
1

Translation Validation of Code Motion
Transformations Involving Loops

Ramanuj Chouksey, Chandan Karfa, and Purandar Bhaduri

Abstract—Translation validation is the process of proving that
the target code is a correct translation of the source program
being compiled. In this work we propose a translation validation
method to verify code motion transformations involving loops
applied during the scheduling phase of high-level synthesis (HLS).
Our method is capable of ignoring false computations during
translation validation. We have also identified a scenario involving
code motion across loops where the state-of-the-art translation
validation method gives false positive results. Our method can
prove the non-equivalence of the concerned finite state machines
with data paths (FSMDs) in this scenario. We detected a bug in
the HLS tool SPARK involving loop invariant code motion using
our method. Experimental results demonstrate the usefulness of
our method.

Index Terms—Formal Verification, Translation Validation,
Equivalence Checking, Code Motion, FSMDs Model.

I. INTRODUCTION

VERIFICATION of code motion transformations has been
an active research area for the last ten years [1]–[8]. The

methods [1]–[6] fail to handle the case of code motion across
loops and loop invariant code motion in nested loops. The
technique presented in [8] handles code motion across loops
but it requires additional information from the synthesis tool
which is difficult to obtain in general. A Value Propagation
based equivalence checking (VP) method was proposed in
[7] which also handles code motion across loops. Unlike
the technique presented in [8], the VP method does not
require additional information from the HLS tool. There are
three possible scenarios during code motion transformations
involving loops:
S1 : Some code segment before a loop body is placed after the

loop body or vice versa (i.e., code motion across loops).
S2 : Some code segment is moved before the loop from inside

the loop body.
S3 : Some code segment is moved after the loop from inside

the loop body.
The VP method handles scenario S1 but it cannot handle

scenarios S2 and S3. In addition, Example 1 given in Sec. III
shows a case where the VP method [7] provides a false
positive result for a scenario involving code motion across
loops. Moreover, the VP method does not check whether a
computation is a false computation i.e., it never executes. As
a result, it gives false negative results in the case of loop
invariant code motion involving false computations.

The authors are with the Department of Computer Science and Engi-
neering, Indian Institute of Technology, Guwahati 781039, India (e-mail:
r.chouksey@iitg.ac.in; ckarfa@iitg.ac.in; pbhaduri@iitg.ac.in;).

In this paper, we present an equivalence checking method
based on value propagation for code motion involving loops
to overcome all the above limitations of existing works. Our
method is capable of handling all the three scenarios, i.e.,
S1, S2 and S3, mentioned above. Moreover, our method is
able to prove non-equivalence for the case given in Example 1.
Also, if the loop is executed at least once, then our method
will ignore the false computation during equivalence checking.
In particular, a bug in the HLS tool SPARK [9] involving loop
invariant code motion is detected by our method.

II. VALUE PROPAGATION BASED EQUIVALENCE OF
FSMDS

In this section, the FSMD model and the VP method
presented in [7] are briefly explained. An FSMD M is defined
as a 7-tuple 〈Q, q0, I, O, V, f, h〉, where Q is the finite set of
states, q0 ∈ Q is the reset (initial) state, I is the finite set
of input variables, O is the finite set of output variables, V
is the finite set of storage variables, f : Q × 2S → Q is
the state transition function, h : Q × 2S → U is the update
function. Here S represents the set of relations over arithmetic
expressions and Boolean literals and U represents a set of
storage and output assignments. An FSMD is an inherently
deterministic model.

A computation of an FSMD is a finite walk from the reset
state q0 to itself, and q0 should not occur in between. An
FSMD may consist of an infinite number of computations
because of the presence of loops. The paper [7] breaks down
an FSMD into smaller segments by introducing cutpoints so
that each loop in an FSMD is cut at at least one cutpoint. The
set of all paths from a cutpoint to another cutpoint without
any intermediate occurrence of a cutpoint is a path cover of
the FSMD. The condition of execution Rα of a path α is a
logical expression over I ∪ V , which must be satisfied by the
initial data state in order to traverse the path α. The data
transformation sα of a path α is an updated variable vector.
Two paths β and α are equivalent, denoted by β ' α, if
Rβ ≡ Rα and sβ = sα.

An FSMD M0 is contained in another FSMD M1 (M0 v
M1), if there exists a path cover P0 = {p00, p01, · · · , p0k} of
M0 and P1 = {p10, p11, · · · , p1k} of M1 such that p0i ' p1i
for all i, 0 ≤ i ≤ k. Two FSMDs M0 and M1 are equivalent,
denoted as M0 ≡M1, if M0 vM1 and M1 vM0.

The VP method of FSMDs [7] is based on propagating
the values of live variables through all the subsequent path
segments until the values match or the final path segment
ending in the reset state is reached. A propagated vector for

2

q00

q01

q02

−/ t⇐ a+ 5 ,

i⇐ 0
x⇐ 0

¬i ≤ 5/
out ⇐ x+ t

i ≤ 5/
i⇐ i+ 1,

x⇐ x+ 5

(a) M0

q10

q11

q12

−/i⇐ 0

x⇐ 0

¬i ≤ 5/

t⇐ a+ 5 ,

out ⇐ x+ t

i ≤ 5/

i⇐ i+ 1,

x⇐ 5

(b) M1

Fig. 1. An example where VP method gives false positive result.

a path β is an ordered pair 〈Rβ , sβ〉, where the Rβ is the
condition of execution and the sβ is an updated variable vector
representing the symbolic value1 obtained by the variables at
the end state of β. In Fig. 1(a), the propagated vector at the
reset state q00 is ϑ00 = 〈T, 〈a, i, out , x, t〉〉 and the same at
q01 is ϑ01 = 〈T, 〈a, 0, out , 0, a+ 5〉〉.

In the course of equivalence checking of two FSMDs, two
paths, β and α say (one from each FSMD), are compared
with respect to their corresponding propagated vectors for
finding a path equivalence. If Rβ ≡ Rα and sβ = sα, then
these paths are declared as unconditionally equivalent (U-
equivalent in short, denoted by β ' α). If some mismatch
in data transformation is detected, then they are declared to
be conditionally equivalent (C-equivalent in short, denoted by
β 'c α) provided their final state-pairs eventually lead to some
U-equivalent paths; otherwise, these two paths and, therefore,
two FSMDs are declared to be not equivalent.

III. MOTIVATIONAL EXAMPLES

To detect valid code motion across a loop, the VP method
marks the live variables which exhibit a mismatch in the
propagated vector. Those variables on which these marked
variables depend are also marked in the propagated vector.
The rest of the variables are denoted as unmarked variables.
A code motion across a loop is determined to be valid by the
VP method iff (1) the values of marked variables are exactly
the same after exiting the loop as before entering the loop in
both behaviors and (2) the data transformations of unmarked
variables, with respect to the propagated vector (stored before
entering the loop) are exactly the same within the loop in both
behaviors. It may be noted that after traversing the loop once,
the VP method compares the unmarked variable values of each
behavior. If the values are the same, then it declares that all
the variables are identically defined. But this may not always
be true as shown in Example 1. In a propagated vector, we
use bold face to denote the marked variables.

Example 1. For the path q00 ⇒ q01 of M0 in Fig. 1, the
VP method finds the candidate C-equivalent path q10 ⇒ q11
of M1 since there is a mismatch in the values of t (i.e.,
t and a are marked variables). The propagated vectors at
q01 and q11 are ϑ01 = 〈T, 〈a, 0, out , 0,a+ 5〉〉 and ϑ11 =
〈T, 〈a, 0, out , 0, t〉〉, respectively. After traversing the loop
once, the propagated vectors at q01 and q11 will be ϑ′01 =
〈T, 〈a, 1, out , 5,a+ 5〉〉 and ϑ′11 = 〈T, 〈a, 1, out , 5, t〉〉 re-
spectively. Here the marked variables t and a are not updated

1The symbolic value of a variable x is ‘x’.

q00

q01

q02 q03

n ≥ 0/

i⇐ 0,

x⇐ 0,

y ⇐ 0

i ≤ n/

x⇐ 5 ,

y ⇐ y + i

-/
i
⇐

i
+

1

¬i ≤ n/

out⇐ x+ y

¬n ≥ 0/
out⇐ −1

−/−

c02

c01
c03

(a) M0

q10

q11

q12 q13

n ≥ 0/

i⇐ 0,

x⇐ 5 ,

y ⇐ 0

i ≤ n/

y ⇐ y + i

-/
i
⇐

i
+

1

¬i ≤ n/

out⇐ x+ y

¬n ≥ 0/
out⇐ −1

−/−

c12

c11
c13

(b) M1

Fig. 2. An example where the VP method provides false negative result.

f o r (i1 = L1; i1 ≤ H1; i1+ = r1)
f o r (i2 = L2; i2 ≤ H2; i2+ = r2)

...
f o r (in = Ln; in ≤ Hn; in+ = rn)

Sn : . . .

Fig. 3. Nested loop structure

in either of the loops (i.e., condition 1 is satisfied) and the
unmarked variables x and i have the same transformation
(the value of x is 5 and the value of i is 1) in both the loops
(i.e., thus satisfy the condition 2) with respect to propagated
vectors ϑ01 and ϑ11. Therefore, the VP method says it is a
valid case of code motion across a loop. Finally, q01 ⇒ q02
and q11 ⇒ q12 are designated as a U-equivalent, and the
previously declared candidate C-equivalent path pairs are
asserted to be C-equivalent. Hence, the VP method declares
M0 ≡M1. It may be noted that after exiting the loop the value
of x at q01 will be 25 in M0; while, it will be the value 5 at q11
in M1. Clearly, these two behaviors are not equivalent. Hence,
the VP method gives a false positive result in this case.

In the case of mismatch at the loop header, the VP method
does not revert all the unmarked variables to their symbolic
values and propagates their values along with the marked
variables. It may cause the VP method to produce a false
positive result in some scenarios as shown in Example 1. To
avoid the false positive result the VP method should propagate
only the marked variable values and all the unmarked variables
should be reverted to their symbolic values. In Sec. IV-A,
we propose an enhancement to address this issue. Example 2
below illustrates a case where the VP method provides false
negative results due to the presence of a false computation.

Example 2. The VP method in [7] does not check whether a
computation is a false computation. It finds that the computa-
tion c02 and c03 of FSMD M0 in Fig 2 are equivalent to the
computation c12, c13 of FSMD M1, respectively. However, the
VP method fails to find c11 as an equivalent computation of
c01 in FSMD M0, since they differ in the final value of the
variable x. It may be noted that the loop will execute at least
once for all possible n ≥ 0 and i = 0. The computation c01 is,
therefore, a false computation. The non-equivalence of FSMDs
reported by the VP method is due to this false computation.

3

ϑ0i : 〈· · x · ·〉 ϑ1j : 〈· · x · ·〉

ϑ′0i : 〈· · ex · ·〉 ϑ
′
1j : 〈· · ex · ·〉

(a) Case 1.1

ϑ0i : 〈· · x · ·〉 ϑ1j : 〈· · x · ·〉

ϑ′0i : 〈· · ex0i
· ·〉 ϑ′1j : 〈· · ex1j

· ·〉

(b) Case 1.2

ϑ0i : 〈· · x · ·〉 ϑ1j : 〈· · ex1j
· ·〉

ϑ′0i : 〈· · ex1j
· ·〉 ϑ′1j : 〈· · ex1j

· ·〉

(c) Case 2.1

ϑ0i : 〈· · ex0i · ·〉 ϑ1j : 〈· · ex1j
· ·〉

ϑ′0i : 〈· · ex0i
· ·〉 ϑ′1j : 〈· · ex1j

· ·〉

(d) Case 2.2

Fig. 4. A case (a) where unmarked variable x is defined identically in both the loops; (b) where unmarked variable x has some mismatch at the end of the
loop; (c) where a marked variable x has the same value at the end of the loop; (d) where the values of the marked variable x do not update in both the loops

IV. PROPOSED ENHANCEMENTS

We now propose solutions to prove the non-equivalence for
the case given in Example 1 and to identify a false computation
in an FSMD during equivalence checking. Further, we also
provide a method to handle all the scenarios S1, S2 and S3

during equivalence checking.

A. Showing the non-equivalence for false positive cases

The VP method propagates the values of live variables over
the corresponding paths of the two behaviors as follows.
• If there is a mismatch in the propagated vector in a

corresponding state pair, then it propagates not only the
mismatched values (corresponding to marked variables),
but also the matched values (corresponding to unmarked
variables).

• If there is no mismatch in the propagated vector in a
corresponding state pair then all variables are reverted
back to their symbolic values.

In our method, we propagate the values of live variables
over the corresponding paths of the two behaviors in the
same way as mentioned above. However, in case of a mis-
match at the loop header, we propagate only the marked
variable values and all the unmarked variables are reverted
to their symbolic values. This helps us to identify whether
an unmarked variable is defined identically in both the loops.
In Example 1, using this rule the propagated vector at q01
(via q00 ⇒ q01 path) is ϑ01 = 〈T, 〈a, i, out , x,a+ 5〉〉 and
the propagated vector at q11 is ϑ11 = 〈T, 〈a, i, out , x, t〉〉
(via q10 ⇒ q11 path) before entering the loop. At the end
of the loop the propagated vector at q01 will be ϑ′01 =
〈i ≤ 5, 〈a, i, out , x + 5,a+ 5〉〉, and the propagated vector
at q11 will be ϑ′11 = 〈i ≤ 5, 〈a, i, out , 5, t〉〉. The value for x
(unmarked variable) is not the same in ϑ′01 and ϑ′11. Hence,
it is not a valid code motion and the two behaviors shown in
Fig. 1 are not equivalent.

B. Handling False Computation Involving Loops

Let us consider the nested loop structure of depth n shown
in Fig. 3. Each iterator ix, 1 ≤ x ≤ n, is initialized to Lx. Each
iterator ix reaches its upper limit Hx by incrementing a step
constant rx. The terms Lx and Hx, x = 1, . . . , n, are assumed
to be linear expressions over the input variables, constants
or previous loop iterators i1 · · · ix−1. These requirements on
Li, Hi, ri and the increment statement restrict the kind of loops
to which our method will apply. Conceptually, the propagated
condition Cp in a state s is the condition of a path from the
reset state of the behavior to the state s. In Fig. 2, for example,

Cp is n ≥ 0 at state q01. If formula 1 shown below is valid
then the statement Sn, at the loop structure of nesting depth
n, will always execute at least once.

Cp =⇒
(
∃i1, ∃i2, · · · , ∃in−1, ∃a1, ∃a2, · · · , ∃an−1

((
Ln ≤ Hn

)
∧
(n−1∧

x=1

fx

)))
(1)

where fx =
(
(Lx ≤ ix ≤ Hx) ∧ (ix = axrx + Lx) ∧ (ax ≥

0
))

. Here Cp is the propagated condition before entering the
nested loop of depth n. We use this formula to identify a false
computation during equivalence checking. For checking the
validity of this formula, we use the SMT solver Z3 [10] in the
theory of linear integer arithmetic.

For example, in Fig. 2 to verify whether the loop q01
i≤n
==⇒

q01 will execute at least once, we should check the validity of
the formula n ≥ 0 =⇒ 0 ≤ n, which is valid. Thus, the loop
will always execute at least once for all possible values of
n ≥ 0, and hence c01 is a false computation. By ignoring this
false computation, our method shows the equivalence between
the two behaviors shown in Fig. 2.

C. Handling Loop Invariant Code Motion

We consider marked and unmarked variables separately at
the loop header to handle the scenarios S2 and S3. Let q0i be
the entry/exit state of a loop body in M0 and its corresponding
state q1j be the entry/exit state of a loop body in M1. The
state q0i has the propagated vector ϑ0i before entering the
loop and the propagated vector ϑ′0i after traversal of one of
the paths inside the loop leading to q0i. Similarly, state q1j
has the propagated vector ϑ1j before entering the loop and
the propagated vector ϑ′1j after traversal of one of the paths
inside loop leading to q1j . During code motion involving loops
the following cases may arise:
Case 1 Unmarked Variable: There are two possibilities for an
unmarked variable, say x. It may be noted that x has symbolic
values in both ϑ0i and ϑ1j .
Case 1.1 If x has the same value in ϑ′0i and ϑ′1j then it
indicates that x is defined identically in both the loops as
shown in Fig. 4(a). After exiting the loop x is reverted to its
symbolic value.
Case 1.2 If there is a mismatch for x in ϑ′0i and ϑ′0j then there
is a possibility of scenario S3. Let ex0i

and ex1j
represent the

mismatched values in ϑ′0i and ϑ′1j respectively as shown in
Fig. 4(b). To check the validity of the code motion, we do the
following test.

4

1) The expressions ex0i
and ex1j

should be invariant in their
corresponding loops.

2) The variable x is not used before being defined in both
the loops.

Case 2 Marked Variable: Marked variables arise in the case of
S1 and S2. The marked variables may have some mismatch in
the corresponding propagated vectors ϑ0i and ϑ1j . There are
three possibilities for a marked variable.
Case 2.1 Suppose a marked variable, say x, has its symbolic
value at ϑ0i and ex1j

at ϑ1j . If after executing the loop once the
value of x matches in both the loops (i.e., x has the same value
(ex1j

) in ϑ′0i and ϑ′1j) as shown in Fig. 4(c), then scenario S2

is possible. To check the validity of the code motion, we do
the following test.

1) The expression ex1j
should be invariant in both the loops.

2) The variable x is not used before being defined in the
loop at q0i, and it has no definition in the loop at q1j .

Case 2.2 Suppose x has its symbolic value at ϑ1j and ex0i
at

ϑ0i and after executing the loop once the value of x matches in
both the loops. This case can be handled in a manner similar
to case 2.1. However, this scenario is unlikely to occur in
synthesis tools in practice.
Case 2.3 In the remaining case, if before executing the loop
and after exiting the loop the value of x remains the same
in both the loops as shown in Fig. 4(d) then scenario S1 is
possible. To check the validity of code motion, we do the
following test.

1) Variable x is not updated within the loop.
2) All those variables on which the variable x depends

should not be updated within the loop.

V. ENHANCED VALUE PROPAGATION BASED
EQUIVALENCE CHECKING

In this section, we present our enhanced VP method (EVP).
We use all the functions of the VP method as they are
except the correspondenceChecker and loopInvariant

functions. We have enhanced the correspondence checker so
that our method can handle all the issues address in Sec. IV.
The loopInvariant function is also enhanced to handle all
the cases discussed in Sec. IV-C.

The behavior of the enhanced correspondence checker ECC
function (Algorithm 1) is as follows. It takes as input a
corresponding state pair [7] 〈q0i, q1j〉, a path covers P0 (of
M0) and P1 (of M1), a corresponding state pair set Wcsp ,
a set of U-equivalent path pairs Eu, a set C-equivalent
path pairs Ec, and a LIST which maintains a candidate C-
equivalent pairs of paths. It returns “success” if for every
path emanating from q0i an equivalent path originating from
q1j is found; otherwise, it returns “failure”. The function
checkFalseComputation returns True if the loop at q0i
under the propagated condition will execute at least once, over
all possible inputs in M0. It returns False otherwise. The
function checkFalseComputation should be invoked once
for all paths that terminate in the state q0i. Moreover, a call to
checkFalseComputation should be avoided if the state q0i
is reached through some back edge. To guarantee this, each
loop header is associated with a flag doLoopTest . At each loop

Algorithm 1: ECC(q0i, q1j , P0, P1,Wcsp, Eu, Ec,LIST)

/* If q0i is a loop header, then the paths from q0i are ordered such that
the path exiting the loop body is considered first */

1 if q0i is a loop header and doLoopTest[q0i] is TRUE then
2 doLoopTest[q0i]=FALSE;
3 if checkFalseComputation(q0i) returns True then
4 avoidLoopExitPath[q0i]=TRUE; /* Ignore False Computation */
5 end if
6 end if
7 foreach path β : (q0i ⇒ q0m) in P0 do
8 if q0i is a loop header and avoidLoopExitPath[q0i] is TRUE then
9 avoidLoopExitPath[q0i]=FALSE;

10 continue;
11 end if
12 if Path β is already present in the LIST then
13 continue; /* prevent recursions which lead to an infinite loop */
14 end if
15 (β, α, ϑ′0m, ϑ

′
ϑ1n

)←
findEquivalentPath(β, ϑ0i, q1j , ϑ1j , P0, P1);

16 if path α : (q1j ⇒ q1n) can be found in P1 such that β ' α then
17 Eu = Eu ∪ {(β, α)}; /* U-equivalence */
18 Wcsp = Wcsp ∪ {(q0m, q1n)};
19 else if path α : (q1j ⇒ q1n) can be found in P1 such that β 'c α then
20 if q0m or q1n is reset state then
21 return failure; /* Reset state is reached with unresolved

mismatch */
22 else if q0m or q1n appears as the final state of some path already in

LIST ∧ loopInvariant(β, α, ϑ′0m, ϑ
′
1n) then

23 return failure; /* Propagated values are not loop invariant
*/

24 else
25 ϑ0m ← ϑ′0m; ϑ1n ← ϑ′1n;
26 Append 〈β, α〉 to LIST
27 ECC(q0m,q1n, P0, P1,Wcsp, Eu, Ec,LIST);
28 end if
29 else
30 return failure; /* Equivalent Path of β may not be present in

P1 */
31 end if
32 end foreach
33 Ec = Ec ∪ {Last member of LIST};
34 LIST ← LIST\{Last member of LIST};
35 if q0i is a loop header then
36 doLoopTest[q0i]=TRUE;
37 end if
38 return success;

header state q0i, we also associated a flag avoidLoopExitPath .
This flag is used to ensure that after avoiding the loop exit path
once the loop exit path must be checked for subsequent calls
of the function ECC for the state q0i.

The function ECC invokes the function
findEquivalentPath to find a U- or C-equivalent path
α : (q1j ⇒ q1n) in the transformed FSMD M1 for each path
β : (q0i ⇒ q0m) starting from state q0i of the original FSMD
M0. The function findEquivalentPath returns a 4-tuple
〈β, α, ϑ′0m, ϑ′1n〉 where β and α are corresponding paths as
described above, ϑ′0m is the propagated vector at the end
state q0m of β and ϑ′1n is the propagated vector at the end
state q1n of α. If ϑ′0m ≡ ϑ′1n then the path α is U-equivalent
to path β. Consequently, the data structure Wscp gets updated
(line 18). If findEquivalentPath does not find any path
α in M1 whose condition of execution Rα satisfies either
Rβ ≡ Rα, or Rβ =⇒ Rα or Rα =⇒ Rβ , then it returns
α = NULL (i.e., M0 and M1 may not be equivalent, handled
in line 30). If α 6= NULL and ϑ′0m 6≡ ϑ′1n, then the path α is
candidate C-equivalent to the path β and hence further value
propagation is required. However, the following checks are
carried out first and ECC reports “failure” in the following
scenarios:

5

TABLE I
EXPERIMENTAL RESULTS ON THE BENCHMARKS PRESENTED IN [7]

Benchmarks M0 M1 #Loop VP EVP#State #Path #State #Path Time(ms) Time(ms)
PERFECT 6 7 4 6 1 24 40
GCD 8 11 14 8 1 56 116
MODN 8 9 9 9 1 92 176
LRU 33 39 32 39 8 364 1204
IEEE754 55 59 44 50 7 540 2080
BARCODE 32 55 24 57 15 482 3503

TABLE II
EXPERIMENTAL RESULTS ON TEST CASES WHERE THE VP METHOD FAILS

Benchmarks VP EVP
Equivalent Time (ms) Equivalent Time (ms)

simple types
loop invariant No 4 Yes 12

mandel No 4 Yes 16
mandel2 No 4 Yes 16
himenobmtxpa No 4 Yes 20
Test 1 Yes 8 No 8
Test 2 Yes 8 No 8
Test 3 Yes 12 No 12
Test 4 Yes 16 No 16

1) if one of the state q0m and q1n is a reset state (line 21)
it returns “failure”;

2) if a loop has been crossed over then the function
ECC invokes the function loopInvariant. The func-
tion loopInvariant checks for the loop invariance
of the propagated vector ϑ′0m and ϑ′1m. The function
loopInvariant returns True if each marked and un-
marked variables satisfy their respective cases as men-
tioned in Sec. IV-C. If it returns False then the function
ECC returns “failure”.

If ϑ′0m 6≡ ϑ′1n and the above two cases do not occur, then
〈β, α〉 is appended to LIST and the propagated vector at
q0m and q1n, are updated and ECC calls itself recursively
(line 27). It may be noted that while updating the propagated
vector (line 25), we update only mismatched variable values
and reset the other variable to their symbolic values if the
state is the loop header; otherwise, we update all the variable
values. When ECC reaches line 38, it implies that for every
chain of paths emanating from the state q0i, there exists a
corresponding chain of paths emanating from q1j such that
their final paths are U-equivalent.

VI. EXPERIMENTAL RESULTS

Our equivalence checking algorithm has been implemented
in C and all the experiments have been conducted on a laptop
with 2 GHz Intel Core 2 Duo processor with 3 GB of RAM.
In our first experiment all the benchmarks listed in Table I are
taken from [7]. Our method is able to establish the equivalence
in all the benchmarks. Our method needs more time since at
each loop header we invoke the SMT solver Z3 to identify
false computations. In our second experiment, we take some of
the test-suite distributed with LLVM [11]. These benchmarks
contain some loop invariant operations. We forced SPARK
to apply loop invariant code motion (LICM) transformation

i n t main (){
i n t x , i , n , z =0 , o u t ;
x =0;
f o r (i =4 ; i<n ; i ++){

x = 5 ;
z=z+x ;}

o u t =z+x ;
re turn o u t ;}

(a) Input Behavior

i n t main (void){
i n t x , i , n , z , out , sT0 5 ;
i n t r e t u r n V a r m a i n ;
z = 0 ; x = 0 ; i = 4 ; x = 5 ;
do{

sT0 5 = (i < n) ;
i f (sT0 5){
z = (z + x) ;
i = (i + 1) ;}

e l s e break ;
}whi le (1) ;
o u t = (z + x) ;
r e t u r n V a r m a i n = o u t ;
re turn r e t u r n V a r m a i n ;}

(b) Transformed Behavior

Fig. 5. A bug in SPARK

to obtain the transformed behavior. The results of these ex-
periments are tabulated in row 1–4 of Table II. It is evident
from Table II, that our proposed method can correctly identify
the equivalences. However, the VP method reports “may not
be equivalent” in these cases. In our third experiment, we
have created some test cases where the VP method provides a
false positive result, but our EVP method can prove the non-
equivalence. The benchmarks tabulated in row 5–8 of Table II
are manually scheduled. The result of this experiment confirms
that the VP method incorrectly reports equivalence for these
test cases while our EVP method correctly proves the non-
equivalence for these test cases. During our experimentation,
we found a bug in the implementation of the LICM algorithm
in the SPARK tool as shown in Fig. 5. Here the operation
x = 5 is moved before the loop body in the transformed
behavior. The output of these behaviors will not be the same
for any input n ≤ 4. This behavior is proved to be non-
equivalent by our EVP method. Thus, our method finds a
previously unknown bug in a widely used HLS framework.

REFERENCES

[1] C. Karfa, D. Sarkar, C. Mandal, and P. Kumar, “An equivalence-checking
method for scheduling verification in high-level synthesis,” IEEE TCAD,
vol. 27, no. 3, pp. 556–569, 2008.

[2] S. Kundu, S. Lerner, and R. K. Gupta, “Translation validation of high-
level synthesis,” IEEE TCAD, vol. 29, no. 4, pp. 566–579, 2010.

[3] T. Li, J. Hu, Y. Guo, S. Li, and Q. Tan, “Equivalence checking of
scheduling in high-level synthesis,” in Sixteenth International Sympo-
sium on Quality Electronic Design. IEEE, 2015, pp. 257–262.

[4] Y. Kim and N. Mansouri, “Automated formal verification of scheduling
with speculative code motions,” in Proceedings of the 18th ACM Great
Lakes Symposium on VLSI. ACM, 2008, pp. 95–100.

[5] C. Lee, C. Shih, J. Huang, and J. Jou, “Equivalence checking of schedul-
ing with speculative code transformations in high-level synthesis,” in
Proceedings, ASP-DAC’11. IEEE, 2011, pp. 497–502.

[6] C. Karfa, C. A. Mandal, and D. Sarkar, “Formal verification of code
motion techniques using data-flow-driven equivalence checking,” ACM
Trans. Des. Autom. Electron. Syst., vol. 17, no. 3, pp. 30:1–30:37, 2012.

[7] K. Banerjee, C. Karfa, D. Sarkar, and C. A. Mandal, “Verification of
code motion techniques using value propagation,” IEEE TCAD, vol. 33,
no. 8, pp. 1180–1193, 2014.

[8] J.-B. Tristan and X. Leroy, “Verified validation of lazy code motion,” in
Proceedings, PLDI ’09. ACM, 2009, pp. 316–326.

[9] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “SPARK: A high-level syn-
thesis framework for applying parallelizing compiler transformations,”
in Proceedings, VLSID. IEEE, 2003, pp. 461–466.

[10] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in
TACAS’08, ser. LNCS, vol. 4963. Springer, 2008, pp. 337–340.

[11] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the International
Symposium on CGO. IEEE, 2004, pp. 129–142.

