
AXIOMATIZATION OF IF-THEN-ELSE OVER POSSIBLY

NON-HALTING PROGRAMS AND TESTS

GAYATRI PANICKER, K. V. KRISHNA, AND PURANDAR BHADURI

Abstract. In order to study the axiomatization of the if-then-else con-
struct over possibly non-halting programs and tests, this paper introduces the

notion of C-sets by considering the tests from an abstract C-algebra. When
the C-algebra is an ada, the axiomatization is shown to be complete by ob-
taining a subdirect representation of C-sets. Further, this paper considers the

equality test with the if-then-else construct and gives a complete axiomati-
zation through the notion of agreeable C-sets.

Communicated by Mikhail Volkov

Introduction

Being one of the fundamental constructs, the conditional expression if-then

-else has received considerable importance in programming languages. It plays a
vital role in the study of program semantics. One of the seminal works in the axiom-
atization of this conditional expression was by McCarthy in [19], where he gave an
axiom schema for the determination of the semantic equivalence between any two
conditional expressions. Since then several authors have studied the axiomatization
of if-then-else in different contexts.

Following McCarthy’s approach, Igarashi in [10] studied a formal system com-
prising ALGOL-like statements including various programming features along with
if-then-else with predicates. The two systems were shown to be equivalent by
de Bakker in [6], i.e., axioms of one could be derived from the other. In [22] Sethi
gave a different framework to determine the semantic equivalence of statements of
the form if E = F then G else H. In [13] Kennison defined comparison alge-
bras as those equipped with a quaternary operation C(s, t, u, v) satisfying certain
identities modelling the equality test. He also showed that such algebras are simple
if and only if C is the direct comparison operation C0 given by C0(s, t, u, v) taking
value u if s = t and v otherwise. In [21] Pigozzi gave an axiomatization of the the-
ory of equality test algebras appended with if-then-else, where the test is purely
T (true) or F (false). He gave a finite axiom scheme for the quasi-equational
theory of equality test algebras and another finite axiom scheme for the equational
theory of if-then-else algebras. In [2] Bergman studied the sheaf-theoretic rep-
resentation of sets equipped with an action of a Boolean algebra. This Boolean
action was in fact the if-then-else function. This approach was adopted in [24]
by Stokes who obtained a representation theorem for the Boolean algebra case of

2010 Mathematics Subject Classification. 08A70, 03G25 and 68N15.
Key words and phrases. Axiomatization, if-then-else, non-halting programs, C-algebra.

1

2 GAYATRI PANICKER, K. V. KRISHNA, AND PURANDAR BHADURI

if-then-else algebras of [17]. Further in [23] Stokes extended the work of Ken-
nison to semigroups and monoids. He showed that every comparison semigroup
(monoid) is embeddable in the comparison semigroup (monoid) T (X) of all total
functions X → X, for some set X. He also obtained a similar result in terms of
partial functions X → X.

In [11] Jackson and Stokes gave a complete axiomatization of if-then-else over
halting programs and tests. They also modelled composition of functions and of
functions with predicates and further showed that the more natural setting of only
considering composition of functions would not admit a finite axiomatization.

The work listed above mainly focus on halting tests (by assuming them to be of
Boolean type) and halting programs. A natural interest in this context is to study
non-halting tests and programs. Along these lines as well considerable work has
been done, besides the work in [19] and [10].

In [4] Bloom and Tindell studied four versions of if-then-else along with the
equality test. In two cases they considered the halting scenario whilst in the other
two they modelled possibly non-halting programs and tests. They provided an equa-
tionally complete proof system for each such framework while noting that none of
the classes formed an equational class. In order to obtain similar results in the
context of functional programming languages that have user-definable data types,
in [7], Guessarian and Meseguer extended the proof system of [4] to heterogeneous
algebras that have extra operations, predicates and equations. Another extension
of [4] was by Mekler and Nelson in [20]. In this work the authors expanded the alge-
bras in some equational class K by adding the if-then-else operation and found
axioms for the equational class K∗ generated by these algebras. They also showed
that the equational theory forK∗ is decidable if the word problem forK is decidable.
On a slightly different track, Manes in [18] gave a transformational characterisation
of if-then-else where the tests are Boolean but the functions on which they act
could be non-halting. Further, in [17], Manes considered if-then-else algebras
over Boolean algebras, C-algebras and adas. Here C-algebras and adas are algebras
of non-halting tests, generalizing Boolean algebras to three-valued logics.

While there are several studies (cf. [1], [3], [5], [9], [14], [16]) on extending two-
valued Boolean logic to three-valued logic, McCarthy’s logic (cf. [19]) models the
lazy evaluation exhibited by programming languages that evaluate expressions in
sequential order, from left to right. In [8] Guzmán and Squier gave a complete
axiomatization of McCarthy’s three-valued logic and called the corresponding alge-
bra a C-algebra, or the algebra of conditional logic. While studying if-then-else

algebras in [17], Manes defined an ada (Algebra of Disjoint Alternatives) which is
essentially a C-algebra equipped with an oracle for the halting problem.

Recently, in [12] Jackson and Stokes studied the algebraic theory of computable
functions, which can be viewed as possibly non-halting programs, equipped with
composition, if-then-else and while-do. In this work they assumed that the
tests form a Boolean algebra. Further, they demonstrated how an algebra of non-
halting tests could be constructed from Boolean tests in their setting. Jackson and
Stokes proposed an alternative approach by considering an abstract collection of
non-halting tests as in [17] and posed the following problem:

Characterize the algebras of computable functions associated with an abstract
C-algebra of non-halting tests.

IF-THEN-ELSE OVER POSSIBLY NON-HALTING PROGRAMS AND TESTS 3

In this paper, we attempt to address the problem by adopting the approach of
Jackson and Stokes in [11]. To this end, we define the notion of a C-set through
which we provide a complete axiomatization for if-then-else over a class of possi-
bly non-halting programs and tests, where tests are drawn from an ada. The paper
has been organised as follows. The necessary background material is provided in
Section 1. In Section 2, we introduce the notion of C-sets and give a few properties
of C-sets. Section 3 is dedicated to providing a subdirect representation of C-sets
over adas. Further, in Section 4 we give a complete axiomatization for C-sets over
adas equipped with the equality test, called agreeable C-sets. A brief conclusion
with possible extensions of this work is presented in Section 5.

1. Preliminaries

In this section, we list definitions and results that will be useful to us. In [11]
Jackson and Stokes considered the notion of a B-set, which was introduced by
Bergman in [2], in order to study the theory of halting programs equipped with the
operation of if-then-else.

Definition 1.1. Let ⟨Q,∨,∧,¬, T, F ⟩ be a Boolean algebra and S be a set. A B-
set is a pair (S,Q), equipped with a function, called B-action η : Q× S × S → S,
where η(α, a, b) is denoted by α[a, b], read “if α then a else b”, that satisfies
the following axioms for all α, β ∈ Q and a, b, c ∈ S:

α[a, a] = a(1)

α[α[a, b], c] = α[a, c](2)

α[a, α[b, c]] = α[a, c](3)

F [a, b] = b(4)

¬α[a, b] = α[b, a](5)

(α ∧ β)[a, b] = α[β[a, b], b](6)

We recall the following examples from [11].

Example 1.2. For any Boolean algebra Q, the pair (Q,Q) is a B-set with the
following action for all α, β, γ ∈ Q:

α[β, γ] = (α ∧ β) ∨ (¬α ∧ γ).

Example 1.3. Consider the two-element Boolean algebra 2 with the universe
{T, F}. For any set S, the pair (S, 2) is a B-set with the following action for
all a, b ∈ S:

T [a, b] = a,

F [a, b] = b.

These B-sets are called basic B-sets.

Notation 1.4. Let X and Y be two sets. The set of all functions from X to Y
will be denoted by Y X . The set of all total functions X → X will be denoted by
T (X).

4 GAYATRI PANICKER, K. V. KRISHNA, AND PURANDAR BHADURI

Example 1.5. For any set X, the pair (T (X),2X) is a B-set with the following
action for all α ∈ 2X and g, h ∈ T (X):

α[g, h](x) =

{
g(x), if α(x) = T ;

h(x), if α(x) = F.

In [11] Jackson and Stokes showed that every B-set can be represented in terms
of basic B-sets.

Theorem 1.6 ([11]). Every B-set is a subdirect product of basic B-sets.

This tells us that studying the identities or quasi-identities satisfied by the sub-
class of basic B-sets suffices to understand those satisfied by the entire class of
B-sets. Checking the validity of any identity (quasi-identity) in a basic B-set in-
volves merely checking the respective values for true and false and is thus far
simpler than checking the same in an arbitrary B-set. Further, in [11], they model
the equality test based on the assumption that the tests arise from a Boolean alge-
bra and that the functions are halting.

Definition 1.7. A B-set (S,B) is said to be agreeable if it is equipped with an
operation ∗ : S × S → B satisfying the following axioms for all s, t, u, v ∈ S and
α ∈ B:

s ∗ s = T(7)

(s ∗ t)[s, t] = t(8)

α[s, t] ∗ α[u, v] = α[s ∗ u, t ∗ v](9)

The following are examples of agreeable B-sets.

Example 1.8. The pair (T (X), 2X) is an agreeable B-set with the operation ∗
defined as follows for all f, g ∈ T (X):

(f ∗ g)(x) =

{
T, if f(x) = g(x);

F, otherwise.

Example 1.9. Let S be any set. The pair (S, 2) is an agreeable B-set under the
operation ∗ defined in the following manner for all s, t ∈ S:

s ∗ t =

{
T, if s = t;

F, otherwise.

These B-sets are called basic agreeable B-sets.

Jackson and Stokes proved the following result.

Theorem 1.10 ([11]). Every agreeable B-set is a subdirect product of basic agree-
able B-sets.

In [15] Kleene discussed various three-valued logics that are extensions of Boolean
logic. McCarthy first studied the three-valued non-commutative logic in the context
of programming languages in [19]. This is the non-commutative regular extension
of Boolean logic to three truth values. Here the third truth value U denotes the
undefined state which is attained when a test diverges. In this new context, the
evaluation of expressions is carried out sequentially from left to right, mimicking

IF-THEN-ELSE OVER POSSIBLY NON-HALTING PROGRAMS AND TESTS 5

that of a majority of programming languages. The complete axiomatization for the
class of algebras associated with this logic was given by Guzmán and Squier in [8].
They called the algebra associated with this logic a C-algebra. We shall denote an
arbitrary C-algebra by M .

Definition 1.11. A C-algebra is an algebra ⟨M,∨,∧,¬⟩ of type (2, 2, 1), which
satisfies the following axioms for all α, β, γ ∈ M :

¬¬α = α(10)

¬(α ∧ β) = ¬α ∨ ¬β(11)

(α ∧ β) ∧ γ = α ∧ (β ∧ γ)(12)

α ∧ (β ∨ γ) = (α ∧ β) ∨ (α ∧ γ)(13)

(α ∨ β) ∧ γ = (α ∧ γ) ∨ (¬α ∧ β ∧ γ)(14)

α ∨ (α ∧ β) = α(15)

(α ∧ β) ∨ (β ∧ α) = (β ∧ α) ∨ (α ∧ β)(16)

Example 1.12. Every Boolean algebra is a C-algebra. In particular, 2 is a C-
algebra.

Example 1.13. Let 3 denote the C-algebra with the universe {T, F, U} and the
following operations. This is, in fact, McCarthy’s three-valued logic.

¬
T F
F T
U U

∧ T F U
T T F U
F F F F
U U U U

∨ T F U
T T T T
F T F U
U U U U

In view of the fact that the class of C-algebras is a variety, for any set X, 3X is a
C-algebra with the operations defined pointwise. In fact, in [8], Guzmán and Squier
showed that elements of 3X along with the C-algebra operations may be viewed in
terms of pairs of sets. This is a pair (A,B) where A,B ⊆ X and A ∩B = ∅. Akin
to the well-known correlation between 2X and the power set ℘(X) of X, for any
element α ∈ 3X , associate the pair of sets (A,B) where A = {x ∈ X : α(x) = T}
and B = {x ∈ X : α(x) = F}. Conversely, for any pair of sets (A,B) where
A,B ⊆ X and A ∩ B = ∅ associate the function α where α(x) = T if x ∈ A,
α(x) = F if x ∈ B and α(x) = U otherwise. With this correlation, the operations
can be expressed as follows:

¬(A1, A2) = (A2, A1)

(A1, A2) ∧ (B1, B2) = (A1 ∩B1, A2 ∪ (A1 ∩B2))

(A1, A2) ∨ (B1, B2) = ((A1 ∪ (A2 ∩B1), A2 ∩B2)

Further, Guzmán and Squier showed that every C-algebra is a subalgebra of 3X

for some X as stated below.

Theorem 1.14 ([8]). 3 and 2 are the only subdirectly irreducible C-algebras.
Hence, every C-algebra is a subalgebra of a product of copies of 3.

6 GAYATRI PANICKER, K. V. KRISHNA, AND PURANDAR BHADURI

Remark 1.15. Considering a C-algebra M as a subalgebra of 3X , one may observe
that M# = {α ∈ M : α ∨ ¬α = T} forms a Boolean algebra under the induced
operations.

Notation 1.16. A C-algebra with T, F, U is a C-algebra with nullary operations
T, F, U , where T is the (unique) left-identity (and right-identity) for ∧, F is the
(unique) left-identity (and right-identity) for ∨ and U is the (unique) fixed point
for ¬. Note that U is also a left-zero for both ∧ and ∨ while F is a left-zero for ∧.

There is an important subclass of the variety of C-algebras. In [17] Manes
introduced the notion of ada (algebra of disjoint alternatives) which is a C-algebra
equipped with an oracle for the halting problem. He showed that the category of
adas is equivalent to that of Boolean algebras. The C-algebra 3 is not functionally-
complete. However, 3 is functionally-complete when treated as an ada. In fact, the
variety of adas is generated by the ada 3.

Definition 1.17. An ada is a C-algebra M with T, F, U equipped with an addi-
tional unary operation ()↓ subject to the following equations for all α, β ∈ M :

F ↓ = F(17)

U↓ = F(18)

T ↓ = T(19)

α ∧ β↓ = α ∧ (α ∧ β)↓(20)

α↓ ∨ ¬(α↓) = T(21)

α = α↓ ∨ α(22)

Example 1.18. The three-element C-algebra 3 with the unary operation ()↓ de-
fined as follows forms an ada.

T ↓ = T

U↓ = F = F ↓

We shall also use 3 to denote this ada. One may easily resolve the notation over-
loading – whether 3 is a C-algebra or an ada – depending on the context.

In [17] Manes showed that the three-element ada 3 is the only subdirectly irre-
ducible ada. For any set X, 3X is an ada with operations defined pointwise. Note
that the three element ada 3 is also simple. Manes also showed the following result.

Proposition 1.19 ([17]). Let A be an ada. Then A↓ = {α↓ : α ∈ A} forms a
Boolean algebra under the induced operations.

Remark 1.20. In fact, A↓ = A#. Also, A
↓ = {α ∈ A : α↓ = α}.

Further, as outlined in the following remark, Manes established that the category
of adas and the category of Boolean algebras are equivalent.

Remark 1.21 ([17]). Let B be a Boolean algebra. By Stone’s representation of
Boolean algebras, suppose B is a subalgebra of 2X for some set X. Consider the
subalgebra B⋆ of the ada 3X with the universe B⋆ = {(P,Q) : P ∩ Q = ∅} given
in terms of pairs of subsets of X. Note that the map B 7→ (B⋆)# is a Boolean
isomorphism. Similarly, for an ada A, the map A 7→ (A#)

⋆ is an ada isomorphism.
Hence, the functor based on the aforesaid assignment establishes that the category
of adas and the category of Boolean algebras are equivalent.

IF-THEN-ELSE OVER POSSIBLY NON-HALTING PROGRAMS AND TESTS 7

Notation 1.22. Let X be a set and ⊥ /∈ X. The pointed set X ∪ {⊥} with base
point ⊥ is denoted by X⊥. The set of all total functions on X⊥ which fix ⊥ is
denoted by To(X⊥), i.e. To(X⊥) = {f ∈ T (X⊥) : f(⊥) = ⊥}.

2. C-sets

In this section we introduce the notion of a C-set to study an axiomatization
of if-then-else that includes the models of possibly non-halting programs and
tests. The concept of C-sets is an extension of that of B-sets, wherein the tests are
drawn from a C-algebra instead of a Boolean algebra, and includes a non-halting
or error state.

Definition 2.1. Let S⊥ be a pointed set with base point ⊥ and M be a C-algebra
with T, F, U . The pair (S⊥,M) equipped with an action

[,] : M × S⊥ × S⊥ → S⊥

is called a C-set if it satisfies the following axioms for all α, β ∈ M and s, t, u, v ∈
S⊥:

U [s, t] = ⊥ (U -axiom)(23)

F [s, t] = t (F -axiom)(24)

(¬α)[s, t] = α[t, s] (¬-axiom)(25)

α[α[s, t], u] = α[s, u] (positive redundancy)(26)

α[s, α[t, u]] = α[s, u] (negative redundancy)(27)

(α ∧ β)[s, t] = α[β[s, t], t] (∧-axiom)(28)

α[β[s, t], β[u, v]] = β[α[s, u], α[t, v]] (premise interchange)(29)

α[s, t] = α[t, t] ⇒ (α ∧ β)[s, t] = (α ∧ β)[t, t] (∧-compatibility)(30)

Remark 2.2. In view of equations (10) and (11) of C-algebras and (25) and (28) of
C-sets, we have the following property in C-sets.

(α ∨ β)[s, t] = α[s, β[s, t]] (∨-axiom)(31)

We now present the intuition behind the notion of C-set and its axioms with
respect to program constructs. In order to include the possibility of non-halting
tests, we assume that the tests form a C-algebra. A test diverges at a given input
if the output evaluates to U , undefined. When a test diverges or if the program
throws up an error or does not halt, we shall say that the program evaluates to ⊥.
Thus a pointed set S⊥ models the set of states and base point ⊥ serves to denote
the error state.

The U -axiom (23) essentially encapsulates the real-world requirement that if a
test diverges, the output should be the error state. The F -axiom (24) is natu-
ral since when the test is false, the then part of the if-then-else construct is
executed. The ¬-axiom (25) simply states that executing if not P then f else

g is the same as executing if P then g else f . The axioms of positive redun-
dancy and negative redundancy (26) and (27) encapsulate the cascading nature of
if-then-else. The ∧-axiom (28) states that evaluating the test P AND Q and
then executing f else g works in exactly the same way as evaluating P first, which
if true, executing if Q then f else g, and if false then simply executing g. The
axiom of premise interchange (29) serves as a switching law. This states that the

8 GAYATRI PANICKER, K. V. KRISHNA, AND PURANDAR BHADURI

behaviour of the program where P is evaluated first and Q is a test situated within
both the branches of the main if-then-else, is exactly the same as evaluating Q
first with P in each branch, on suitably interchanging the programs situated at the
leaves. The last axiom of ∧-compatibility (30) loosely means that if f and g agree
with regards to some domain, then they will agree on any subdomain.

Example 2.3. Let M be a C-algebra with T, F, U . By treating M as a pointed
set with base point U , the pair (M,M) is a C-set under the following action for all
α, β, γ ∈ M :

α[β, γ] = (α ∧ β) ∨ (¬α ∧ γ).

Hereafter, the action of the C-set (M,M) will be denoted by double brackets J , K.
For verification of the axioms (23) – (30) refer to Appendix A.1.

We now present the motivating example of C-sets. Since the natural models of
possibly non-halting programs are partial functions, we consider the model To(X⊥)
in view of the following one-to-one correspondence between To(X⊥) and the set of
partial functions on a set X. Each partial function f on X is represented by the
total function f ′ ∈ To(X⊥) where f ′(x) = f(x) when x is in the domain of f , and
maps to ⊥ otherwise. Conversely, each g ∈ To(X⊥) is represented by the partial
function g′′ over X where g′′(x) = g(x) when x ∈ X and g(x) ̸= ⊥, and is not
defined elsewhere. The model To(X⊥) can be seen to be a C-set under the action
of the C-algebra 3X as shown in the following example.

Example 2.4. Consider To(X⊥) as a pointed set with base point ζ⊥, the constant
function taking the value ⊥. The pair

(
To(X⊥), 3X

)
is a C-set with the following

action for all f, g ∈ To(X⊥) and α ∈ 3X :

(32) α[f, g](x) =


f(x), if α(x) = T ;

g(x), if α(x) = F ;

⊥, otherwise.

Note that the execution of the first two cases, α(x) ∈ {T, F} demands that x ∈ X
as α ∈ 3X . These C-sets will be called functional C-sets. For verification of the
axioms (23) – (30) refer to Appendix A.2.

Example 2.5. Consider SX
⊥ , the set of all functions from X to S⊥, as a pointed

set with base point ζ⊥. The pair
(
SX
⊥ , 3X

)
is a C-set under the action given in

(32), where f, g ∈ SX
⊥ and α ∈ 3X . The axioms (23) – (30) can be verified along

the same lines as in Example 2.4.

Example 2.6. Consider T (X⊥), the set of all total functions on X⊥, as a pointed
set with base point ζ⊥. The pair

(
T (X⊥), 3X

)
is a C-set under the action given

in (32), where f, g ∈ T (X⊥) and α ∈ 3X . The axioms (23) – (30) can be verified
along the same lines as in Example 2.4.

We believe that the C-set given in Example 2.6 does not occur naturally in the
context of programs as this would include elements that terminate even when the
input diverges, i.e. the input is ⊥.

We now present a fundamental example of a C-set, where we only consider the
basic tests, true, false, undefined.

IF-THEN-ELSE OVER POSSIBLY NON-HALTING PROGRAMS AND TESTS 9

Example 2.7. Let S⊥ be a pointed set with base point ⊥. The pair (S⊥,3) is a
C-set with respect to the following action for all a, b ∈ S⊥ and α ∈ 3:

α[a, b] =


a, if α = T ;

b, if α = F ;

⊥, if α = U.

These C-sets are called basic C-sets. While the axioms (23) and (24) are easy to
observe, the axioms (25) – (30) can be verified by considering α to be T , F and U
casewise.

Henceforth, unless explicitly mentioned otherwise, an arbitrary C-set is always
denoted by (S⊥,M). In the remainder of this section, we shall prove certain prop-
erties of C-sets.

Proposition 2.8. The following statements hold for all α, β ∈ M and s, t, r ∈ S⊥:

(i) α[⊥,⊥] = ⊥.
(ii) If α[s, u] = α[t, q] for some u, q ∈ S⊥ then α[s, v] = α[t, v] for all v ∈ S⊥.
(iii) If α[s, u] = α[r, r] for some u ∈ S⊥ then α[s, r] = α[r, r].
(iv) If α[s, u] = α[t, u] for some u ∈ S⊥ then α[s, v] = α[t, v] for all v ∈ S⊥.
(v) If α[s, t] = α[t, t] then (β ∧ α)[s, t] = (β ∧ α)[t, t].

Proof.

(i) Using (23) and (29), α[⊥,⊥] = α[U [⊥,⊥], U [⊥,⊥]] = U [α[⊥,⊥], α[⊥,⊥]] = ⊥.
(ii) Using (26), α[s, v] = α[α[s, u], v] = α[α[t, q], v] = α[t, v].
(iii) Using Proposition 2.8(ii), putting t = q = v = r, α[s, r] = α[r, r].
(iv) Using Proposition 2.8(ii), putting q = u, α[s, v] = α[t, v].
(v) Using (28), (β ∧ α)[s, t] = β[α[s, t], t] = β[α[t, t], t] = (β ∧ α)[t, t].

�

Remark 2.9.

(i) The C-set axioms from (24) to (28) are the same as the ones in the definition
of B-set. In view of (23), the only B-set axiom that does not carry over in
the context of C-sets is (1).

(ii) Bergman in [2] showed that the axiom of premise interchange (29) holds in
B-sets.

(iii) Following the proof given in Proposition 2.8(v) and using the commutativity of
∧ in the context of B-sets, it can be observed that the axiom of ∧-compatibility
(30) holds in B-sets.

Proposition 2.10. For each α ∈ M# and s ∈ S⊥, we have α[s, s] = s.

Proof. Let α ∈ M# and s ∈ S⊥.

s = T [s, s] from (25), (24)

= (α ∨ (¬α))[s, s] since α ∈ M#

= α[s, (¬α)[s, s]] from (31)

= α[s, α[s, s]] from (25)

= α[s, s] from (27)

�

10 GAYATRI PANICKER, K. V. KRISHNA, AND PURANDAR BHADURI

In view of Proposition 2.10, the axiom (1) of B-sets holds for the elements of
Boolean algebra M#. Hence, we have the following corollary.

Corollary 2.11. The pair (S⊥,M#) is a B-set.

Remark 2.12. The proof of Proposition 2.10 also shows us that axiom (1) is redun-
dant in the definition of a B-set.

3. Representation of C-sets

With the aim of studying structural properties of C-sets, in this section we
obtain a subdirect representation of C-sets in which the C-algebras are adas. Note
that, except in Example 2.3, the C-algebras in all other examples of C-sets given
in Section 2 are adas.

Let (S⊥,M) be a C-set, where M is an ada. In the main theorem (Theorem 3.13)
of this section, we obtain a subdirect representation of (S⊥,M) through various
results presented hereafter. In these results, we consistently use α, β, γ for the
elements of M , and r, s, t, u, v for the elements of S⊥.

Proposition 3.1. If α[s, t] = α[t, t], then α↓[s, t] = α↓[t, t].

Proof. Using (22) and (31), α[s, t] = (α↓∨α)[s, t] = α↓[s, α[s, t]] = α↓[s, α[t, t]]. On
the other hand, observe that α[s, t] = α[t, t] = (α↓ ∨ α)[t, t] = α↓[t, α[t, t]] so that
α↓[s, α[t, t]] = α↓[t, α[t, t]]. Consequently, we have α↓[s, t] = α↓[t, t] by Proposition
2.8(iv). �

Considering the C-sets as two-sorted algebras, we now define congruences on
them.

Definition 3.2. A congruence of a C-set is a pair (σ, τ), where σ is an equivalence
relation on S⊥ and τ is a congruence on the ada M such that

(s, t), (u, v) ∈ σ and (α, β) ∈ τ ⇒ (α[s, u], β[t, v]) ∈ σ.

Notation 3.3. Under an equivalence relation σ on a set A, the equivalence class
of an element p ∈ A will be denoted by pσ. Within a given context, if there is no
ambiguity, we may simply denote the equivalence class by p.

In order to give a subdirect representation of the C-set (S⊥,M), we shall consider
the collection of all maximal congruences on the ada M so that for each such
congruence θ, we have M/θ ∼= 3. We shall produce an equivalence relation Eθ on
S⊥ such that (Eθ, θ) is a congruence on (S⊥,M) for each θ, and the intersection of
the collection of congruences (Eθ, θ) is trivial. Thus, (S⊥,M) is a subdirect product
of basic C-sets (S⊥/Eθ,M/θ).

Definition 3.4. For each maximal congruence θ on M , we define a relation on S⊥
by

Eθ = {(s, t) ∈ S⊥ × S⊥ : β[s, t] = β[t, t] for some β ∈ T
θ}.

Lemma 3.5. The relation Eθ is an equivalence on S⊥.

Proof. Since T [s, s] = T [s, s] and T ∈ T
θ
, we have (s, s) ∈ Eθ so that the binary

relation Eθ on S⊥ is reflexive.

For symmetry, let (s, t) ∈ Eθ. Then there exists β ∈ T
θ
such that β[s, t] = β[t, t].

Using (26), we have β[t, s] = β[β[t, t], s] = β[β[s, t], s] = β[s, s] so that (t, s) ∈ Eθ.

IF-THEN-ELSE OVER POSSIBLY NON-HALTING PROGRAMS AND TESTS 11

Let (s, t), (t, r) ∈ Eθ. Then there exist α, β ∈ T
θ
, such that α[s, t] = α[t, t] and

β[t, r] = β[r, r]. As θ is a congruence on M , (α, T), (β, T) ∈ θ implies (α∧β, T) ∈ θ

so that (α ∧ β) ∈ T
θ
. Note that

(α ∧ β)[s, r] = (α ∧ β)[(α ∧ β)[s, t], r] from (26)
= (α ∧ β)[(α ∧ β)[t, t], r] from α[s, t] = α[t, t] and (30)
= (α ∧ β)[t, r] from (26)
= (α ∧ β)[r, r] from β[t, r] = β[r, r] and Proposition 2.8(v) .

Hence (s, r) ∈ Eθ so that Eθ is transitive. �

Remark 3.6. Note that, as θ is a maximal congruence on the ada M , M/θ must be
simple, i.e., M/θ ∼= 3. Further, the quotient set S⊥/Eθ can be treated as a pointed
set with base point ⊥. Thus (S⊥/Eθ,M/θ) is a basic C-set under the action

αθ [sEθ , tEθ] =


sEθ , if α ∈ T

θ
;

tEθ , if α ∈ F
θ
;

⊥Eθ , if α ∈ U
θ
.

Proposition 3.7. For any α ∈ M , β = ¬(α↓ ∨ (¬α)↓) ∨ U satisfies β ∧ α = U .
Moreover, if (α,U) ∈ θ then (β, T) ∈ θ.

Proof. Since 3 is the only subdirectly irreducible ada, it is sufficient to check the
validity of the identity β ∧ α = U in 3.

If α = T , then β = ¬(T ↓ ∨ F ↓) ∨ U = ¬(T ∨ F) ∨ U = F ∨ U = U .
If α = F , then β = ¬(F ↓ ∨ T ↓) ∨ U = ¬(F ∨ T) ∨ U = F ∨ U = U .
If α = U , then β = ¬(U↓ ∨ U↓) ∨ U = ¬(F ∨ F) ∨ U = T ∨ U = T .

In all these three cases, it is straightforward to see that β ∧ α = U .
Suppose (α,U) ∈ θ. Since θ is a congruence, we have (α↓, U↓) = (α↓, F) ∈ θ.

Also, we have (¬α,¬U) = (¬α,U) ∈ θ so that ((¬α)↓, F) ∈ θ. Now, by substitution
with respect to ∨, we have (α↓ ∨ (¬α)↓, F) ∈ θ.

This further implies (¬(α↓ ∨ (¬α)↓),¬F) = (¬(α↓ ∨ (¬α)↓), T) ∈ θ. However,
since (U,U) ∈ θ, we have (¬(α↓ ∨ (¬α)↓)∨U, T ∨U) = (¬(α↓ ∨ (¬α)↓)∨U, T) ∈ θ.
Hence (β, T) ∈ θ. �

Proposition 3.8. For each α ∈ M and each s, t ∈ S⊥, we have the following:

(i) (α, T) ∈ θ ⇒ (α[s, t], s) ∈ Eθ.
(ii) (α, F) ∈ θ ⇒ (α[s, t], t) ∈ Eθ.
(iii) (α,U) ∈ θ ⇒ (α[s, t],⊥) ∈ Eθ.

Proof.

(i) From (26), we have α[α[s, t], s] = α[s, s]. Hence (α[s, t], s) ∈ Eθ as α ∈ T
θ
.

(ii) Note that (α, F) ∈ θ implies (¬α, T) ∈ θ. Using (27) and (25), (¬α)[α[s, t], t] =
α[t, α[s, t]] = α[t, t] = (¬α)[t, t]. Thus (α[s, t], t) ∈ Eθ.

(iii) If (α,U) ∈ θ, then by Proposition 3.7, β = ¬(α↓ ∨ (¬α)↓) ∨ U ∈ T
θ
, and

β ∧ α = U . Note that

12 GAYATRI PANICKER, K. V. KRISHNA, AND PURANDAR BHADURI

β[α[s, t], t] = (β ∧ α)[s, t] from (28)

= U [s, t] from Proposition 3.7

= ⊥ from (23)

= β[⊥,⊥] from Proposition 2.8(i).

Consequently, by Proposition 2.8(iii), we have β[α[s, t],⊥] = β[⊥,⊥]. Hence
(α[s, t],⊥) ∈ Eθ.

�

Lemma 3.9. The pair (Eθ, θ) is a C-set congruence.

Proof. In view of Remark 3.6, (S⊥/Eθ,M/θ) is a basic C-set. Consider the canon-
ical maps ν1 : S⊥ → S⊥/Eθ, given by ν1(s) = sEθ , and ν2 : M → M/θ ∼= 3, given
by ν2(α) = αθ . We show that the pair (ν1, ν2) is a C-set homomorphism so that
ker(ν1, ν2) = (Eθ, θ) is a C-set congruence.

It is straightforward to see that ν1(⊥) = ⊥Eθ and thus ν1 is a homomorphism of
pointed sets. It is also clear that ν2 is a homomorphism of adas. Additionally, we
require that ν1(α[s, t]) = (ν2(α))[ν1(s), ν1(t)]. In order to prove this, it suffices to
consider the following three cases in view of the maximality of congruence θ.

Case I: If α ∈ T
θ
, then we effectively need to show that α[s, t]

Eθ = αθ [sEθ , tEθ].
From Remark 3.6 and the fact that α ∈ T

θ
, we have αθ [sEθ , tEθ] = sEθ . This

reduces to showing that (α[s, t], s) ∈ Eθ, which follows from Proposition 3.8(i).

Case II: In a similar vein, if α ∈ F
θ
, we need to show that (α[s, t], t) ∈ Eθ, which

follows from Proposition 3.8(ii).

Case III: Similarly, if α ∈ U
θ
, we require that (α[s, t],⊥) ∈ Eθ, which is precisely

Proposition 3.8(iii).
This completes the proof. �

Lemma 3.10. For the C-set (M,M) the equivalence Eθ on M , denoted by EθM ,
is a subset of θ.

Proof. Let (α, β) ∈ EθM . Then there exists γ ∈ T
θ
such that γJα, βK = γJβ, βK. In

other words,

(33) (γ ∧ α) ∨ (¬γ ∧ β) = (γ ∧ β) ∨ (¬γ ∧ β)

Since γ ∈ T
θ
, we have (γ, T) ∈ θ. Moreover, (α, α) ∈ θ as θ is reflexive. It follows

that (γ ∧ α, T ∧ α) = (γ ∧ α, α) ∈ θ. Similarly, (γ, T) ∈ θ implies that (¬γ, F) ∈ θ,
and as (β, β) ∈ θ, we have (¬γ ∧ β, F ∧ β) = (¬γ ∧ β, F) ∈ θ. Consequently
((γ ∧ α) ∨ (¬γ ∧ β), α ∨ F) = ((γ ∧ α) ∨ (¬γ ∧ β), α) ∈ θ. Following a similar
procedure, using (γ, T), (¬γ, F), (β, β) ∈ θ, we obtain ((γ ∧ β) ∨ (¬γ ∧ β), β) ∈ θ.
Now using (33), the symmetry and transitivity of θ, we have (α, β) ∈ θ so that
EθM ⊆ θ. �

Lemma 3.11.
∩
θ

Eθ = ∆S⊥ , where θ ranges over all maximal congruences on M .

IF-THEN-ELSE OVER POSSIBLY NON-HALTING PROGRAMS AND TESTS 13

Proof. By Corollary 2.11, (S⊥,M#) is a B-set so that (S⊥,M#) is a subdirect
product of basic B-sets (cf. Theorem 1.6). Hence, (S⊥,M#) is a subalgebra of a
product of basic B-sets (Sx, 2), where x ranges over some set X. That is,

(S⊥,M#) ≤
∏
x∈X

(Sx, 2)

=

(∏
x∈X

Sx, 2
X

)

≤

((∪
x∈X

Sx

)X
, 2X

)

Note that the action in both
(∏

x∈X Sx, 2X
)
and

(
(
∪

x∈X Sx)
X , 2X

)
is

(α[s, t])(x) =

{
s(x), if α(x) = T ;

t(x), if α(x) = F.

Also note that the action in
(∏

x∈X Sx,2X
)
is simply a restriction of that on(

(
∪

x∈X Sx)
X , 2X

)
. Since (S⊥,M#) is a subalgebra of

(
(
∪

x∈X Sx)
X , 2X

)
, we can

see that M# is a subalgebra of 2X . Using the construction mentioned in Remark
1.21, M ∼= (M#)

⋆ ≤ 3X .
Now for any xo ∈ X, treating M as a subalgebra of 3X we define maximal

congruences on M as follows.

(α, β) ∈ θxo
⇔ α(xo) = β(xo).

Such θxo is indeed a maximal congruence on M . It is clearly an equivalence relation
on M . Let (α1, β1), (α2, β2) ∈ θxo . Then α1(xo) = β1(xo) and α2(xo) = β2(xo).
Thus α1(xo) ∧ α2(xo) = β1(xo) ∧ β2(xo). Thus (α1 ∧ α2, β1 ∧ β2) ∈ θxo . Similarly
θxo is compatible with the other operations on M , viz., ∨,¬ and ↓. Note that M
has only the following three equivalence classes with respect to θxo .

T
θ
= {α ∈ M : α(xo) = T}

F
θ
= {α ∈ M : α(xo) = F}

U
θ
= {α ∈ M : α(xo) = U}

Thus M/θxo is simple and so θxo is maximal.
We now show that

∩
Eθ = ∆S⊥ . Let (s, t) ∈

∩
Eθ. Then for every maximal

congruence θ on M , there exists a βθ ∈ T
θ
such that βθ[s, t] = βθ[t, t]. On using

Proposition 3.1 we have β↓
θ [s, t] = β↓

θ [t, t]. Note that if βθ is in T
θ
, so is β↓

θ .

Moreover, β↓
θ ∈ M#.

As S⊥ ≤ (
∪

x∈X Sx)
X , we may treat s, t as functions s′, t′ ∈ (

∪
x∈X Sx)

X . Note
that the if-then-else action in (S⊥,M#) can be treated as a restriction of that on
((
∪

x∈X Sx)
X ,2X). Considering the maximal congruences defined above, for each

xo ∈ X there exists β↓
θxo

∈ T
θxo , that is, β↓

θxo
(xo) = T and β↓

θxo
[s′, t′] = β↓

θxo
[t′, t′].

In other words, for each x ∈ X, (β↓
θxo

[s′, t′])(x) = (β↓
θxo

[t′, t′])(x). In particular for

x = xo, (β
↓
θxo

[s′, t′])(xo) = (β↓
θxo

[t′, t′])(xo).

14 GAYATRI PANICKER, K. V. KRISHNA, AND PURANDAR BHADURI

However (β↓
θxo

[s′, t′])(xo) = s′(xo) as β
↓
θxo

(xo) = T . Similarly, (β↓
θxo

[t′, t′])(xo) =

t′(xo).
This tells us that for each xo ∈ X, s′(xo) = t′(xo), that is, s

′ ≡ t′ which means
that s = t in S⊥. This completes the proof. �
Remark 3.12. Let α, β ∈ M with α ̸= β. TreatingM as a subalgebra of 3X for some
X, there exists xo ∈ X such that α(xo) ̸= β(xo). Then θxo

, as in the previous proof,
is a maximal congruence which clearly separates α and β. Since the intersection of
all such congruences is ∆M , the intersection of all maximal congruences on M∩

θ maximal

θ = ∆M

We now prove the main theorem of this section.

Theorem 3.13. Every C-set (S⊥,M) where M is an ada is a subdirect product of
basic C-sets.

Proof. Let (S⊥,M) be a C-set where M is an ada and {θ} be the collection of
all maximal congruences on M . By Lemma 3.9, for each θ, the pair (Eθ, θ) is
a C-set congruence on (S⊥,M) and by Remark 3.6 (S⊥/Eθ,M/θ) is a basic C-
set. Further, by Lemma 3.11 and Remark 3.12, the intersection of all congruences
(Eθ, θ) is trivial. Hence, (S⊥,M) is a subdirect product of (S⊥/Eθ, 3), where θ
varies over maximal congruences on M . �

The following consequence of Theorem 3.13 is useful to establish the equivalence
between programs which admit the current setup.

Corollary 3.14. An identity (quasi-identity) is satisfied in every C-set (S⊥,M)
where M is an ada if and only if it is satisfied in all basic C-sets.

4. Agreeable C-sets

In this section, we describe an algebraic formalism for the equality test over
possibly non-halting programs. The equality test over the functions f, g ∈ To(X⊥)
can be naturally described by the following:

(34) (f ∗ g)(x) =


T, if f(x) = g(x) and f(x) ̸= ⊥ ̸= g(x);

F, if f(x) ̸= g(x) and f(x) ̸= ⊥ ̸= g(x);

U, otherwise.

For simplicity of notation, we will denote the condition f(x) = g(x) and f(x) ̸=
⊥ ̸= g(x) by f(x) = g(x) (̸= ⊥) and the condition f(x) ̸= g(x) and f(x) ̸= ⊥ ̸=
g(x) by f(x) ̸= g(x) (̸= ⊥). Consequently, f ∗ g can be identified with the pair of
sets (A,B) on X, where A = {x ∈ X : f(x) = g(x) (̸= ⊥)} and B = {x ∈ X :
f(x) ̸= g(x) (̸= ⊥)}.

Keeping this model in mind, we extend the notion of agreeable B-sets, given by
Jackson and Stokes in [11], and define agreeable C-sets as follows.

Definition 4.1. A C-set (S⊥,M) equipped with a function

∗ : S⊥ × S⊥ → M

is said to be agreeable if it satisfies the following axioms for all s, t, u, v ∈ S⊥ and
α ∈ M :

IF-THEN-ELSE OVER POSSIBLY NON-HALTING PROGRAMS AND TESTS 15

(s ∗ s)[s,⊥] = s (domain axiom)(35)

⊥ ∗ s = U = s ∗ ⊥ (⊥-comparison)(36)

(s ∗ t)[s, t] = (s ∗ t)[t, t] (equality on conclusions)(37)

α[s, t] ∗ α[u, v] = αJs ∗ u, t ∗ vK (operation interchange)(38)

((s ∗ s = T) ∧ (s ∗ t = U)) ⇒ t = ⊥ (totality condition)(39)

While the operation interchange axiom (38) is indeed an axiom in the context of
agreeable B-sets (cf. axiom (9)), one can verify that axiom (37) holds in agreeable
B-sets. However, the other axioms are specific to the current scenario of the non-
halting case. These axioms can be justified along the following lines by considering
equality of functions over the functional model (To(X⊥),3X) of C-sets.

In To(X⊥), the domain of a function is considered in the spirit of a partial
function, i.e., all those points whose image is not ⊥. In the model (To(X⊥), 3X), the
partial predicate s ∗ s represents the domain of s. The domain axiom (35) captures
the behaviour of if-then-else with respect to the domain of s. For instance,
we expect s ∗ s takes truth value T in the domain of s so that (s ∗ s)[s,⊥] = s.
Also, in the complement of the domain of s, s ∗ s should take value U so that
(s ∗ s)[s,⊥] = U [s,⊥] = ⊥ = s.

Note that we check the equality of two functions over their domains. Thus the ⊥-
comparison axiom (36) states that comparing the error state ⊥ with any element
s results in the undefined predicate U .

The axiom of equality on conclusions (37) exhibits the behaviour of equality test
∗ on conclusions of the if-then-else action of the C-set. Indeed, when the partial
predicate s ∗ t = T , (s ∗ t)[s, t] = s = t = (s ∗ t)[t, t] and similarly if s ∗ t = F , then
(s ∗ t)[s, t] = t = (s ∗ t)[t, t]. Further, if s ∗ t = U , then (s ∗ t)[s, t] = ⊥ = (s ∗ t)[t, t].

The axiom of operation interchange (38) describes how ∗ and the if-then-else
action relate to the action on the C-set (M,M). The totality condition (39) is a
quasi-identity, in which if s is a total function but s ∗ t is undefined, then it must
follow that t is the empty function, i.e., t = ζ⊥.

Thus we arrive at the following example of agreeable C-sets.

Example 4.2. The pair (To(X⊥),3X) is an agreeable C-set under the operation ∗
defined in (34). For verification of the axioms (35) – (39) refer to Appendix A.3.
Such agreeable C-sets are called agreeable functional C-sets.

Example 4.3. Every basic C-set is agreeable under the operation given by

(40) s ∗ t =


T, if s = t (̸= ⊥);

F, if s ̸= t (̸= ⊥);

U, if s = ⊥ or t = ⊥.

One can easily verify that the axioms (35) – (39) hold here. Such agreeable C-sets
will be called agreeable basic C-sets.

Proposition 4.4. The operation defined in (40) is the only possible operation under
which a basic C-set can be made agreeable.

Proof. We shall show that for a basic C-set, axioms (35) to (39) restrict the opera-
tion ∗ to precisely (40). Let (S⊥, 3) be a basic C-set which is agreeable, that is, it

16 GAYATRI PANICKER, K. V. KRISHNA, AND PURANDAR BHADURI

is equipped with an operation ∗ : S⊥×S⊥ → 3 which satisfies (35) - (39). Consider
the following cases:

(i) Case I : s = ⊥ or t = ⊥: Then from (36), we have s ∗ t = U .
(ii) Case II : s = t (̸= ⊥): We will show that neither s ∗ t = F nor s ∗ t = U is

possible. Consequently, it must be the case that s ∗ t = T .
Assume that s ∗ t = F . This, in conjunction with the hypothesis s = t and

(35), gives that ⊥ = F [s,⊥] = (s ∗ t)[s,⊥] = (s ∗ s)[s,⊥] = s, a contradiction
to our assumption that s ̸= ⊥. If s ∗ t = U , along similar lines, we obtain
⊥ = U [s,⊥] = (s ∗ s)[s,⊥] = s, a contradiction.

(iii) Case III : s ̸= t (̸= ⊥): Along similar lines, we will show that s ∗ t /∈ {T,U},
which would imply that s ∗ t = F .

Assume that s ∗ t = T . It follows from (37) that s = T [s, t] = (s ∗ t)[s, t] =
(s∗t)[t, t] = T [t, t] = t, a contradiction to the hypothesis s ̸= t. Note that if S⊥
has exactly two distinct elements then this case would be redundant. Suppose
that s∗ t = U . Case II proved above, in conjunction with the hypothesis that
s ̸= ⊥, gives that s ∗ s = T . From the statements s ∗ s = T , s ∗ t = U and
quasi-identity (39), we have t = ⊥, a contradiction.

Thus the operation ∗ must be as defined in (40). �

Example 4.5. The C-set (M,M) is agreeable under the operation

α ∗ β = (α ∧ β) ∨ (¬α ∧ ¬β).

The operation can be equivalently expressed in terms of the if-then-else action
by

α ∗ β = αJβ,¬βK.
Along similar lines as Example 2.3, the axioms (35) – (39) can be verified in the
C-algebra 3 to observe that (M,M) is an agreeable C-set.

Remark 4.6. If the C-algebra M is 3X , the equality test on the agreeable C-set
(M,M) coincides with that of the functional case, as shown below:

(α ∗ β)(x) =


T, if α(x) = β(x) (̸= U);

F, if α(x) ̸= β(x) (̸= U);

U, otherwise.

We now prove a representation theorem of agreeable C-sets along the lines of
Theorem 3.13.

Theorem 4.7. Every agreeable C-set (S⊥,M) where M is an ada is a subdirect
product of agreeable basic C-sets.

Proof. Let (S⊥,M) be an agreeable C-set where M is an ada. For every maximal
congruence θ on M , consider the pair (Eθ, θ) as in Definition 3.4. By Lemma 3.9,
we have already ascertained that for each θ, the pair (Eθ, θ) is a C-set congruence
on (S⊥,M) and by Remark 3.6 that (S⊥/Eθ,M/θ) is a basic C-set. In order to
ascertain that this pair is indeed a congruence in the context of agreeable C-sets,
it is sufficient to show that

(a1, a2), (b1, b2) ∈ Eθ ⇒ (a1 ∗ b1, a2 ∗ b2) ∈ θ.

IF-THEN-ELSE OVER POSSIBLY NON-HALTING PROGRAMS AND TESTS 17

Let (a1, a2), (b1, b2) ∈ Eθ. Then there exist α and β ∈ T
θ
such that

α[a1, a2] = α[a2, a2](41)

β[b1, b2] = β[b2, b2](42)

Note that (α, T), (β, T) ∈ θ implies that (α ∧ β, T ∧ T) = (α ∧ β, T) ∈ θ. Applying

(30) on (41) and Proposition 2.8(v) on (42), we have, for (α ∧ β) ∈ T
θ

(α ∧ β)[a1, a2] = (α ∧ β)[a2, a2](43)

(α ∧ β)[b1, b2] = (α ∧ β)[b2, b2](44)

These imply that

(45) (α ∧ β)[a1, a2] ∗ (α ∧ β)[b1, b2] = (α ∧ β)[a2, a2] ∗ (α ∧ β)[b2, b2].

From (38) it follows that

(α ∧ β)Ja1 ∗ b1, a2 ∗ b2K = (α ∧ β)Ja2 ∗ b2, a2 ∗ b2K,
so that (a1 ∗ b1, a2 ∗ b2) ∈ EθM ⊆ θ, by Lemma 3.10. Further, by Lemma 3.11 and
Remark 3.12, the intersection of all congruences (Eθ, θ), where θ ranges over all
maximal congruences of M , is trivial. This completes the proof. �

Corollary 4.8. An identity (quasi-identity) is satisfied in every agreeable C-set
(S⊥,M) where M is an ada if and only if it is satisfied in all agreeable basic C-
sets.

In view of Corollary 4.8 and (40), we have the following result.

Corollary 4.9. In every agreeable C-set (S⊥,M) where M is an ada we have
s ∗ t = t ∗ s.

Note that the only axiom of agreeable C-sets that plays a role in the proof of
Theorem 4.7 is (38). The remaining axioms have been included in order that the
operation on agreeable basic C-sets be uniquely defined. The proof of Theorem 4.7
suggests an alternative proof for Theorem 1.10, without using the commutativity
of ∗, which we now present.

Theorem 4.10 ([11]). Every agreeable B-set (S,B) is a subdirect product of basic
agreeable B-sets.

Proof. Let F be an ultrafilter of B. Consider the relation EF = {(s, t) ∈ S ×
S : γ[s, t] = t for some γ ∈ F} as defined in [11]. The pair (EF , F) is a B-set
congruence. In order to show that the pair (EF , F) is a congruence on agreeable
B-sets, we show that

(a1, a2), (b1, b2) ∈ EF ⇒ (a1 ∗ b1, a2 ∗ b2) ∈ θF ,

where θF is the congruence on B induced by the ultrafilter F .
Since (a1, a2), (b1, b2) ∈ EF , there exist α, β ∈ F such that

α[a1, a2] = a2(46)

β[b1, b2] = b2(47)

18 GAYATRI PANICKER, K. V. KRISHNA, AND PURANDAR BHADURI

In view of the commutativity of ∧, (6), (46) and (1), we obtain (α ∧ β)[a1, a2] =
(β ∧ α)[a1, a2] = β[α[a1, a2], a2] = β[a2, a2] = a2. Similarly we can obtain
(α ∧ β)[b1, b2] = b2. This implies that

(α ∧ β)[a1, a2] ∗ (α ∧ β)[b1, b2] = a2 ∗ b2

From axiom (9), we can deduce that

(α ∧ β)[a1 ∗ b1, a2 ∗ b2] = a2 ∗ b2.

Since F is an ultrafilter of B, it suffices to ascertain that

a1 ∗ b1 ∈ F ⇔ a2 ∗ b2 ∈ F.

Assume that a1∗b1 ∈ F . Since α∧β ∈ F , we have (α∧β)∧(a1∗b1) ∈ F . Further,
as F is a filter and (α∧β)∧ (a1 ∗ b1) ≤ ((α∧β)∧ (a1 ∗ b1))∨ (¬(α∧β)∧ (a2 ∗ b2)) =
(α ∧ β)[a1 ∗ b1, a2 ∗ b2] we have (α ∧ β)[a1 ∗ b1, a2 ∗ b2] = a2 ∗ b2 ∈ F .

Conversely, assume that a2 ∗ b2 ∈ F . The symmetry of equivalence relation
EF implies that (a2, a1), (b2, b1) ∈ EF . Along similar lines as above, we obtain
a1 ∗ b1 ∈ F . This completes the proof. �

5. Conclusion

The axiomatization of systems based on various program constructs are ex-
tremely useful in the study of program semantics in general, and in establishing
program equivalence in particular. While many authors have studied the axiomati-
zation of the if-then-else construct, the current work considered the case where
the programs and tests could possibly be non-halting. In this connection, this
work introduced the notion of C-sets to axiomatize the systems of if-then-else
in which the tests are drawn from an abstract C-algebra. The axioms of C-sets in-
clude a quasi-identity for ∧-compatibility along with various other identities. When
the C-algebra is an ada, we obtained a subdirect representation of C-sets through
basic C-sets. This in turn establishes the completeness of the axiomatization and
paves the way for determining the equivalence of programs under consideration
through basic C-sets. Further, in order to axiomatize if-then-else systems with
the equality test, this work extended the concept of C-sets to agreeable C-sets and
obtained similar results.

As future work, one may investigate a complete axiomatization of the systems
under consideration in which all the axioms are equations. It is also desirable to
extend the results to the general case of C-sets without restricting the C-algebra
to be an ada. Another natural extension of the current work is to investigate the
axiomatization of systems that include the composition of programs. We address
this question by considering a semigroup structure on the program sort of C-sets
in one of our forthcoming papers.

Acknowledgements

We are thankful to the referee for providing insightful comments, which have
improved the presentation of the paper.

IF-THEN-ELSE OVER POSSIBLY NON-HALTING PROGRAMS AND TESTS 19

References

[1] N. D. Belnap. Conditional assertion and restricted quantification. Noûs, pages 1–12, 1970.

[2] G. M. Bergman. Actions of Boolean rings on sets. Algebra Universalis, 28:153–187, 1991.
[3] J. Bergstra, I. Bethke, and P. Rodenburg. A propositional logic with 4 values: true, false,

divergent and meaningless. Journal of Applied Non-Classical Logics, 5:199–217, 1995.
[4] S. L. Bloom and R. Tindell. Varieties of “if-then-else”. SIAM J. Comput., 12:677–707, 1983.

[5] D. A. Bochvar. Ob odnom tréhznacnom isčislenii i égo priménénii k analiza paradoksov
klassičéskogo rǎssirénnogo funkcional’nogo isčisléniá (in Russian). Matématičeskij Sbornik,
4(46): 287–308, 1938. Translated to English by M. Bergmann “On a three-valued logical cal-
culus and its application to the analysis of the paradoxes of the classical extended functional

calculus”. History and Philosophy of Logic, 2:87–112, 1981.
[6] J. W. de Bakker. Semantics of programming languages. In Advances in Information Systems

Science, pages 173–227. Springer, 1969.
[7] I. Guessarian and J. Meseguer. On the axiomatization of “if-then-else”. SIAM J. Comput.,

16:332–357, 1987.
[8] F. Guzmán and C. C. Squier. The algebra of conditional logic. Algebra Universalis, 27:88–110,

1990.
[9] A. Heyting. Die formalen regeln der intuitionistischen logik, sitzungsberichte der preuszischen

akademie der wissenschaften, physikalischmathematische klasse, (1930), 42–56 57–71 158–169
in three parts. Sitzungsber. preuss. Akad. Wiss, 42:158–169, 1934.

[10] S. Igarashi. Semantics of ALGOL-like statements. In Symposium on Semantics of Algorithmic

Languages, pages 117–177. Springer, 1971.
[11] M. Jackson and T. Stokes. Semigroups with if-then-else and halting programs. Int. J. Algebra

Comput., 19:937–961, 2009.
[12] M. Jackson and T. Stokes. Monoids with tests and the algebra of possibly non-halting pro-

grams. J. Log. Algebr. Methods Program., 84:259–275, 2015.
[13] J. F. Kennison. Triples and compact sheaf representation. J. Pure Appl. Algebra, 20:13–38,

1981.
[14] S. Kleene. On notation for ordinal numbers. The Journal of Symbolic Logic, 3:150–155, 1938.

[15] S. C. Kleene. Introduction to metamathematics. D. Van Nostrand Co., Inc., New York, N.
Y., 1952.

[16] J. Lukasiewicz. On three-valued logic. Ruch Filozoficzny, 5,(1920), English translation in
Borkowski, L.(ed.) 1970. Jan Lukasiewicz: Selected Works, 1920.

[17] E. Manes. Adas and the equational theory of if-then-else. Algebra Universalis, 30:373–394,
1993.

[18] E. G. Manes. A transformational characterization of if-then-else. Theoretical Computer Sci-

ence, 71:413–417, 1990.
[19] J. McCarthy. A basis for a mathematical theory of computation. In Computer programming

and formal systems, pages 33–70. North-Holland, Amsterdam, 1963.
[20] A. H. Mekler and E. M. Nelson. Equational bases for if-then-else. SIAM J. Comput., 16:465–

485, 1987.
[21] D. Pigozzi. Equality-test and if-then-else algebras: Axiomatization and specification. SIAM

J. Comput., 20:766–805, 1991.
[22] R. Sethi. Conditional expressions with equality tests. J. ACM, 25:667–674, 1978.

[23] T. Stokes. Comparison semigroups and algebras of transformations. Semigroup Forum,
81:325–334, 2010.

[24] T. Stokes. Sets with B-action and linear algebra. Algebra Universalis, 39:31–43, 1998.

Appendix A. Proofs

A.1. Verification of Example 2.3.

Let α, β ∈ M .
Axiom (23): UJα, βK = (U ∧ α) ∨ (¬U ∧ β) = U ∨ U = U .

Axiom (24): F Jα, βK = (F ∧ α) ∨ (¬F ∧ β) = F ∨ β = β.

20 GAYATRI PANICKER, K. V. KRISHNA, AND PURANDAR BHADURI

Axiom (25): Note that (¬α)Jβ, γK = (¬α ∧ β) ∨ (α ∧ γ). On the other hand
αJγ, βK = (α ∧ γ) ∨ (¬α ∧ β). We check the validity of the identity
(¬α ∧ β) ∨ (α ∧ γ) = (α ∧ γ) ∨ (¬α ∧ β) in the three element C-algebra 3.

Case I : α = T : (¬T ∧ β) ∨ (T ∧ γ) = F ∨ γ = γ = γ ∨ F = (T ∧ γ) ∨ (¬T ∧ β).
Case II : α = F : (¬F ∧ β) ∨ (F ∧ γ) = β ∨ F = β = F ∨ β = (F ∧ γ) ∨ (¬F ∧ β).
Case III : α = U : (¬U ∧ β) ∨ (U ∧ γ) = U ∨ U = (U ∧ γ) ∨ (¬U ∧ β).

In view of Theorem 1.14, the identity (¬α ∧ β) ∨ (α ∧ γ) = (α ∧ γ) ∨ (¬α ∧ β) is
valid in all C-algebras and hence the identity (¬α)Jβ, γK = αJγ, βK holds in M .

Along similar lines, one can verify the identities (26), (27), (28), (29) and the
quasi-identity (30) in the C-algebra 3 by considering α to be T , F and U
casewise. Consequently, the axioms hold in M .

A.2. Verification of Example 2.4.

In order to verify the axioms we will rely on the pairs of sets representation of the
C-algebra 3X by Guzmán and Squier in [8]. Every α ∈ 3X can be represented by
the pair of sets (A,B) = (α−1(T), α−1(F)). In this representation T = (X, ∅),
F = (∅, X) and U = (∅, ∅).
Let f, g, h, k ∈ To(X⊥). Let α, β ∈ 3X be represented by the pairs of sets (A,B)
and (C,D) respectively. Note that

α[f, g](x) = (A,B)[f, g](x) =


f(x), if x ∈ A;

g(x), if x ∈ B;

⊥, otherwise.

Using this action one can verify the axioms (23), (24) and (25) easily.

Axiom (26): For x ∈ A we have (A,B)[f, g](x) = f(x). Consequently

(A,B)[(A,B)[f, g], h](x) =


f(x), if x ∈ A;

h(x), if x ∈ B;

⊥, otherwise.

= (A,B)[f, h](x)

so that α[α[f, g], h] = α[f, h].

Axiom (27) can be verified along the same lines as axiom (26).

Axiom (28): Note that

(α ∧ β)[f, g](x) = (A ∩ C,B ∪ (A ∩D))[f, g](x) =


f(x), if x ∈ A ∩ C;

g(x), if x ∈ B ∪ (A ∩D);

⊥, otherwise.

IF-THEN-ELSE OVER POSSIBLY NON-HALTING PROGRAMS AND TESTS 21

On the other hand

α[β[f, g], g](x) = (A,B)[(C,D)[f, g], g](x) =


(C,D)[f, g](x), if x ∈ A;

g(x), if x ∈ B;

⊥, otherwise.

=



f(x), if x ∈ A ∩ C;

g(x), if x ∈ A ∩D;

⊥, if x ∈ A ∩ (X \ (C ∪D));

g(x), if x ∈ B;

⊥, otherwise.

=


f(x), if x ∈ A ∩ C;

g(x), if x ∈ B ∪ (A ∩D);

⊥, otherwise.

Hence (α ∧ β)[f, g] = α[β[f, g], g]. Axiom (29) can be verified along similar lines.

Axiom (30): Given that (A,B)[f, g](x) = (A,B)[g, g](x) for all x ∈ X⊥ we have
f(x) = g(x) for all x ∈ A, in particular for all x ∈ A ∩ C. Hence

(α ∧ β)[f, g](x) = (A ∩ C,B ∪ (A ∩D))[f, g](x) =


f(x), if x ∈ A ∩ C;

g(x), if x ∈ B ∪ (A ∩D);

⊥, otherwise.

=


g(x), if x ∈ A ∩ C;

g(x), if x ∈ B ∪ (A ∩D);

⊥, otherwise.

= (α ∧ β)[g, g](x).

Thus (α ∧ β)[f, g] = (α ∧ β)[g, g] and so quasi-identity (30) holds.

A.3. Verification of Example 4.2.

For f, g ∈ To(X⊥) using the pairs of sets representation of f ∗ g, axioms (35), (36)
and (37) can be verified easily.

Let f, g, h, k ∈ To(X⊥).

Axiom (38): We will show that α[f, g] ∗ α[h, k] = αJf ∗ h, g ∗ kK. Let α = (A,B)
and α[f, g] = F1 where

F1(x) =


f(x), if x ∈ A;

g(x), if x ∈ B;

⊥, otherwise.

22 GAYATRI PANICKER, K. V. KRISHNA, AND PURANDAR BHADURI

Also let α[h, k] = F2 where

F2(x) =


h(x), if x ∈ A;

k(x), if x ∈ B;

⊥, otherwise.

Let F1 ∗ F2 = (C,D) where C = {x ∈ X : F1(x) = F2(x)(̸= ⊥)} and
D = {x ∈ X : F1(x) ̸= F2(x)(̸= ⊥)}. Let f ∗ h = (E,F) where
E = {x ∈ X : f(x) = h(x)(̸= ⊥)} and F = {x ∈ X : f(x) ̸= h(x)(̸= ⊥)}. Let
g ∗ k = (G,H) where G = {x ∈ X : g(x) = k(x)(̸= ⊥)} and
H = {x ∈ X : g(x) ̸= k(x)(̸= ⊥)}. Then we have
(A,B)J(E,F), (G,H)K

=
(
(A,B) ∧ (E,F)

)
∨
(
¬((A,B)) ∧ (G,H)

)
=
(
(A ∩ E,B ∪ (A ∩ F)

)
∨
(
B ∩G,A ∪ (B ∩H)

)
=
(
(A ∩ E) ∪

(
(B ∪ (A ∩ F)) ∩ (B ∩G)

)
,
(
B ∪ (A ∩ F)

)
∩
(
A ∪ (B ∩H)

))
In effect we need to show that

(C,D) =
(
(A ∩ E) ∪

(
(B ∪ (A ∩ F)) ∩ (B ∩G)

)
,
(
B ∪ (A ∩ F)

)
∩
(
A ∪ (B ∩H)

))
.

It is straightforward to observe that (A ∩ E) ∪
(
(B ∪ (A ∩ F)) ∩ (B ∩G)

)
⊆ C.

The reverse inclusion can be ascertained as follows. If x ∈ C it follows that
x ∈ A ∪B. Now it can be observed that if x ∈ A then x ∈ E and if x ∈ B then
x ∈ G. Hence C = (A ∩ E) ∪

(
(B ∪ (A ∩ F)) ∩ (B ∩G)

)
.

Similarly one can observe that
(
B ∪ (A ∩ F)

)
∩
(
A ∪ (B ∩H)

)
⊆ D. For the

reverse inclusion if x ∈ D then x ∈ A ∪B. It can be observed that if x ∈ A then
x ∈ F and if x ∈ B then x ∈ H. Hence D =

(
B ∪ (A ∩ F)

)
∩
(
A ∪ (B ∩H)

)
.

Axiom (39): Let f ∗ f = (X, ∅) and f ∗ g = (∅, ∅). Since f ∗ f = (X, ∅) we have
f(x) ̸= ⊥ for all x ∈ X. Set A = {x ∈ X : f(x) = g(x)(̸= ⊥)} and
B = {x ∈ X : f(x) ̸= g(x)(̸= ⊥)}. Note that A = B = ∅ as f ∗ g = (∅, ∅). If
g(y) ̸= ⊥ for some y ∈ X then it follows that y ∈ A or y ∈ B as f(y) ̸= ⊥. This
contradicts A = B = ∅. Hence g(x) = ⊥ for all x ∈ X so that
((f ∗ f = T) ∧ (f ∗ g = U)) ⇒ g = ζ⊥.

Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati,

India
E-mail address: p.gayatri@iitg.ac.in

Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati,
India

E-mail address: kvk@iitg.ac.in

Department of Computer Science and Engineering, Indian Institute of Technology
Guwahati, Guwahati, India

E-mail address: pbhaduri@iitg.ac.in

