
Formal Verification of Optimizing Transformations during
High-level Synthesis

Ramanuj Chouksey, Chandan Karfa, and Purandar Bhaduri

{r.chouksey,ckarfa,pbhaduri}@iitg.ac.in

Department of Computer Science & Engineering

Indian Institute of Technology Guwahati

Guwahati, Assam, India

ABSTRACT
Translation validation is the process of proving that the target code

is a correct translation of the source program being compiled. In this

work, we propose a translation validation method to verify code

motion transformations involving loops applied during the sched-

uling phase of high-level synthesis (HLS). Our method is capable of

ignoring false computations during translation validation. In this

work, we show that how to generate a counter-trace (cTrace) using
the internal information of verifier in the case of non-equivalence

reported by a translation validation method. We also show how a

Bounded Model Checker (CBMC) can be used to find a counter-

example for a given cTrace. Experimental results demonstrate the

usefulness of our method.

CCS CONCEPTS
• Software and its engineering → Formal software verifica-
tion.

KEYWORDS
Translation Validation, Equivalence Checking, Code Motion, Finite

State Machine with Datapath (FSMD), CBMC, Counter-example

Generation

1 INTRODUCTION
High-level synthesis (HLS) techniques translate high-level lan-

guages like C/C++ into register transfer level design [9]. Due to its

complexity, proving the correctness of an HLS tool is prohibitively

expensive. Code motion based optimizations are used in the sched-

uling phase of HLS tools to improve the quality of synthesis results.

Such transformations move operations across the boundaries of ba-

sic blocks. They are widely used to improve the quality of synthesis

results for designs with complex and nested conditionals and loops.

Code motion techniques change the data-flow of a behavior consid-

erably. Therefore, it is necessary to verify the semantic equivalence

between the input behavior to HLS (i.e., source behavior) and the

scheduled behavior generated by HLS (i.e., transformed behavior).

Translation validation is the process of verifying, for each trans-

lation that HLS tool performs, that the target code generated by

the tool is a correct translation of the source code. This is proved

by showing the equivalence between the source and transformed

behaviors. Even if this approach does not guarantee that the HLS

tool is bug-free, it guarantees that any error in translation will be

caught when the tool runs. The present work is aimed at developing

translation validation methodologies, specifically, for code motion

transformations involving loops.

Many path-based equivalence checking approaches [11–13] have

been proposed to handle code motion based transformations during

HLS where behaviors are represented by a finite state machine with

datapaths (FSMD). In general, path based approaches decompose

each FSMD into a finite set of finite paths and the equivalence of FS-

MDs is established by showing path level equivalence between two

FSMDs. However, all these methods cannot handle the transforma-

tions that result in code motion across loops. A Value Propagation

based equivalence checking (VP) method was proposed in [1] which

can handle code motion across loops. There are three possible sce-

narios during code motion transformations involving loops:

S1 : Some code segment before a loop body is placed after the

loop body or vice versa (i.e., code motion across loops).

S2 : Some code segment is moved before the loop from inside

the loop body.

S3 : Some code segment is moved after the loop from inside the

loop body.

We identify the following limitations of the VP method presented

in [1].

• The VP method does not check whether a computation is

a false computation [3] i.e., it never executes. As a result, it

gives false negative results in the case of loop invariant code

motion involving false computations.

• The VP method can handle scenario S1 but it cannot handle
scenarios S2 and S3.

In case of non-equivalence, these path-based equivalence check-

ing approaches, in general, report that the behaviors “May Not be

equivalent” and the path for which possible non-equivalence arises

in the equivalence checker. This information is not sufficient for

debugging the issue. A counter-example which will reproduce the

non-equivalence between the source and the transformed behav-

iors will add significant value to the adoption of such path-based

approaches.

1.1 Problem statements
The objective of this work to develop a translation validationmethod-

ologies, specifically, for code motion transformations involving

loops that occur during the scheduling phase of HLS. Specifically,

the following verification problems will be addressed:

(1) Ignoring false computations during translation validation.

(2) Translation validation of code motion transformation involv-

ing scenarios S1, S2 and S3 (as discussed in Section 1).

(3) Generating a cTrace and how the CBMC [6] tool can be used

to find a suitable counter-example for the given cTrace in

f o r (i1 = L1; i1 ≤ H1; i1+ = r1)

f o r (i2 = L2; i2 ≤ H2; i2+ = r2)
...

f o r (in = Ln ; in ≤ Hn ; in+ = rn)

Sn : . . .

Figure 1: Nested loop structure

case of non-equivalence reported by translation validation

approaches.

2 CONTRIBUTIONS
In the following, we outline in brief the contributions of work on

each of the objectives identified in Subsection 1.1.

2.1 The enhanced value propagation method
The EVP method of FSMDs described in [4] is based on propagating

the mismatched values (as a propagated vector) of live variables

through all the subsequent path segments until the values match

or the final path segment ending in the reset state is reached. A

propagated vector for a path β is an ordered pair ⟨Rβ , sβ ⟩, where
the first element is the condition of execution (Rβ) representing
the condition that must be satisfied at the start state of β and the

second element is an updated variable vector (sβ) representing the

symbolic value obtained by the variables at the end state of β .
In the course of equivalence checking of two FSMDs, two paths,

β and α say (one from each FSMD), are compared with respect to

their corresponding propagated vectors for finding a path equiva-

lence. If the conditions of execution and the data transformations

of the two paths are equal, then they are declared as uncondition-
ally equivalent (U-equivalent in short, denoted by β ≃ α). If some

mismatch in data transformation is detected, then they are declared

to be conditionally equivalent (C-equivalent in short, denoted by

β ≃c α) provided their final state-pairs eventually lead to some

U-equivalent paths; otherwise, these two paths and, therefore, two

FSMDs are declared to be not equivalent. Once a C-equivalent path

is identified, the VP method tries to find a U-equivalent path in a

depth-first search (DFS) manner.

2.2 Handling false computation involving
loops

The EVP method avoids the false computation by automatically

extracting a formula that checks whether a loop will always execute

at least once under a propagated condition. Let us consider the

nested loop structure of depth n shown in Fig. 1. If formula 1 shown

below is valid then the statement Sn , at the loop structure of nesting
depth n, will always execute at least once.

Cp =⇒

(
∃i1, ∃i2, · · · , ∃in−1, ∃a1, ∃a2, · · · , ∃an−1

((
Ln ≤ Hn

)
∧

(n−1∧
x=1

fx

)))
(1)

where fx =
(
(Lx ≤ ix ≤ Hx) ∧ (ix = ax rx + Lx) ∧ (ax ≥ 0

))
. Here

Cp is the propagated condition before entering the nested loop of

depth n. For checking the validity of this formula, EVP method uses

the SMT solver Z3 [7] in the theory of linear integer arithmetic. This

formula will guide the EVP method during equivalence checking

to identify and ignore false computations. More importantly, EVP

method can handle any level of loop nesting. The details can be

found in [3].

2.3 Handling loop invariant Code motion
The EVP method is capable of handling all the three scenarios, i.e.,

S1, S2 and S3. Only codes/operations that are invariant to a loop are
allowed to move across/from loop (as discussed in scenarios S1, S2
and S3 in Introduction). In the EVP method, we are essentially

ensuring that any code motion involving loops is actually loop

invariant. The overall approach is discussed below.

To detect the validity of code motion involving loops, the EVP

method marks the live variables which exhibit a mismatch in the

propagated vector. Those variables on which these marked vari-

ables depend are also marked in the propagated vector. The rest

of the variables are denoted as unmarked variables. Let q0i be the
entry/exit state of a loop body inM0 and its corresponding state q1j
be the entry/exit state of a loop body inM1. The state q0i has the
propagated vector ϑ0i before entering the loop and the propagated

vector ϑ ′
0i after traversal of one of the paths inside the loop leading

to q0i . Similarly, state q1j has the propagated vector ϑ1j before
entering the loop and the propagated vector ϑ ′

1j after traversal of

one of the paths inside loop leading to q1j . During code motion

involving loops the following cases may arise:

Case 1 Unmarked Variable: There are two possibilities for an un-

marked variable, say x . It may be noted that x has symbolic values

in both ϑ0i and ϑ1j .
Case 1.1 If x has the same value in ϑ ′

0i and ϑ
′
1j as shown in Fig. 2(a)

then after exiting the loop x is reverted to its symbolic value.

Case 1.2 If there is a mismatch for x in ϑ ′
0i and ϑ ′

0j then there

is a possibility of scenario S3. Let ex0i and ex1j represent the mis-

matched values in ϑ ′
0i and ϑ ′

1j respectively as shown in Fig. 2(b).

To check the validity of the code motion, we do the following test.

(1) The expressions ex0i and ex1j should be invariant in their

corresponding loops.

(2) The variable x is not used before being defined in both the

loops.

Case 2 Marked Variable: Marked variables arise in the case of S1
and S2. There are three possibilities for a marked variable.

Case 2.1 Suppose a marked variable, say x , has its symbolic value

at ϑ0i and ex1j at ϑ1j . If after executing the loop once the value of

x matches in both the loops (i.e., x has the same value (ex1j) in ϑ ′
0i

and ϑ ′
1j) as shown in Fig. 2(c), then scenario S2 is possible. To check

the validity of the code motion, we do the following test.

(1) The expression ex1j should be invariant in both the loops.

(2) The variable x is not used before being defined in the loop

at q0i , and it has no definition in the loop at q1j .

Case 2.2 Suppose x has its symbolic value at ϑ1j and ex0i at ϑ0i
and after executing the loop once the value of x matches in both

the loops. This case can be handled in a manner similar to case 2.1.

Case 2.3 In the remaining case, if before executing the loop and

after exiting the loop the value of x remains the same in both the

2

ϑ0i : ⟨· · x · ·⟩ ϑ1j : ⟨· · x · ·⟩

ϑ ′
0i : ⟨· · ex · ·⟩ ϑ ′

1j : ⟨· · ex · ·⟩

(a) Case 1.1

ϑ0i : ⟨· · x · ·⟩ ϑ1j : ⟨· · x · ·⟩

ϑ ′
0i : ⟨· · ex0i · ·⟩ ϑ ′

1j : ⟨· · ex1j · ·⟩

(b) Case 1.2

ϑ0i : ⟨· · x · ·⟩ ϑ1j : ⟨· · ex1j · ·⟩

ϑ ′
0i : ⟨· · ex1j · ·⟩ ϑ ′

1j : ⟨· · ex1j · ·⟩

(c) Case 2.1

ϑ0i : ⟨· · ex0i · ·⟩ ϑ1j : ⟨· · ex1j · ·⟩

ϑ ′
0i : ⟨· · ex0i · ·⟩ ϑ ′

1j : ⟨· · ex1j · ·⟩

(d) Case 2.2

Figure 2: A case (a) where unmarked variable x is defined identically in both the loops; (b) where unmarked variable x has
some mismatch at the end of the loop; (c) where a marked variable x has the same value at the end of the loop; (d) where the
values of the marked variable x do not update in both the loops

q00

q01

q02 q03

n ≥ 0/

i ⇐ 0,
x ⇐ 0,
y ⇐ 0

p01

i ≤ n/
x⇐ 5 ,

y ⇐ y + 5

-
/
i
⇐

i
+
1

p02
¬i ≤ n/

out⇐ x + y

p03

¬n ≥ 0/

out ⇐ −1
p00

(a) Source behaviorM0

q10

q11

q12 q13

n ≥ 0/

i ⇐ 0,
x ⇐ 0,
y ⇐ 0

p11

i ≤ n/
y ⇐ y + 5

-
/
i
⇐

i
+
1

p12
¬i ≤ n/
x⇐ 5 ,

out⇐ x + y + 1

p13

¬n ≥ 0/

out ⇐ −1
p10

(b) Transformed behaviorM1

q00

q01

q02 q03

n ≥ 0/

i ⇐ 0,
x ⇐ 0,
y ⇐ 0

p01

i ≤ n/
x⇐ 5 ,

y ⇐ y + 5

-
/
i
⇐

i
+
1

p02
¬i ≤ n/

out⇐ x + y

p03

(c) cTrace ofM0

q10

q11

q12 q13

n ≥ 0/

i ⇐ 0,
x ⇐ 0,
y ⇐ 0

p11

i ≤ n/
y ⇐ y + 5

-
/
i
⇐

i
+
1

p12
¬i ≤ n/
x⇐ 5 ,

out⇐ x + y + 1

p13

(d) cTrace ofM1

Figure 3: Counter-trace Genegartion

loops as shown in Fig. 2(d) then scenario S1 is possible. To check

the validity of code motion, we do the following test.

(1) Variable x is not updated within the loop.

(2) All those variables on which the variable x depends should

not be updated within the loop.

A code motion involving loop is a valid code motion if each marked

and unmarked variable satisfies their respective cases as mentioned

above. The details can be found in [4].

2.4 Counter-example generation using
counter-trace

The translation validation approaches are proven to be sound but

not complete. Therefore, all these approaches report the behaviors

“May Not be equivalent” once they fail to prove the equivalence of

source and transformed behaviors. During the course of equivalence

checking the EVP method maintains two lists: EQ_LIST contains

equivalent path pairs explored so far and C_LIST contains candi-
dates for conditionally equivalent path pairs. In the paper [2, 5],

we have shown how the equivalence information maintained in

these lists by the EVP method can be used to find a cTrace in the

case of non-equivalence reported by the EVP method. We have also

shown in [5] how CBMC can be used to find suitable initialization

values for input variables i.e., counter-example for a given cTrace.
A counter-example demonstrates the non-equivalence between the

source and transformed behaviors and the EVPmethod reports “Not

equivalent” instead of “May Not be equivalent” in this case. Since

the equivalence problem is not complete, CBMC may not always

produce counter-example in case of non-equivalence reported by

equivalence checker. This indicates a possible false negative results

of the equivalence checker. It would be an interesting work to en-

hance the equivalence checker method to handle the false negative

scenarios identified by our counter-example generation mechanism.

In the following, working of our overall verification procedure is

explained with Example 1.

Example 1. Consider the input behaviorM0 and its transformed
behaviorM1 shown in Fig. 3. The operation x ⇐ 5, a loop invariant
for input behaviorM0, is placed after the loop body in the transformed
behaviorM1 (scenario S3). Note that the input behaviorM0 and the
transformed behavior M1, shown in Fig. 3, are not equivalent since
there is mismatch in values of the variable out. In the course of equiva-
lence checking, the EVP method declares that the path pairs (p00,p10)
and (p01,p11) are U-equivalent and the path pairs are stored in the
EQ_LIST. When the path pair (p02,p12) are compared, the values of x
mismatches. Since, x ⇐ 5 is a loop invariant for loop body p02 and x
is not used before defining it, it is a valid code motion (case 1.2). Hence,
the path pair (p02,p12) declared to be candidate for C-equivalent and
the path pair is stored in C_LIST. The EVP method finds that path pair
(p03,p13) differs in the values of the variable out and reports a possible
non-equivalence between these two behaviors. Since EVP method fails
to show equivalence, counter-example generation mechanism uses
EQ_LIST and C_LIST to find cTrace of M0 (Fig. 3(c)) and cTrace of
M1 (Fig. 3(d)). We encodes the equivalence of these cTraces in CBMC.
The CBMC produces a counter-example. It shows that for n = 0 the
values of the variable ‘out’ differs thus two cTraces and hence the
source and the transformed behaviors are not equivalent.

3

Algorithm 1: containmentChecker(FSMDM0, FSMDM1)

1 Compute the path cover P0 and P1 of M0, M1, respectively;Wcsp is

a set of corresponding state pairs and initially contains (q00, q10);
EQ_LIST contains the pair of U(C)-equivalent pair; C_LIST
contains the candidate of C-equivalent path pairs; initially

EQ_LIST and C_LIST are empty;

2 foreach (q0i , q1j) ∈Wcsp do
3 output ←

ECC(M0,M1, q0i , q1j , P0, P1,Wcsp , EQ_LIST, C_LIST);

4 if output is“May Not be Equivalent” then
5 Report “unable to decide M0 ⊑ M1” and exit;

6 else if output is“Not Equivalent” then
7 Report a counter-example and declare “M0 . M1”;

8 end if
9 end foreach

10 Report “M0 ⊑ M1”;

Algorithm2: ECC(M0,M1,q0i ,q1j , P0, P1,Wcsp , EQ_LIST, C_LIST)

1 foreach path β : (q0i ⇒ q0m) in P0 do
2 if q0i is a loop header and checkFalseComputation(q0i)

returns True then
3 continue;
4 end if
5 if path α : (q1j ⇒ q1n) can be found in P1 such that β ≃ α

then
6 Wcsp =Wcsp ∪ {(q0m , q1n)};
7 Insert (β , α) in EQ_LIST.

8 else if path α : (q1j ⇒ q1n) can be found in P1 such that

β ≃c α then
9 if q0m or q1n is reset state then
10 goto step 18

11 else if q0m or q1n appears as the final state of some path

already in C_LIST ∧ loopInvariant(β , α) then
12 goto step 18/* Propagated values are not loop

invariant */

13 else
14 Insert (β , α) in C_LIST.

15 ECC(M0,M1, q0m , q1n , P0, P1,Wcsp , EQ_LIST, C_LIST);

16 end if
17 else
18 if counterExmapleGenerator(M0, M1, β , α ,

EQ_LIST, C_LIST) returns a counter-example then
19 return “Not equivalent”;
20 else
21 return “May Not be Equivalent”;
22 end if
23 end if
24 end foreach
25 EQ_LIST = EQ_LIST ∪ {Last member of C_LIST}

26 C_LIST = C_LIST \ {Last member of C_LIST}

27 return “success”;

i n t main () {

i n t x , i , n , z =0 , out ;

x =0 ;

f o r (i = 4 ; i <n ; i ++) {

x = 5 ;

z=z+x ; }

out=z+x ;

r e t u r n out ; }

(a) Input Behavior

i n t main (vo id) {

i n t x , i , n , z , out , sT0_5 ;

i n t re turnVar_main ;

z = 0 ; x = 0 ; i = 4 ; x = 5 ;

do {

sT0_5 = (i < n) ;

i f (sT0_5) {

z = (z + x) ;

i = (i + 1) ; }

e l s e break ;

} wh i l e (1) ;

out = (z + x) ;

r e turnVar_main = out ;

r e t u r n re turnVar_main ; }

(b) Transformed Behavior

Figure 4: A bug in SPARK

3 OVERALL VERIFICATION METHOD
In this section we present an overall verification method. We be-

gin the procedure of equivalence checking by invoking the func-

tion containmentChecker (Algorithm 1). To obtain a path cover,

the function containmentChecker breaks down an FSMD into

smaller segments by introducing cutpoints so that each loop in

the FSMD is cut by at least one cutpoint. This is based on the Flyod-

Hoare method of program verification [8]. The set of all paths

from a cutpoint to another cutpoint without any intermediate oc-

currence of a cutpoint is a path cover of the FSMD. The function

containmentChecker invokes enhanced correspondence checker

(ECC) function (Algorithm 2) for each corresponding state pairs,

one by one (in step 3). Depending on the output returned by ECC,
containmentChecker outputs the decision whether the original

FSMD is contained in the transformed FSMD or not. The function

ECC (Algorithm 2) is the key function of our verification method.

The function ECC returns “success” if for every path emanating from

q0i has an equivalent path originating from q1j is found (in step 27

of Algorithm 2); otherwise, it returns “failure”. In case of failure,

function ECC invokes the function counterExmapleGenerator (in

line 18). If counterExmapleGenerator returns a counter-example

then the function ECC returns “Not equivalent” i.e., the two FSMDs

are not equivalent (in step 19) otherwise the function ECC returns
“MayNot be Equivalent” (in step 21). To avoid the false computations

at the loop header ECC invokes the function checkFalseComputation
(in step 2). The function checkFalseComputation returns True if

the loop at q0i under the propagated condition will execute at least

once, over all possible inputs inM0. It returns False otherwise. If
a loop has been crossed over then the function ECC invokes the

function loopInvariant (in step 11). The function loopInvariant
checks the validity of code motion involving loops. The function

loopInvariant returns TRUE if each marked and unmarked vari-

ables satisfy their respective cases as mentioned in Subsection 2.3.

If it returns FALSE then the function ECC returns “failure”.

4 EXPERIMENTAL RESULTS
We have enhanced the VP method [1] by incorporating all proposed

solutions discussed in Section 2. We have used HLS tool SPARK [10]

to generate the test cases. All the experiments have been conducted

4

Table 1: Experimental results on test cases where the VP
method fails

Benchmarks

VP EVP

Decision Time (ms) Decision Time (ms)

simple_types_

loop_invariant

MNEq 4 Eq 12

mandel MNEq 4 Eq 16

mandel2 MNEq 4 Eq 16

himenobmtxpa MNEq 4 Eq 20

on a laptop with 2 GHz Intel Core 2 Duo processor with 3 GB of

RAM.

In our first experiment, we take some of the test-suite distributed

with LLVM [14]. These benchmarks contain some loop invariant

operations. We forced SPARK to apply loop invariant code motion

(LICM) transformation to obtain the transformed behavior. These

test cases represent the scenarios S2 and S3 as described in Section 1.
The results of these experiments are tabulated in Table 1. It is

evident from Table 1, that our EVP method can correctly identify

the equivalence even when some loop invariant operation op is

moved before (after) the loop from inside it. This is reported as

‘Eq’ in the Table 1. However, the VP method reports “May Not be

equivalent” in these cases and denoted as ‘MNEq’ in the Table 1.

It may be noted that our EVP method additionally can handle the

scenarios where the existing method gives false negative results.

During this experimentation, we found a bug in the implemen-

tation of the LICM algorithm in the SPARK tool as shown in Fig. 4.

Here the operation x = 5 is moved before the loop body in the

transformed behavior. The output of these behaviors will not be

the same for any input n ≤ 4. This behavior is proved to be non-

equivalent by our EVP method. Thus, our method finds a previously

unknown bug in a widely used HLS framework.

In our second experiment, the benchmarks are taken from [1].

We have manually introduced few changes like addition, multipli-

cation or subtraction of a constant to some of the variables in the

benchmarks so that source and transformed behaviors become non-

equivalent. The results of our experiment are tabulated in Table 2.

In the benchmarks listed in Table 2, the VP method fails to prove

the equivalence of source and transformed behaviors. It reports

the behaviors “May Not be equivalent”. In all these cases, CBMC

finds a mismatch in an output variable and generates a suitable

counter-example. Hence, our method concludes that the behav-

iors are “Not equivalent” which is denoted as ‘NEq’ in the table.

The time required by our method is little high compared to VP

method in the case of non-equivalence as our method needs need

to run CBMC on the cTrace. This experiment shows that with the

help of our counter-example generation scheme our method can

take strong decision about non-equivalence of behaviors. Moreover,

counter-example provided by the our method will help the user to

debug the root-cause of non-equivalence.

5 FUTURE PLANS
• We intend to enhance the EVP method to validate transfor-

mations such as (i) two or more consecutive if-else blocks

Table 2: Experimental Results

Bench-

marks

#Path

#State Decision Time (ms) #Line in C prog.

(CBMC input)M0 M1 VP Our VP Our

DCT 1 8 16 MNEq NEq 85 766 185

PERFECT 7 6 4 MNEq NEq 56 227 74

MODN 9 8 9 MNEq NEq 66 890 137

GCD 11 8 4 MNEq NEq 31 100 97

are merged into one and (ii) multiple branches of an if-else

block are merged into one.

• We plan to enhance the EVP method to handle the false nega-

tive scenarios identified by our counter-example generation

mechanism.

REFERENCES
[1] Kunal Banerjee, Chandan Karfa, Dipankar Sarkar, and Chittaranjan A. Mandal.

2014. Verification of Code Motion Techniques Using Value Propagation. IEEE
TCAD 33, 8 (Aug 2014), 1180–1193.

[2] Ramanuj Chouksey, Chandan Karfa Kunal Banerjee, Pankj Kalita, and Purandar

Bhaduri. forthcoming. A Counter-Example Generation Procedure for Path based

Equivalence Checkers. IET Softeware (forthcoming).

[3] Ramanuj Chouksey, Chandan Karfa, and Purandar Bhaduri. 2017. Translation

Validation of Loop Invariant Code Optimizations Involving False Computations.

In VDAT. 767–778.
[4] Ramanuj Chouksey, Chandan Karfa, and Purandar Bhaduri. 2018. Translation

Validation of Code Motion Transformations Involving Loops. IEEE TCAD (2018).

https://doi.org/10.1109/TCAD.2018.2846654

[5] Ramanuj Chouksey, Chandan Karfa, and Purandar Bhaduri. forthcoming. Improv-

ing Performance of a Path-Based Equivalence Checker using Counter-Examples.

In VLSID.
[6] Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool for Checking

ANSI-C Programs. In Tools and Algorithms for the Construction and Analysis of
Systems. Springer, Berlin, Heidelberg, 168–176.

[7] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT

Solver. In Tools and Algorithms for the Construction and Analysis of Systems,
TACAS 2008 (LNCS), Vol. 4963. Springer, Berlin, Heidelberg, 337–340.

[8] Robert W Floyd. 1967. Assigning meanings to programs. Mathematical aspects of
computer science 19, 1 (1967), 19–32.

[9] Daniel D. Gajski, Nikil D. Dutt, Allen C.-H. Wu, and Steve Y.-L. Lin. 1992. High-
level Synthesis: Introduction to Chip and System Design. Kluwer Academic Pub-

lishers, Norwell, MA, USA.

[10] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. 2003. SPARK: A high-level synthesis

framework for applying parallelizing compiler transformations. In Proceedings,
VLSID. IEEE, 461–466.

[11] Chandan Karfa, Chittaranjan A. Mandal, and Dipankar Sarkar. 2012. Formal veri-

fication of code motion techniques using data-flow-driven equivalence checking.

ACM TODAES 17, 3 (Jul 2012), 30.
[12] Chandan Karfa, Dipankar Sarkar, Chitta Mandal, and P. Kumar. 2008. An

Equivalence-Checking Method for Scheduling Verification in High-Level Synthe-

sis. IEEE TCAD 27, 3 (Mar 2008), 556–569.

[13] Youngsik Kim, Shekhar Kopuri, and Nazanin Mansouri. 2004. Automated Formal

Verification of Scheduling Process Using Finite State Machines with Datapath

(FSMD). In ISQED 2004. IEEE Computer Society, 110–115.

[14] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for

lifelong program analysis & transformation. In CGO 2004. IEEE, 129–142.

5

https://doi.org/10.1109/TCAD.2018.2846654

	Abstract
	1 Introduction
	1.1 Problem statements

	2 Contributions
	2.1 The enhanced value propagation method
	2.2 Handling false computation involving loops
	2.3 Handling loop invariant Code motion
	2.4 Counter-example generation using counter-trace

	3 Overall verification method
	4 Experimental Results
	5 Future Plans
	References

