Characterizing Feedback Signal Drop Patterns in Formal Verification of
Networked Control Systems

Dip Goswami', Samarjit Chakraborty®, Purandar Bhaduri? and Sanjoy K. Mitter®
"nstitute for Real-Time Computer Systems, TU Munich, Germany
2Department of Computer Science & Engineering, IIT Guwahati, India
3Laboratory for Information and Decision Systems, MIT, USA

Abstract— In order to obtain resource efficient implementa-
tions of control loops on embedded platforms, recently there
has been a renewed interest in studying stability and various
other quality-of-control (QoC) metrics in the presence of
control message drops. Towards this, different methods have
been proposed to quantify the impact of message drops on
stability and control performance. In this paper we will survey
these techniques and clarify the relationship between them.
Given a drop pattern that satisfies stability and specified QoC
constraints, it is important to check whether an implementation
platform satisfies this pattern. In other words, whether the
control loop in question may be implemented on this platform.
Given an architecture, we will also show how certain notions
of expressing drop patterns are easier to verify compared to
others.

I. INTRODUCTION

Many embedded control systems are implemented in a
distributed fashion with different sensing, control and actua-
tion tasks being mapped onto different processing units that
communicate over a network (see Fig. 1). This setup has been
extensively studied in the domain of networked control sys-
tems, where the (especially wireless) network characteristics
such as delay, jitter and packet loss have been incorporated
in the controller design [1], [2], [3], [4], [5], [6]. In such
settings, the relationship between control performance and
network bandwidth has also been extensively studied [7],
[8]. In more recent times, several studies have focused on
controller design with wireline networks — such as those in
automotive electronic architectures like CAN and FlexRay
— and on how the controller and the network may be co-
designed [9], [10], [11], [12]. The network design in such
cases include mapping of tasks to processors (or electronic
control units/ECUs in the automotive context) and determin-
ing the scheduling parameters of the network. Such studies
are strongly connected to a basic question in model-based
design, i.e., how can we ascertain that model properties are
preserved in the implementation? In the context of embedded
control systems, control design is usually done at a high level
of abstraction using models like Simulink and Stateflow. At
this level, using both analysis and simulation, it is ensured
that the designed controllers satisfy the required stability
and quality-of-control (QoC) constraints. However, to ensure
that these constraints continue to be satisfied in the final
implementation, the implementation architecture needs to
be suitably designed, which includes, e.g., scheduling the
computation tasks and control messages appropriately.

As implementation platforms or embedded systems are
becoming more complex, in many cost sensitive domains,
explicitly taking into account feedback signal drops and
delays become important even in the case of wireline net-

S

sensor dynamic actuator
system

(PU, PU,

LTS Tc Ta I
m

Communication Bus

Fig. 1. Distributed control application

works. This is because designing systems that ensure all
control messages are reliably delivered within their deadlines
severely increases the cost of the system. Further, computing
safe estimates on worst-case message delays for complex
communication protocols (like FlexRay) might introduce a
significant amount of pessimism and hence increase costs.
Needless to mention, in the case of wireless networks mes-
sage delays and drops are even more unavoidable. When
designing control systems by taking into account feedback
signal drops and delays, there are three important questions
that need to be answered:

1) How should the impact of feedback signal drops and
delays on stability and QoC be quantified and com-
puted?

2) How should the timing characteristics of the imple-
mentation platform be computed?

3) How can we check whether the timing characteristics
of the platform satisfy the signal drop thresholds such
that the specified stability and QoC constraints are not
violated?

In this paper we discuss these three questions, survey
previous work that has been done to answer them and study
the relationships between them, e.g., how does the charac-
terization of tolerable signal drops influence the complexity
of checking whether a given controller may be implemented
on a given platform while satisfying specified stability and
QoC constraints?

The rest of this paper is organized as follows. In Sec-
tion II, we outline the basics of implementation of distributed
feedback control system on embedded platforms. In the
following section we describe different characterizations of

signal drops that has been studied in the literature and the
relationship between them. Such characterization is the main
focus of this paper. For the purpose of this discussion we
do not distinguish between signal drop and delay (i.e., a
“delayed” signal — which is elaborate later — is assumed to be
dropped). In the following three sections (Section. IV, V-A
and V-B), we summarize the state-of-the-art in the directions
of three main research questions above. Finally, we conclude
by sketching the relationship between the characterization of
signal drops and the complexity of the checking problem.

II. DISCRETIZED FEEDBACK CONTROL SYSTEM

A feedback control system aims to achieve the desired
behavior of a dynamical system by applying an appropriate
input to the system. In a dynamical system, the relation
between inputs and outputs of the system is modeled by a set
of differential equations, called the state space model. Some
common examples of dynamical systems are the variation of
DC motor speed with respect to the applied terminal voltage
and the adaptive cruise control system of automobiles. In a
digital implementation with a constant sampling period h, a
linear dynamical system is modeled by the following set of
difference equations,

zlk+1] =
ylk] = 6]

where x[k] is the n x 1 vector of state variables and u[k] is
the control input to the system at the kth sampling instant.
DIK] is the impulse disturbance which will be explained
later. (A, B, ') are the system matrices used to model the
dynamic behavior (they are usually computed by system
identification techniques). A feedback loop involves three
sequential operations:

Az[k] + Bulk] + D[K]
Cuxlk

o measure the states x[k],
o compute the input signal u[k] and,
e actuate the system by u[k].

The task of a control designer is to compute u[k] (control
law) such that y[k] — 7 (v is the reference signal) is achieved.
Towards this, the control law utilizes the available feedback
signals and a general form of a control law is known as
state-feedback controller,

ulk] = K - z[k]. (2)

A. Distributed implementation

In the distributed implementation of a control application,
the whole function has to be partitioned into several ap-
plication tasks and mapped onto different processing units
(PUs). In general, a control application is partitioned into
three categories of application tasks (see Fig. 1): (i) the
sensor task T — reading x[k] from sensors, (i) the controller
task 7, — computing u[k] using (2) and, (iii) the actuator
task 7, — applying u[k] to the dynamical system. In a
digital control implementation 7, and 7T, are typically time-
triggered periodic tasks. Often, the period of T, and T, is
exactly equal to the sampling period h of the corresponding
control application. The triggering paradigm of the sensor
task T depends on the sensing mechanism. Generally, the
sensors tasks have to constantly monitor some states of
the control plant and is therefore interrupt-driven. 7 can
be triggered many times within a period with a negligible
execution time of each instance. Further, the application tasks

|

| m |
Bus i i

PU,

Fig. 2. Timing diagram of an implementation shown in Fig.1

are mapped into different PUs and communicate over a bus.
Fig. 1 shows an example of task mapping where T and 7.
are mapped onto one PU, T, is mapped onto the other and
the control input u[k] is sent as message m.

B. Sensor-to-actuator delay

The time interval between measure and actuate is known
as the sensor-to-actuator delay T, which is generally charac-
terized by the delay between the triggering of the sensor
task T, and the finishing time of the actuator task T,.
Utilizing the task partition and mapping described above,
one important factor of the sensor-to-actuator delay is the
interplay between the schedules of the application tasks
and the message schedule on the communication bus. An
example of possible task and message schedule is shown in
Fig.2.

III. FEEDBACK DELAY AND SIGNAL DROP

The sensor-to-actuator delay 7 is often referred to as
feedback delay or delay in this context. From Fig.2, it can
be seen that the feedback signal has to go through a series
of executions, i.e., Ts — T, — Bus — T,. The delay T can
be computed by the time required to complete the entire
execution sequence. Depending on the triggering patterns
of tasks T, T, and T, as well as the message schedules
on the bus, the exact delay value 7 varies. There are two
obvious possibilities (Fig. 3).

Case I: In this case, the triggering patterns of tasks T,
T. and T, are such that the offset between T, and T,
is less than one sampling interval. Tasks Ty, T, and Ty
are triggered periodically with period h. The entire series
of executions T; — T, — Bus — T, is expected to be
finished by 77 < h (see Fig. 3(a)). Therefore, the deadline
77 for the feedback signal is less than one sampling interval
in such a choice of task/message schedules. When 7; << h,
the delay is assumed to be zero and the control law (2) is
therefore realizable when the feedback loop meets deadline
Tr.

Case II: In this case, the triggering of T, and 7, is
synchronized with zero offset. Tasks T;, T, and T, are
triggered periodically with period h. The entire series of
executions Ty — T, — Bus — T, is expected to be finished
by 777 =~ h (see Fig. 3(b)). Therefore, the deadline 1y for
the feedback signal is approximately equal to the sampling
period A for such a choice of task/message schedules. Since
the feedback signal is delayed by one sampling interval, the

| Sampling period h |

Sampling period h H

PU, T, T, T, T, PU, T, T, T, T,
m | m !

| 3 e

- S :

(a) Case I: 1<h

Fig. 3.

control law (2) is not realizable and therefore, it is modified
as follows,

ulk] = K - z[k — 1]. 3)

In this case, the control law (3) is realizable when the
feedback loop meets deadline 7;;.

From Cases I and II, we have seen that the execution of a
feedback loop, i.e., Ts — T. — Bus — T,, is associated
with a deadline (77 and 777). Since the tasks 7T, T, and
T, are usually time-triggered, the schedule of message m
on the bus plays a key role in this context. In the case
of priority based arbitration on the communication bus, the
transmission of message m in Fig. 1 might get delayed and
reach PU; after T, is already triggered. Such timing scenario
causes a violation of deadline, ie., 7 > 77 or 7 > TyJ.
In a traditional approach, the communication schedule for
message m is designed such that the deadline is always
met. Towards this, the worst-case end-to-end delay of the
feedback loops need to be computed and it should essentially
be within the deadlines. As already mentioned, there has been
a renewed interest in allowing certain deadline violations in
the above context since the worst-case delay estimation is
often very conservative and happens rarely.

A. Closed-loop system

Based on the above cases, the control law needs to
be appropriately adapted. For example, for the Case I in
Fig. 3(a), the following control law is adapted in [13], [14],

_ [Kzl[k]
ulk] = {0 Jif T >

Jif 7 <rp

Similarly, for the Case II in Fig. 3(b), the following control
law is adapted in [9], [15],

_ Kzlk—1] ,ifr <7y
ulkl = {0 Lif 7> T

Of course, a more general case would be to consider deadline
of any length including multiple sampling periods [16].

In the above strategy, the control input u[k] is applied only
when the control message meets its deadline and u[k] is set
to zero otherwise. Based on this control strategy we have
two systems: (i) when the deadline is met, u[k] is applied
and the resulting closed-loop system becomes A, and, (ii)

(b)Case ll: 7y~ h

Timing requirements for the control messages: Case I and Case II

when deadline is violated, u[k] = 0 and the resulting open-
loop system is A. Note that the resulting system matrices
A, and A might have higher dimension due to the presence
of feedback delay as in (3). Both for cases I and II, the
closed-loop system becomes,

zlk + 1] = Asz[k], “

where A, = A, when the deadline is met and A, = A in the
case of deadline violation. Depending on the nature of delay
pattern, the closed-loop system keep switching between A,
and A. Over a duration of [sampling periods, the closed-loop
system is given by,

alk+1)=Ag, ., - Ay, Ag 2]k (5)

The requirements from control side mainly deals with sta-
bility and performance of the closed loop system (5). Each
element of system matrix A,, ., --- Ay, results from either
meeting or violating the deadlines.

PR Ok+1

IV. CONTROL REQUIREMENTS: SPECIFICATIONS

In general, the control specifications are formulated based
on requirements on stability as well as performance of the
closed-loop system (5). In the following, we summarize
the state-of-the-art on the available analysis tools for this

purpose.

A. Stability-based requirements

Clearly, the closed-loop system (5) is a switched system
where the switching happens between A, = A, and 4, =
A depending on the delay pattern. The question is: what
is maximum frequency of allowed deadline violation with
guaranteed stability of system (5)?

A general answer to the above question follows from [2]
with slightly modified formulation of control strategy,

Kz[k]
ulk] = {Kﬂk—ﬂ

St <g

(6)

Jifr > 7]
with A, = Ay when 7 < 77 and A, = A> when 7 > 7.

Theorem 1. (Stability condition) Consider the closed-loop
system (5) with control input (6) and assume that A, is Schur
stable.
o If the open-loop system A is marginally stable, the
system (5) is exponentially stable for 0 < r < 1.

o If the open-loop system A is unstable, the system (5) is
exponentially stable for

1 <
1—71/7

where 1 is the rate of meeting deadline over infinite horizon
and

r<1 @)

Y1 = In)\2 (Al)v'YQ =In >‘72na:c(A)7

max

where A\, denotes the eigenvalue of the corresponding
matrix with the maximum absolute value. The above theory
holds for any value of [in (5). For example, suppose
we obtain » = 0.1 for a given choice of parameters in
(5). With [= 1000, the above theorem implies that any
100 samples are allowed to violate their deadlines with
guaranteed exponential stability. On one hand, the above
condition is very relaxed and generic enough to be applied
to any system. On the other hand, such a condition is
not suitable for analyzing performance-critical applications
since it does not guarantee any performance (e.g., guarantee
on settling time). Further, the control law (6) is realizable
if the worst-case delay of a feedback loop is bounded by
one sampling interval. As already mentioned, it might be
complex and over pessimistic to design an architecture with
worst-case delay estimation.

A relatively more structured requirement on stability was
introduced in [16] where the systems are required to be
stable with a desired stability margin. As discussed, not all
feedback messages suffers the worst-case delay. With this
observation, a deadline or threshold delay d;;, (lesser than the
worst-case delay) is chosen such that it is met by the most of
the feedback messages. For example, one can choose dy, = h
in the case shown in Fig. 3(b). The control requirement is
then represented as delay frequency metric which is defined
as follows.

Definition 1 (Delay frequency metric (din,n)). If every
feedback message with delay larger than dy, is followed by
at least n feedback messages with delay no more than dgp,
the delay frequency metric is said to be (dip,n).

For the delay frequency metric with n = 3, every sample
that violates deadline (which has a system matrix A) is
followed by at least three samples (which have system
matrix A.) where deadline is respected. Hence, the overall
system can be represented as follows,

o[k + 2+ n; +n;] = AA™ x AA™ x[k],)

where n;,n; > 3. The stability is assured with a given sta-
bility margin by showing the existence of common quadratic
Lyapunov function (CQLF) [17] between systems AA7* and
AAY¢ for all combinations of n; and n;.

B. Performance-based requirements

In a flurry of recent works [13], [14], [15], the control
requirements are specified using a notion of exponential
stability,

[k + 1]
o <6 €))
[l (K]l
where ||.|| denotes 2-norm. That is, to ensure that the plant

remains exponentially stable, any error must be reduced by at
least by a factor of € in [sampling periods, i.e., [X h time.

For example, [= 5,¢ = 0.75 means that any error signal
must be reduced by at least 25% in five samples to maintain
exponential stability of the system. It should be noted that the
above notion of exponential stability is stronger compared to
its definition found in control theory literature [18].

Coming back to the control requirement on exponential
stability (9) and considering the closed-loop system (5), we
obtain the following relation,

T4l = A(Tk+l e Aﬂkxk‘,;
x
”nﬁiﬂ” < Ao+ Ao
= || Aoy, Ao <€ (10)

In other words, the exponential stability requirement can be
re-written as follows (see [14], [13], [15]),

ES(l,e) = {o; € {o,c}* : HA0k+z "'Aak+1H < eVk € N},

which essentially is the language of strings o over the
alphabet {o, c} corresponding to switching patterns of A and
A, that ensure that a possible error in the system is reduced
by at least factor ¢ in [sampling periods. The works in [14],
[13] construct a Biichi automaton to represent this language.

Hence, the control requirement on exponential stability
boils down to a set of acceptable patterns of occurrence of
A and A. that meets the condition (10). The computation
of such a set of acceptable patterns can be done by a brute-
force search as in [14], [13], but it becomes tedious to verify
them pattern-by-pattern. To avoid this, a deadline constrain
is introduced in [15]:

Definition 2 ((f, H)-firm deadline). A stream of control
messages is said to fulfill the (f, H)-firm with respect to
period h if at least f out of any H consecutive samples
meet their deadline.

The idea is that among all possible patterns, one can rule
out all the unacceptable ones by a combination of (f, H)-
firm deadlines. For example, one can evaluate all the patterns
and separate those that do not fulfill FS(5,0.75) in the
above example. Further, one can exclude all the patterns by
requiring the system to be both (1,2)-firm and (3,5)-firm with
respect to its period. That is, in any two samples at most one
message, and in any five samples at most two messages can
have delay 7 > h (Case II in Fig. 3(b)). Therefore, the set
of all acceptable patterns is represented by number of such
(f, H)-soft deadlines where H < .

V. ARCHITECTURE MODELING AND VERIFICATION

Once the allowable feedback signal drop pattern has been
quantified, the next step is to capture the timing character-
istics or behaviors of the implementation platform, followed
by checking if these behaviors constitute a subset of the
behaviors that may be tolerated by the controller. This then
determines whether the controller may be implemented on
this platform.

A. Timing properties of architectures

Towards characterizing timing behaviors of the architec-
tures, various techniques have been proposed in the real-time
and embedded systems, as well as in the formal methods
literature. Analyzing embedded platforms in the particular
context of implementing distributed controllers have been

| FlexRay bus ECU

| Beu (]

CAN bus |

Fig. 4. Example architecture.

studied in [15], [16]. In [16], the Real-Time Calculus [19]
modeling formalism has been combined with the Uppaal [20]
modeling and verification environment. Real-Time Calculus
relies on specifying upper and lower bounds on the number
of messages that might arrive at a communication resource
over different time interval lengths. Let these be denoted by
a™(A) and o!(A) respectively. Similarly, the communication
resource is modeled using upper and lower bounds on the
number of messages it can transmit; let these be denoted
by B%(A) and S!(A) respectively. These bounds may then
used to compute the worst-case delays suffered by messages,
in addition to properties like buffer requirements. Exactly
similar techniques also apply to computation (rather than
communication) resources and number of task executions
(rather than messages).

When multiple message streams are to be scheduled on a
communication resource, scheduling or resource arbitration
policies like TDMA, fixed priority or EDF may also be mod-
eled using Real-Time Calculus, where the service bounds
B%(A) and BY(A) for the entire resource are transformed
into similar bounds for each message stream (see [19] for
details). Fig. 4 shows an architecture where sensor readings
are transmitted over a FlexRay bus to a controller imple-
mented on the ECU. Control messages are then transmitted
over the CAN bus to actuators. The sensor-to-actuator delay
experienced by the individual messages certainly influence
the stability and QoC of the controller. In order to compute
this end-to-end delay, the service bounds of the individual
architectural components (FlexRay and CAN buses and the
ECU) need to be composed in order to obtain the service
bound of the overall architecture. This is given by:

Bend-lo»end — ﬂFR ® BECU ® BCAN7 (11)

where ® is the convolution operation as defined in Real-
Time Calculus [19]. In order to estimate not only the
maximum delay suffered by control messages, but also
the frequency with which messages violate their deadline
(derived from control-theoretic analysis, as described in the
previous section) constraints, in [16] the service bounds or
timing behaviors of the resource were transformed to a timed
automata model in Uppaal.

A similar technique was adopted in [15], where a com-
munication resource was modeled using a Time-Stamped
Event Count Automata (TS-ECA). An Event Count Automata
(ECA) [21] is given by the tuple

A: (S7Sin,X7mn7I'I’L’U,p, _>) (12)

where
e S is a set of states and s;,, is the initial state

e X is a set of count variables

e Vi, is the initial valuation of the count variables.

e Inv: S — ®(X) is the Invariant Constraint Function
where

O(X) = <clx <clx>clr >l A2

It assigns invariance constraints to the states.
e p: S — N x N is the rate function. Every state is
assigned an interval for the arrival or service rate in

that state:
p(s) = [l,u]

o« —C S x®(X)x 2% x S is the transition relation.

The language of ECAs are strings of integers that in our
setting denote the arrival patterns of control messages or
sensor readings. For example, in the case of an arrival ECA,
201... denotes an arrival pattern with two messages arriving
in the first time interval, no messages in the second time
interval and one message in the third interval. In the case
of a service ECA representing a communication resource,
it may denote the number of control messages transmitted
during three consecutive time intervals. It has been shown in
[21] that bounds on message arrivals and resource availability
(i.e., a(A) and S(A) respectively) as used in Real-Time
Calculus can also be represented as corresponding ECAs.

<+ 0

Fig. 5. Periodic with jitter arrival ECA (p = 3,5 = 2)

An ECA starts in the configuration (s, Vi) — an initial
state and an initial valuation of all the count variables. In the
case of an ECA representing the arrival pattern of a message
stream which is periodic and has some jitter (see Fig. 5), this
corresponds to state A and the only count variable z = 0.

From there the ECA can make moves of the form (s, V) LY
(s’, V). To make such a move, there needs to be a transition
from s to s’ and V/ = (V + k) has to be in accordance with
the rate intervals of the state (here p(A) = [0, 1]), the guards
on the transition (z < 1), and possible invariant conditions
(none in the states of the ECA in Fig. 5). Additionally, some
count variables may have to be reset (such as * when moving
from C to A). Transitions are considered urgent, i.e., they
have to be taken if possible.

A string 0 = ning...ng € [0, pmax]* is accepted if and
only if the automaton can produce a sequence (sg, Vp) ot
(51,V1) 2 (s9,Va) Our example ECA in Fig. 5 accepts
strings that have one event occurring in either state A or B.
This results in a jitter of 7 = 2 and a period of p = 3. No
events can occur in C' and the the guard z = 1 on transition
(B, C) guarantees that it occurred beforehand. For a more
rigorous description of ECA semantics, please refer to [21].

While ECAs as described were augmented with time
stamps in [15] — with the resulting model being referred to
as Time-Stamped Event Count Automata — in order to keep
track of the delays suffered by individual messages.

B. Control/Architecture Co-Verification

As seen in the previous subsections, the timing behav-
iors of an implementation platform or architecture may be
modeled as an automaton. In particular, the language of
such automata — as seen with the example from ECAs —
represent different timing behaviors of the architecture. The
next question that needs to be answered is how can we check
whether these behaviour constitute a subset of the behaviors
that may be tolerated by the controller in order to meet given
stability and QoC constraints?

There are two broad categories of approaches towards this.
The first follows conventional the model checking approach
[22]. Here, the automaton corresponding to the implementa-
tion platform is model-checked to verify whether it violates
any of the acceptable behaviors of the controller (in terms
of feedback signal drop patterns). Such acceptable behav-
iors of the controller were transformed to Linear Temporal
Logic (LTL) formula in [15], followed by checking whether
the TS-ECA corresponding to the architecture satisfies this
formula (using model checking in SAL). [16] avoided the
explicit transformation into LTL but instead used an observer
automaton to check for timing property violations in the
architecture model.

The second category of approaches rely on interface
theories [23], [24]. Here, all possible signal drop patterns that
still satisfy stability and control performance constraints may
be represented as a language, say Lcontroiler. Similarly, the
timing behaviors of the implementation platform — capturing
sequences of messages that are delivered within the specified
deadline, as described above — may be represented by the
language Ly chitecture- These two languages constitute the
interfaces of the controller and the architecture. Checking the
compatibility of these two interfaces now boil down to the
problem of checking for language inclusion, i.e., whether
Lorchitecture © Leontroller- Satisfaction of this inclusion
implies that the controller may be implemented on the given
architecture. The work reported in [13], [14] followed this
line of approach, but did not explicitly model the timing
properties of the architecture. It rather characterized the
stability properties of the controller in language-theoretic
terms.

The complexity of the above-mentioned co-verification
problem heavily depends on the exact characterization of
the feedback signal drop patterns that were discussed in
Section IV. The characterization defined by Theorem 1
requires checking the satisfaction of the inequality (7) over
an infinite horizon and hence cannot be realized by an
automaton with finitely many states. On the other hand, the
tighter characterization as defined by inequality (9) — that
takes into account control performance in addition to stability
— requires a check over a bounded horizon and is therefore
easier from the perspective of verification.

VI. CONCLUDING REMARKS

In this paper, we have studied different characterizations of
feedback signal drop patterns in embedded control systems.
We then looked at how the timing behaviors of implemen-
tation architectures can be modeled and finally we briefly
discussed different possibilities of checking whether the
architecture timing behaviors match those allowed by the
controller subject to satisfaction of stability and performance
constrains.

[1]

[2

—

[3

=

[4

[5

=

[6]

[7

—

[8]
[9]

(10]

[11]

[12]

[13

[t

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

H. Y. G. C. Walsh and L. G. Bushnell, “Stability analysis of networked
control systems,” IEEE Trans. on Control System Technology, vol. 10,
no. 3, pp. 438-446, 2002.

W. Zhang, M. S. Branicky, and S. M. Phillips, “Stability of networked
control systems,” Automatica, vol. 21, p. 8499, 2001.

M. Pajic, S. Sundaram, G. J. Pappas, and R. Mangharam, “The wireless
control network: A new approach for control over networks,” IEEE
Transactions on Automatic Control, vol. 56, no. 10, pp. 2305-2318,
2011.

R. Alur, A. D’Innocenzo, K. H. Johansson, G. J. Pappas, and G. Weiss,
“Compositional modeling and analysis of multi-hop control networks,”
IEEE Transactions on Automatic Control, vol. 56, no. 10, pp. 2345-
2357, 2011.

P. Naghshtabrizi and J. Hespanha, “Analysis of distributed control
systems with shared communication and computation resource,” in
ACC, 2009.

X. Wang and M. Lemmon, “Event-triggering in distributed networked
control systems,” IEEE Transactions on Automatic Control, vol. 56,
no. 3, pp. 586-601, 2011.

S. Tatikonda and S. K. Mitter, “Control under communication con-
straints,” IEEE Trans. Automat. Contr., vol. 49, no. 7, pp. 1056-1068,
2004.

——, “Control over noisy channels,” IEEE Trans. Automat. Contr.,
vol. 49, no. 7, pp. 1196-1201, 2004.

D. Goswami, R. Schneider, and S. Chakraborty, “Co-design of Cyber-
Physical Systems via controllers with flexible delay constraints,” in
Asia and South Pacific Design Automation Conference (ASP-DAC),
2011.

H. Voit, R. Schneider, D. Goswami, A. Annaswamy, and
S. Chakraborty, “Optimizing hierarchical schedules for improved
control performance,” in International Symposium on Industrial Em-
bedded Systems (SIES), 2010.

S. Samii, P. Eles, Z. Peng, and A. Cervin, “Design optimization and
synthesis of FlexRay parameters for embedded control applications,”
in DELTA, 2011.

R. Schneider, D. Goswami, S. Zafar, M. Lukasiewycz, and
S. Chakraborty, “Constraint-driven synthesis and tool-support for
FlexRay-Based automotive control systems,” in International Con-
ference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2011.

R. Alur and G. Weiss, “Regular specifications of resource requirements
for embedded control software,” in IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2008.

G. Weiss and R. Alur, “Automata based interfaces for control and
scheduling,” Hybrid Systems: Computation and Control (HSCC), 2007.
M. Kauer, S. Steinhorst, D. Goswami, S. Reinhard, M. Lukasiewycz,
and S. Chakraborty, “Formal verification of distributed controllers
using time-stamped Event Count Automata,” in Asia and South Pacific
Design Automation Conference (ASP-DAC).

P. Kumar, D. Goswami, S. Chakraborty, A. Annaswamy, K. Lampka,
and L. Thiele, “A hybrid approach to cyber-physical systems verifica-
tion,” in Design Automation Conference (DAC). ACM, 2012.

O. Mason and R. Shorten, “On common quadratic Lyapunov func-
tions for stable discrete-time LTI systems,” IMA Journal of Applied
Mathematics, vol. 69, no. 3, pp. 271-283, 2002.

R. C. Dorf and R. H. Bishop, Modern Control Systems.
Wesley, 1995.

S. Chakraborty, S. Kiinzli, and L. Thiele, “A general framework
for analysing system properties in platform-based embedded system
designs,” in DATE, 2003.

K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” STTT,
vol. 1, no. 1-2, pp. 134-152, 1997.

S. Chakraborty, L. T. X. Phan, and P. S. Thiagarajan, “Event count
automata: A state-based model for stream processing systems,” in 26th
IEEE Real-Time Systems Symposium (RTSS), 2005, pp. 87-98.

C. Baier and J.-P. Katoen, Principles of model checking. MIT Press,
2008.

L. de Alfaro and T. A. Henzinger, “Interface-based design,” in
Engineering Theories of Software-intensive Systems, Marktoberdorf
Summer School, NATO Science Series, 2004.

, “Interface theories for component-based design,” in EMSOFT,
2001, pp. 148-165.

Addison

