behavior) are compared with
respect to their corresponding propagated vectors for finding
path equivalence. If Rβ ≡ Rα and rβ = rα , then these
paths are declared as unconditionally equivalent (U-equivalent,
represented as α ' β); if some mismatch is detected in
data transformation, then they are declared to be conditionally
equivalent (C-equivalent, represented as α 'c β), if their final
state-pair always eventually lead to some U-equivalent paths;
otherwise they are declared to be not equivalent.

III. COUNTER-TRACE GENERATION

Suppose the source behavior and the transformed behavior
are represented as FSMDs M0 and M1, respectively. Let us
assume that the PBEC fails to find an equivalent for the
path α of M0. We now discuss how to generate a unique
computation starting from the reset state that leads to the
path α. It may be noted that the EVP method maintains two
lists: EQ LIST contains equivalent path pairs explored so far
and C LIST contains candidates for conditionally equivalent
path pairs. In the EVP method C LIST is obtained in a depth
first search (DFS) manner. So, if we traverse backward from
the start state of α, we will obtain a sequence of paths from
the set C LIST. This trace would always be a unique trace.
Let the sequence be 〈p0j , p0j+1, . . . , p0k, α〉 in FSMD M0.
The segment of the FSMD M0 from the reset state q00 to
the start state of p0j , (say ps0j ,) is already proved to be
equivalent to its corresponding part in FSMD M1. However,
there may be many paths from q00 to ps0j . For our purpose,
we can choose one of the paths from this segment. Let us
choose the sequence 〈p00, p01, . . . , p0i〉 where p00 starts from
the state q00 and the path p0i ends at ps0j . Therefore, the
sequence cTrace = 〈p00, p01, . . . , p0i, p0j , p0j+1, . . . , p0k, α〉
is the cTrace in the FSMD M0 that we are interested
in. From EQ LIST, we will obtain the paths corresponding

to p00, p01, . . . , p0i in FSMD M1. Let the corresponding
paths be p10, p11, . . . , p1i, respectively. Similarly, the cor-
responding paths of p0j , p0j+1, . . . , p0k in the FSMD M1

can be found using C LIST. Let the corresponding paths be
p1j , p1j+1, . . . , p1k, respectively. The potential corresponding
path of α can also be obtained in the FSMD M1; let it be
β. The EVP method identifies the potential candidate for
equivalence, β, in M1 in most of the cases (see [8] for
details). It fails to find β only if there does not exist any
path from the corresponding state in M1 whose condition
of execution matches even partially with that of α. In this
case, we can take any path from the corresponding state in
M1. Therefore, the corresponding cTrace in FSMD M1 is
〈p10, p11, . . . , p1i, p1j , p1j+1, . . . , p1k, β〉.

Example 1. Consider the input behavior M0 and its trans-
formed behavior M1 shown in Fig. 1. The operation x⇐ 5, a
loop invariant for input behavior M0, is placed after the loop
body in the transformed behavior M1. Note that the input
behavior M0 and the transformed behavior M1, shown in
Fig. 1, are not equivalent since there is mismatch in values
of the out variable. The EVP method reports that behaviors
“May Not be equivalent”. The EVP method also reports that
the path pairs (p00, p10) and (p01, p11) are U-equivalent,
the path pair (p02, p12) is a candidate for C-equivalence
and the path pair (p03, p13) is not equivalent. During the
course of equivalence checking the EVP method stores these
U-equivalent and candidate for C-equivalent path pairs in
the EQ LIST and C LIST list, respectively. As explained in
Sec. III, using these lists the generated cTrace of M0 and M1

is shown in 1(c) and 1(d), respectively.

IV. COUNTER EXAMPLE GENERATION USING
COUNTER-TRACE

To obtain the counter-example, i.e., assigning suitable value
to the inputs, we rely on CBMC [9] . Specifically, for a given
upper bound, CBMC verifies the specified assertions. If any
violation of an assertion is detected, a counter-example is
generated. Let us consider the cTraces as shown in Fig. 1(c)
and Fig. 1(d). The input to the CBMC in C for this case is
shown in Fig 2.

The variables appearing in the cTrace of M0 (Fig. 1(c))
are suffixed with s,whereas the variables appearing in the
cTrace of M1 (Fig. 1(d)) are suffixed with t. Since program
equivalence entails identical output(s) generated by the two
programs when fed with the same input(s), the input variable
n is not suffixed with either s or t. Lines 3 and 4
declare the variables appearing in the cTrace of M0 and
the cTrace of M1, respectively, along with their data type
which is integer for all the variables. The lines 8–16 and
18–26 capture the data transformations and the conditions
of execution of the paths appearing in the cTrace of the
M0 and M1, respectively. We use __CPROVER_assume
statements to allow only those computation that satisfy a
given condition. For example CBMC first picks the value
for n non-deterministically from the domain of integers. The



q00

q01

q02 q03

n ≥ 0/
i⇐ 0,
x⇐ 0,
y ⇐ 0

p01

i ≤ n/

x⇐ 5 ,
y ⇐ y + 5

-/
i
⇐

i
+

1

p02

¬i ≤ n/

out⇐ x+ y

p03

¬n ≥ 0/
out⇐ −1

p00

(a) Source behavior M0

q10

q11

q12 q13

n ≥ 0/
i⇐ 0,
x⇐ 0,
y ⇐ 0

p11

i ≤ n/
y ⇐ y + 5

-/
i
⇐

i
+

1

p12

¬i ≤ n/

x⇐ 5 ,

out⇐ x+ y + 1

p13

¬n ≥ 0/
out⇐ −1

p10

(b) Transformed behavior M1

q00

q01

q02 q03

n ≥ 0/
i⇐ 0,
x⇐ 0,
y ⇐ 0

p01

i ≤ n/

x⇐ 5 ,
y ⇐ y + 5

-/
i
⇐

i
+

1

p02

¬i ≤ n/

out⇐ x+ y

p03

(c) cTrace of M0

q10

q11

q12 q13

n ≥ 0/
i⇐ 0,
x⇐ 0,
y ⇐ 0

p11

i ≤ n/
y ⇐ y + 5

-/
i
⇐

i
+

1

p12

¬i ≤ n/

x⇐ 5 ,

out⇐ x+ y + 1

p13

(d) cTrace of M1

Fig. 1. Counter-trace Genegartion

1 #include<assert.h>
2 void main()

3 {

4 int i_s,x_s,y_s,n,out_s;

5 int i_t,x_t,y_t,out_t;

6 __CPROVER_assume(n>=0);

7 assert(!(n>=0));

8 // cTrace for M0

9 if(n>=0)
10 {

11 i_s=0;x_s=0;y_s=0;

12 __CPROVER_assume(i_s<=n);

13 assert(!(i_s<=n));

14 while(i_s<=n)
15 {

16 x_s=5;

17 y_s=y_s+5;

18 i_s=i_s+1;

19 }

20 out_s=x_s+y_s;

21 }

22 //cTrace for M1

23 if(n>=0)
24 {

25 i_t=0;x_t=0;y_t=0;

26 __CPROVER_assume(i_t<=n);

27 assert(!(i_t<=n));

28 while(i_t<=n)
29 {

30 y_t=y_t+5;

31 i_t=i_t+1;

32 }

33 x_t=5;

34 out_t=x_t+y_t+1;

35 }

36 assert(x_s = x_t);// Live Variable

37 assert(y_s = y_t);// Live Variable

38 assert(out_s = out_t);// Output Variable

39 }

Fig. 2. CBMC input for the cTraces shown in Fig. 1(c) and Fig. 1(d)

statement __CPROVER_assume(n ≥ 0) at line 5 further
restricts the range of n for all program computations to
be greater than or equal to 0. Note that if there is no
computation satisfying the condition, say P , mentioned in
__CPROVER_assume statement, then all the assertions hold

vacuously. We check this by adding assert(!P) statement
after each __CPROVER_assume statement so that if one
of the assert(!P) statement is true then we declare that
all the possible computations represented by cTrace are false
computations [11] i.e., they never execute. Finally, we check
the equivalence of the live variables (x s, y s, x t, y t) and
output variables (out s , out t) using the assert statements
(lines 27–29).

CBMC is able to automatically determine an upper bound
on the number of loop iterations in many cases. It may fail
if the number of loop iterations is highly data-dependent.
Therefore, to verify the assertions with CBMC we use
the following command: cbmc fileName.c -unwind k
--no-unwinding-assertions where fileName.c is the
name of the target program, k is the bound on the number
of iterations of the loop in the program called as Unwinding
Loop Bound (ULB) and --no-unwinding-assertions
disables the unwinding assertion check and changes the un-
winding assertion to an unwinding assumption. We use the
option --no-unwinding-assertions so that a counter-
example might be found within the small state space generated
with the small ULB. If the target program contains a loop then
CBMC unwinds the loop k times and check the properties.
Note that if there are multiple loops in the program, the bound
k applies to all loops. A violation of the property is reported
if it is found within k ULB and CBMC will give a counter-
example. Otherwise, we iteratively run CBMC with increasing
ULBs for the loops until an assertion violation is found or a
given time limit is reached.

V. INCORPORATION OF RESULTS IN EQUIVALENCE
CHECKING FRAMEWORK

The PBECs are sound but not complete. Therefore, all the
PBECs report that the behaviors “May Not be equivalent” once
they fail to prove the equivalence of source and transformed
behaviors. Using the output of CBMC, we can actually make
the PBEC more powerful. In some scenarios, the PBEC can
report that the behaviors are “Not equivalent” (instead of
“May Not”) along with a counter-example. Also, in some
scenarios, the non-equivalence result reported by the PBEC
can be proved to be a false negative and equivalence checking



Generate cTrace for both M0 and M1

k←1

cbmc input.c -unwind k
--no-unwinding-assertions

timeout?

behaviors May Not be equivalent

__CPROVER
_assume
statement

SAT

User defined
Assertion
violated?

behaviors May Not be equivalent

Verify
unwinding
assertion

Mark both path as equiv-
alent and proceed further

mismatch in
o/p values?

Report Not equivalent and
provide CE as a proof

Run two programs over CE

mismatch in
o/p values?

Mark both path as equiv-
alent and proceed further

Report Not equivalent and
provide CE as a proof

Yes

(Case 4)

No

No

(Case 1)

Yes

Yes

(Case 2)

N
o,
k
←

k
+
1

Yes (Counter-example (CE) exits)

(Case 3)

No

Yes

(Case 3.1)

No

Yes

(Case 3.3)

No

(Case 3.2)

Fig. 3. Control flow graph of counter-example generation using CBMC and its utilization in a PBEC framework.

will proceed further. In the following, we discuss how we
can incorporate the CMBC result to improve the equivalence
checking framework.

• Case 1: One of the conditions mentioned in
__CPROVER_assume statement is not satisfiable:
In this case, we report to PBEC that all the
possible computations represented by cTrace are
false computations. Consequently, we need to proceed
further in the equivalence checking process.

• Case 2: The unwinding assertions are valid and CBMC
does not find any counter-example: This means the values
of all the live variables and output variables are the same
for both cTraces. So the non-equivalence reported by the
PBEC may be a false negative. In this case, we need to
proceed further in equivalence checking by declaring the
corresponding path pair (α, β) as an equivalent path. This
actually helps the PBEC to avoid false negative results
during the course of equivalence checking.

• Case 3: CBMC reports counter-example for some vari-
ables: This means the data transformation of some vari-
ables is not equivalent in the cTraces.
Case 3.1: A mismatch is found for an output variable:
This is surely a non-equivalence case. So the equivalence
checker correctly found the non-equivalence of the be-
haviors. In this case, the PBEC reports that the behaviors
are “Not equivalent” along with the counter-example.
If a mismatch is found only for live variables (which are
not output variables), then we cannot conclude definitely
that the final outputs of both the behaviors will not be
the same. There may be some other operations in the

subsequent execution of the FSMDs which will make
the behaviors equivalent. Therefore, we need to execute
the two programs with the counter-example produced by
CBMC and check if the outputs of the two programs are
the same or not.
Case 3.2: The outputs are the same: This is not a non-
equivalent case. Consequently, we need to proceed further
in the equivalence checking process.
Case 3.3: The outputs of the two programs are not the
same: This is surely a non-equivalence scenario; in this
case, the equivalence checker will report the behaviors
are “Not equivalent” along with the counter-example.

• Case 4: CBMC hits the time limit: In this case, CBMC
has failed to generate a counter-example because of
time out. So no counter-example will be provided to
the user. The PBEC reports the behaviors “May Not be
equivalent”.

VI. OVERALL EQUIVALENCE CHECKING FRAMEWORK

The abstract version of our counter-example generation
represented by the function counterExmapleGenerator is
presented in Algorithm 1. The control flow of Algorithm 1
is given in Fig. 3. The function counterExmapleGenerator

takes as input two FSMDs M0 and M1, a path α from the
path cover of M0, a path β from the path cover of M1,
EQ LIST contains equivalent path pairs and C LIST contains
candidates for conditionally equivalent path pairs. The function
counterExmapleGenerator returns 〈v̄,Equiv , falseComp〉,
where v̄ = 〈v1, v2, . . . , vn〉 is the input variable list such that
vi represents the value of the input variable vi, Equiv is True
if α ' β and False otherwise and falseComp is True if all



Algorithm 1: counterExmapleGenerator(M0, M1,
α, β, EQ LIST, C LIST)

1 DFS from the start state of α in C LIST to obtain the sequence
〈p0j , p0j+1, ..., p0k, α〉.

2 DFS from the start state of p0j in EQ LIST to obtain the sequence
〈p00, p01, ..., p0i〉.

3 Encode the cTrace = 〈p00, p01, . . . , p0i, p0j , p0j+1, . . . , p0k, α〉 and
its corresponding cTrace in M1 as C, say “input.c”.

4 Initialize the unwinding loop bound (ULB) k to 1.
5 Use cbmc input.c -unwind k --no-unwinding-assertions

command to invoke CBMC.
6 if The condition mentioned in __CPROVER_assume is not satisfiable then
7 return 〈NULL, False, True〉; /* Case 1 */
8 else if All the unwinding assertions along with the user defined assertions are

valid then
9 return 〈NULL, True, False〉; /* Case 2 */

10 else if CBMC produces a counter-example for the assertion belongs to an
output variable then

11 return 〈v̄, False, False〉; /* Case 3.1 */
12 else if CBMC produces a counter-example for the assertion belongs to live

variable then
13 Execute both M0 and M1 with the values obtained from CBMC as

inputs.
14 if outputs are the same then
15 return 〈NULL, False, False〉; /* Case 3.2 */
16 else
17 return 〈v̄, False, False〉; /* Case 3.3 */
18 end if
19 else if CBMC hits the time limit then
20 return 〈NULL, False, False〉; /* Case 4 */
21 else
22 Increase ULB by one (i.e., k=k+1) and go to step 5
23 end if

Algorithm 2: correspondenceChecker(M0,M1, q0i, q1j ,
, P0, P1,Wcsp)

1 foreach path α : (q0i ⇒ q0m) in P0 do
2 if path β : (q1j ⇒ q1n) can be found in P1 such that α ' β then
3 Wcsp = Wcsp ∪ {(q0m, q1n)};
4 Insert (α, β) in EQ LIST.
5 else if path β : (q1j ⇒ q1n) can be found in P1 such that α 'c β

then
6 if q0m or q1n is reset state then
7 return failure;
8 else
9 Insert (α, β) in C LIST.

10 correspondenceChecker(M0,M1, q0m, q1n,
P0, P1,Wcsp);

11 end if
12 else
13 〈v̄, Equiv, falseComp〉← counterExmapleGenerator(M0,

M1, α, β, EQ LIST, C LIST);
14 if falseComp == True then
15 Proceed Further /* Case 1 */
16 else if v̄ 6= NULL then
17 return Not equivalent; /* Case 3.1 */
18 else if v̄ == NULL and Equiv == True then
19 Proceed Further /* Case 2 */
20 else if v̄ == NULL and Equiv == False then
21 Proceed Further /* Case 3.2 */
22 else
23 return May Not be Equivalent; /* Case 4 */
24 end if
25 end if
26 end foreach
27 EQ LIST = EQ LIST ∪ {Last member of C LIST}
28 C LIST = C LIST \ {Last member of C LIST}
29 return success;

the computations represented by cTrace are false computations
and False otherwise. In lines 1–2 of Algorithm 1, a cTrace
is constructed from the EQ LIST and C LIST as discussed
in Sec. III. The cTrace is encoded as input to CBMC at

line 3. The output generated by CBMC may result in various
scenarios as discussed in Sec. V. Lines 6–19 of Algorithm 1
handle these cases.

The enhanced version of correspondenceChecker func-
tion of the EVP method [8] after incorporating the result
of the function counterExmapleGenerator is presented
in Algorithm 2. In case of failure, Algorithm 2 invokes
the function counterExmapleGenerator (Algorithm 1) at
line 13. It may be noted that the EVP method reports
failure under this scenario. If counterExmapleGenerator

returns a counter-example (i.e., v̄ 6= NULL) then the function
correspondenceChecker returns “Not equivalent” i.e., the
two FSMDs are not equivalent (line 17). If CBMC hits the
time limit then we cannot decide whether M0 is equivalent
to M1. Hence the function correspondenceChecker returns
“May Not be Equivalent” (line 23). If CBMC reports that
all the possible computations represented by cTrace are false
computations (i.e., the variable falseComp is True) then the
function correspondenceChecker needs to be modified to
handle this scenario (line 15). If CBMC finds the mismatch in
the values of a live variable but outputs of the two programs
are the same then we do not report the counter-example
(line 21). To handle this case also correspondenceChecker

needs to be modified. If CBMC declares that the path pair
(α, β) are equivalent (i.e., the variable Equiv is True) then
it is a false negative result of the correspondenceChecker

function (line 19). The correspondenceChecker function
must take some decision to avoid the false negative case in
the future.

VII. EXPERIMENTAL RESULT

We have taken the source code of the EVP method and
have implemented our counter-example generation procedure
on top of it. Once the EVP method fails to prove the equiv-
alence, a cTrace is automatically generated using EQ LIST

and C LIST of the EVP method as discussed in Sec. III.
We have then translated the two corresponding cTraces as
an input to CBMC. For our experiment, we used CBMC
version 5.8 [9]. The benchmarks are taken from [5]. The
benchmarks are run on a 1.8 GHz Intel i5 processor with 8
GB of RAM with a timeout limit of 60 seconds. The results
of our experimentation are tabulated in Table I. We have
manually introduced few changes like addition, multiplication
or subtraction of a constant to some of the variables in the
benchmarks tabulated in rows 3–6 of Table I so that source
and transformed behaviors become non-equivalent. For each
benchmark, we have reported the number of paths in the path
cover, the number of states in the source and transformed
behaviors, the equivalence decision taken by the EVP method
and our method, the run time in milliseconds (ms) of the EVP
method and our method, and the number of lines in the C
program given as an input to CBMC.

For the benchmarks DIFFEQ and LRU, both the EVP
method and our method report equivalence which is denoted
as ‘E’ in Table I. The objective is to make sure that our imple-
mentation does not have any side effect on the existing method.



TABLE I
EXPERIMENTAL RESULTS

Benchmarks #Path #State Decision Time (ms) Lines
M0 M1 EVP Our EVP Our

DIFFEQ 3 15 9 E E 25 25 -
LRU 39 33 32 E E 1038 1038 -
DCT 1 8 16 MNE NE 85 766 185
PERFECT 7 6 4 MNE NE 56 227 74
MODN 9 8 9 MNE NE 66 890 137
GCD 11 8 4 MNE NE 31 100 97
Test Case [12] 6 5 5 MNE MNE 20 26 32

In the benchmarks reported in rows 3–6, the EVP method fails
to prove the equivalence of source and transformed behaviors.
It reports that the behaviors “May Not be equivalent”. This
is reported as ‘MNE’ in Table I. In these cases, CBMC finds
the mismatch in the values of output variable and generates a
suitable counter-example with k = 2 loop unwindings. Hence,
our method concludes that the behaviors are “Not equivalent”
which is denoted as ‘NE’ in Table I. The time required by
our method is a little high compared to the EVP method in
the case of non-equivalence as we need to run CBMC on
the cTrace. This experiment shows that with the help of our
counter-example generation scheme a PBEC can take strong
decisions about the non-equivalence of behaviors. Moreover,
the counter-example provided by the PBEC will help the user
to debug the root cause of the non-equivalence.

In our second experiment, we try to explore the false
negative scenario of the EVP method. For this purpose, we
have taken the example given in [12] and the result is tabulated
in row 7 of Table I. This test case involves the inverse
operation [12]. For this test case, the EVP method reports that
the behaviors “May Not be equivalent”. However CBMC does
not generate any counter-example and case 2 as discussed in
Sec VI arises here. CBMC reports that cTrace corresponding to
these behaviors are equivalent. Our method still reports “May
Not be equivalent” since we have not implemented proceed
further scenarios in the EVP. This experiment exposes a false
negative case of the EVP method. It would be an interesting
future work to enhance the EVP to handle the test cases which
involves inverse operations.

VIII. RELATED WORK

The basic path-based equivalence checking of the schedul-
ing step of HLS was first proposed in [2]. The PBEC is
further enhanced to handle control structure modification and
uniform code motions in [7], non-uniform code motion in [6],
speculative code motions in [3], code motions across loops
in [5], for better correlation of corresponding paths using
machine learning in [4], and to handle false computations and
code motions involving loops in [8].

In software model checking [13], if the property of a pro-
gram fails then model checkers generates a counter-example
and helps in understanding the root cause of violation of
the property. In this work we utilize the counter-example
generation procedure in a PBEC framework to improve its
performance.

IX. CONCLUSION

In this paper, we have presented a counter-example gen-
eration mechanism for the PBEC reported in [8]. A similar
counter-example generation mechanism can also be developed
for other reported equivalence checking methods as well. The
idea is to reuse the equivalence information of a PBEC to
generate a counter-trace efficiently and then use CBMC to gen-
erate a counter-example. We have also shown that a path-based
equivalence checking method can be further strengthened with
the counter-example generation mechanism. As shown in the
experiments, the EVP method can take stronger equivalence
decision with help of counter-examples. Our counter-example
generation mechanism identifies a false negative result of the
EVP method. In the future, we plan to enhance the EVP
method to handle the ‘proceed further’ (i.e., false negative
cases) scenarios identified by our counter-example generation
mechanism.

ACKNOWLEDGMENT

This work is partially supported by DST, Govt. of India
(Project code: ECR/2017/000492). The authors would like
to acknowledge Dr. Kunal Banerjee, currently at Intel Labs,
Bangalore, India, for his useful insights during the formulation
of this work.

REFERENCES

[1] D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and S. Y.-L. Lin, High-level
Synthesis: Introduction to Chip and System Design. Kluwer Academic
Publishers, 1992.

[2] Y. Kim, S. Kopuri, and N. Mansouri, “Automated formal verification of
scheduling process using finite state machines with datapath (FSMD),”
in ISQED, 2004. IEEE Computer Society, Mar 2004, pp. 110–115.

[3] Y. Kim and N. Mansouri, “Automated formal verification of scheduling
with speculative code motions,” in Proceedings of the 18th ACM Great
Lakes Symposium on VLSI 2008. ACM, May 2008, pp. 95–100.

[4] J. Hu, T. Li, and S. Li, “Equivalence checking between SLM and RTL
using machine learning techniques,” in ISQED, 2016. IEEE, Mar 2016,
pp. 129–134.

[5] K. Banerjee, C. Karfa, D. Sarkar, and C. A. Mandal, “Verification of
code motion techniques using value propagation,” IEEE TCAD, vol. 33,
no. 8, pp. 1180–1193, Aug 2014.

[6] C. Karfa, C. A. Mandal, and D. Sarkar, “Formal verification of code
motion techniques using data-flow-driven equivalence checking,” ACM
TODAES, vol. 17, no. 3, p. 30, Jul 2012.

[7] C. Karfa, D. Sarkar, C. Mandal, and P. Kumar, “An equivalence-checking
method for scheduling verification in high-level synthesis,” IEEE TCAD,
vol. 27, no. 3, pp. 556–569, Mar 2008.

[8] R. Chouksey, C. Karfa, and P. Bhaduri, “Translation validation of code
motion transformations involving loops,” IEEE TCAD, doi: 10.1109/T-
CAD.2018.2846654, 2018.

[9] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ansi-c
programs,” in Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 2004, pp. 168–176.

[10] R. W. Floyd, “Assigning meanings to programs,” Mathematical aspects
of computer science, vol. 19, no. 1, pp. 19–32, 1967.

[11] R. Chouksey, C. Karfa, and P. Bhaduri, “Translation validation of loop
invariant code optimizations involving false computations,” in VDAT,
2017, pp. 767–778.

[12] K. Banerjee, R. Chouksey, C. Karfa, and P. K. Kalita, “Poster: Automatic
detection of inverse operations while avoiding loop unrolling,” in Pro-
ceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings. ACM, May 2018, pp. 175–176.

[13] R. Jhala and R. Majumdar, “Software model checking,” ACM Comput.
Surv., vol. 41, no. 4, pp. 1–54, oct 2009.


