
Monoids of non-halting programs with tests

Gayatri Panicker, K. V. Krishna and Purandar Bhaduri

Abstract. In order to study the axiomatization of the if-then-else

construct over possibly non-halting programs and tests, the notion of
C-sets was introduced in the literature by considering the tests from
an abstract C-algebra. This paper extends the notion of C-sets to C-
monoids which include the composition of programs as well as com-
position of programs with tests. For the class of C-monoids where the
C-algebras are adas a canonical representation in terms of functional
C-monoids is obtained.

Mathematics Subject Classification. 08A70, 03G25 and 68N15.

Keywords.Axiomatization, if-then-else, non-halting programs, C-algebra.

Introduction

The algebraic properties of the program construct if-then-else have been
studied in great detail under various contexts. For example, in [9, 18, 22],
the authors investigated on axiom schema for determination of the semantic
equivalence between the conditional expressions. The authors in [3, 6, 19]
studied complete proof systems for various versions of if-then-else. While
a transformational characterization of if-then-else was given in [17], an
axiomatization of equality test algebras was considered in [10, 21]. In [1, 23],
if-then-else was studied as an action of Boolean algebra on a set. Due
to their close relation with program features, functions have been canonical
models for studies on algebraic semantics of programs.

In [13] Kennison defined comparison algebras as those equipped with a
quaternary operation C(s, t, u, v) satisfying certain identities modelling the
equality test. He also showed that such algebras are simple if and only if C
is the direct comparison operation C0 given by C0(s, t, u, v) taking value u
if s = t and v otherwise. This was extended by Stokes in [24] to semigroups
and monoids. He showed that every comparison semigroup (monoid) is em-
beddable in the comparison semigroup (monoid) T (X) of all total functions
X → X, for some set X. He also obtained a similar result in terms of partial
functions X → X. In [11] Jackson and Stokes gave a complete axiomatization

2 G. Panicker, K. V. Krishna and P. Bhaduri

of if-then-else over halting programs and tests. They also modelled com-
position of functions and of functions with predicates and called this object
a B-monoid and further showed that the more natural setting of only con-
sidering composition of functions would not admit a finite axiomatization.
They proved that every B-monoid is embeddable in a functional B-monoid
comprising total functions and halting tests and thus achieved a Cayley-type
theorem for the class of B-monoids. The work listed above predominantly
considered the case where the tests are halting and drawn from a Boolean
algebra. A natural interest is to study non-halting tests and programs.

There are multiple studies (e.g., see [4, 8, 14, 15]) on extending two-
valued Boolean logic to three-valued logic. However McCarthy’s logic (cf.
[18]) is distinct in that it models the short-circuit evaluation exhibited by
programming languages that evaluate expressions in sequential order, from
left to right. In [7] Guzmán and Squier gave a complete axiomatization of Mc-
Carthy’s three-valued logic and called the corresponding algebra a C-algebra,
or the algebra of conditional logic. While studying if-then-else algebras
in [16], Manes defined an ada (Algebra of Disjoint Alternatives) which is
essentially a C-algebra equipped with an oracle for the halting problem.

Jackson and Stokes in [12] studied the algebraic theory of computable
functions, which can be viewed as possibly non-halting programs, together
with composition, if-then-else and while-do. In this work they assumed
that the tests form a Boolean algebra. Further, they demonstrated how an
algebra of non-halting tests could be constructed from Boolean tests in their
setting. Jackson and Stokes proposed an alternative approach by considering
an abstract collection of non-halting tests and posed the following problem:

Characterize the algebras of computable functions associated with an
abstract C-algebra of non-halting tests.

The authors in [20] have approached the problem by adopting the ap-
proach of Jackson and Stokes in [11]. The notion of a C-set was introduced
through which a complete axiomatization for if-then-else over a class of
possibly non-halting programs and tests, where tests are drawn from an ada,
was provided.

In this paper, following the approach of Jackson and Stokes in [11], we
extend the notion of C-sets to include composition of possibly non-halting
programs and of these programs with possibly non-halting tests. This object
is termed a C-monoid and we establish our main result, Theorem 3.1, stat-
ing that the C-monoid can be represented in the standard model. This is a
Cayley-type theorem as in [2].

1. Preliminaries

In this section we present the necessary background material. First we recall
the concept of a C-algebra introduced by Guzmán and Squier [7].

Definition 1.1. A C-algebra is an algebra ⟨M,∨,∧,¬⟩ of type (2, 2, 1), which
satisfies the following axioms for all α, β, γ ∈M :

Monoids of non-halting programs with tests 3

¬¬α = α (1.1)

¬(α ∧ β) = ¬α ∨ ¬β (1.2)

(α ∧ β) ∧ γ = α ∧ (β ∧ γ) (1.3)

α ∧ (β ∨ γ) = (α ∧ β) ∨ (α ∧ γ) (1.4)

(α ∨ β) ∧ γ = (α ∧ γ) ∨ (¬α ∧ β ∧ γ) (1.5)

α ∨ (α ∧ β) = α (1.6)

(α ∧ β) ∨ (β ∧ α) = (β ∧ α) ∨ (α ∧ β) (1.7)

It is easy to see that every Boolean algebra is a C-algebra. Let 3 denote
the C-algebra with the universe {T, F, U} and the following operations.

¬
T F
F T
U U

∧ T F U
T T F U
F F F F
U U U U

∨ T F U
T T T T
F T F U
U U U U

In fact, the C-algebra 3 is the McCarthy’s three-valued logic.

In view of the fact that the class of C-algebras is a variety, for any
set X, 3X is a C-algebra with the operations defined pointwise. Here, the
set of all functions from a set X to a set Y is denoted by Y X . Guzmán and
Squier in [7] showed that elements of 3X along with the C-algebra operations
may be viewed in terms of pairs of sets. This is a pair (A,B) where A,B ⊆
X and A ∩ B = ∅. For any element α ∈ 3X , associate the pair of sets
(α−1(T), α−1(F)). Conversely, for any pair of sets (A,B) where A,B ⊆ X
and A ∩ B = ∅ associate the function α where α(x) = T if x ∈ A, α(x) = F
if x ∈ B and α(x) = U otherwise. With this correlation, the operations can
be expressed as follows:

¬(A1, A2) = (A2, A1)

(A1, A2) ∧ (B1, B2) = (A1 ∩B1, A2 ∪ (A1 ∩B2))

(A1, A2) ∨ (B1, B2) = ((A1 ∪ (A2 ∩B1), A2 ∩B2)

Notation 1.2. We use M to denote an arbitrary C-algebra. By a C-algebra
with T, F, U we mean a C-algebra with nullary operations T, F, U , where T
is the (unique) left-identity (and right-identity) for ∧, F is the (unique) left-
identity (and right-identity) for ∨ and U is the (unique) fixed point for ¬.
Note that U is also a left-zero for both ∧ and ∨ while F is a left-zero for ∧.

We now recall the definition of ada (algebra of disjoint alternatives)
introduced by Manes in [16] .

Definition 1.3. An ada is a C-algebra M with T, F, U equipped with an
additional unary operation ()↓, which is an oracle for the halting problem,

4 G. Panicker, K. V. Krishna and P. Bhaduri

subject to the following equations for all α, β ∈M :

F ↓ = F (1.8)

U↓ = F (1.9)

T ↓ = T (1.10)

α ∧ β↓ = α ∧ (α ∧ β)↓ (1.11)

α↓ ∨ ¬(α↓) = T (1.12)

α = α↓ ∨ α (1.13)

The C-algebra 3 with the unary operation ()↓ defined by (1.8), (1.9)
and (1.10) forms an ada. This ada will also be denoted by 3. One may easily
resolve the notation overloading – whether 3 is a C-algebra or an ada –
depending on the context. In [16] Manes showed that the ada 3 is the only
subdirectly irreducible ada. For any set X, 3X is an ada with operations
defined pointwise. Note that the ada 3 is also simple.

We use the following notations related to sets and equivalence relations.

Notation 1.4.

(1) Let X be a set and ⊥ /∈ X. The pointed set X ∪{⊥} with base point ⊥
is denoted by X⊥.

(2) While the set of all functions X → X is denoted by T (X), the set of
all functions on X⊥ which fix ⊥ is denoted by To(X⊥), i.e., To(X⊥)
= {f ∈ T (X⊥) : f(⊥) = ⊥}.

(3) Under an equivalence relation σ on a set A, the equivalence class of an
element p ∈ A will be denoted by pσ. Within a given context, if there
is no ambiguity, we may simply denote the equivalence class by p.

In order to axiomatize if-then-else over possibly non-halting pro-
grammes and tests, in [20], Panicker et al. considered the tests from a C-
algebra and introduced the notion of C-sets. We now recall the notion of a
C-set.

Definition 1.5. Let S⊥ be a pointed set with base point ⊥ and M be a C-
algebra with T, F, U . The pair (S⊥,M) equipped with an action

[,] :M × S⊥ × S⊥ → S⊥

Monoids of non-halting programs with tests 5

is called a C-set if it satisfies the following axioms for all α, β ∈ M and
s, t, u, v ∈ S⊥:

U [s, t] = ⊥ (U -axiom) (1.14)

F [s, t] = t (F -axiom) (1.15)

(¬α)[s, t] = α[t, s] (¬-axiom) (1.16)

α[α[s, t], u] = α[s, u] (positive redundancy) (1.17)

α[s, α[t, u]] = α[s, u] (negative redundancy) (1.18)

(α ∧ β)[s, t] = α[β[s, t], t] (∧-axiom) (1.19)

α[β[s, t], β[u, v]] = β[α[s, u], α[t, v]] (premise interchange) (1.20)

α[s, t] = α[t, t] ⇒ (α ∧ β)[s, t] = (α ∧ β)[t, t] (∧-compatibility) (1.21)

Let M be a C-algebra with T, F, U treated as a pointed set with base
point U . The pair (M,M) is a C-set under the following action for all α, β, γ ∈
M :

α[β, γ] = (α ∧ β) ∨ (¬α ∧ γ).

We denote the action of the C-set (M,M) by J , K. In [20], Panicker
et al. showed that the axiomatization is complete for the class of C-sets
(S⊥,M) when M is an ada. In that connection, they obtained some proper-
ties of C-sets. Amongst, in Proposition 1.6 below, we list certain properties
related to congruences which are useful in the present work. Viewing C-sets
as two-sorted algebras, a congruence of a C-set is a pair (σ, τ), where σ is
an equivalence relation on S⊥ and τ is a congruence on the ada M such that
(s, t), (u, v) ∈ σ and (α, β) ∈ τ imply that (α[s, u], β[t, v]) ∈ σ.

Proposition 1.6 ([20]). Let (S⊥,M) be a C-set where M is an ada. For each
maximal congruence θ on M , let Eθ be the relation on S⊥ given by

Eθ = {(s, t) ∈ S⊥ × S⊥ : β[s, t] = β[t, t] for some β ∈ T
θ}.

Then we have the following properties:

(i) For α ∈ M and s, t ∈ S⊥, if (α, β) ∈ θ then according to β = T, F
or U , we have (α[s, t], s) ∈ Eθ, (α[s, t], t) ∈ Eθ or (α[s, t],⊥) ∈ Eθ,
respectively.

(ii) The pair (Eθ, θ) is a C-set congruence.
(iii) For the C-set (M,M) the equivalence Eθ on M , denoted by EθM , is a

subset of θ.

(iv)
∩
θ

Eθ = ∆S⊥ , where θ ranges over all maximal congruences on M .

(v) The intersection of all maximal congruences on M is trivial, that is∩
θ = ∆M where θ ranges over all maximal congruences on M .

For more details on C-sets one may refer to [20].

6 G. Panicker, K. V. Krishna and P. Bhaduri

2. C-monoids

We now include the case where the composition of two elements of the base
set and of an element with a predicate is allowed. Our motivating example
is (To(X⊥), 3X), where To(X⊥) is considered to be a monoid with zero by
equipping it with composition of functions. The composition will be written
from left to right, i.e., (f · g)(x) = g(f(x)). The monoid identity in To(X⊥) is
the identity function idX⊥ and the zero element is ζ⊥, the constant function
taking the value ⊥. We also include composition of functions with predicates
via the natural interpretation given by the following for all f ∈ To(X⊥) and
α ∈ 3X :

(f ◦ α)(x) =


T, if α(f(x)) = T ;

F, if α(f(x)) = F ;

U, otherwise.

(2.1)

Note that if the composition takes value T or F at some point x ∈ X⊥
then as α ∈ 3X this implies that f(x) ̸= ⊥.

With this example in mind we define a C-monoid as follows.

Definition 2.1. Let (S⊥, ·) be a monoid with identity element 1 and zero
element ⊥ where ⊥ · s = ⊥ = s · ⊥. Let M be a C-algebra and (S⊥,M) be
a C-set with ⊥ as the base point of the pointed set S⊥. The pair (S⊥,M)
equipped with a function

◦ : S⊥ ×M →M

is said to be a C-monoid if it satisfies the following axioms for all s, t, r, u ∈ S⊥
and α, β ∈M :

⊥ ◦ α = U (⊥-◦-axiom) (2.2)

t ◦ U = U (U -◦-axiom) (2.3)

1 ◦ α = α (1-◦-axiom) (2.4)

s ◦ (¬α) = ¬(s ◦ α) (¬-◦-axiom) (2.5)

s ◦ (α ∧ β) = (s ◦ α) ∧ (s ◦ β) (∧-◦-axiom) (2.6)

(s · t) ◦ α = s ◦ (t ◦ α) (semigroup action) (2.7)

α[s, t] · u = α[s · u, t · u] (right composition) (2.8)

r · α[s, t] = (r ◦ α)[r · s, r · t] (left composition) (2.9)

α[s, t] ◦ β = αJs ◦ β, t ◦ βK (◦-interchange) (2.10)

The following are examples of C-monoids.

Example 2.2. Recall from [20] that the pair
(
To(X⊥),3X

)
equipped with the

action (2.11) for all f, g ∈ To(X⊥) and α ∈ 3X is a C-set. Note that To(X⊥)
is treated as a pointed set with base point ζ⊥.

α[f, g](x) =


f(x), if α(x) = T ;

g(x), if α(x) = F ;

⊥, otherwise.

(2.11)

Monoids of non-halting programs with tests 7

The C-set
(
To(X⊥), 3X

)
equipped with the operation ◦ given in (2.1)

and with To(X⊥) treated as a monoid with zero is in fact a C-monoid. For
verification of axioms (2.2) – (2.10) refer to A.1 in the Appendix. Such C-
monoids will be called functional C-monoids.

Example 2.3. Let S⊥ be a non-trivial monoid with identity 1 and zero ⊥ and
no non-zero zero-divisors, i.e., s · t = ⊥ ⇒ s = ⊥ or t = ⊥. Then SX

⊥ is
also a monoid with zero for any set X with operations defined pointwise. For
f, g ∈ SX

⊥ define (f · g)(x) = f(x) · g(x). The identity of SX
⊥ is the constant

function ζ1 taking the value 1. The zero and base point of SX
⊥ is the constant

function ζ⊥ taking the value ⊥. Recall from [20] that the pair
(
SX
⊥ , 3

X
)
is

a C-set under action (2.11). In fact it is also a C-monoid with ◦ defined as
follows for all f ∈ SX

⊥ and α ∈ 3X :

(f ◦ α)(x) =

{
α(x), if f(x) ̸= ⊥;

U, otherwise.

For verification of axioms (2.2) – (2.10) refer to A.2 in the Appendix.

Example 2.4. Let S⊥ be a non-trivial monoid with zero and no non-zero zero-
divisors, i.e., s · t = ⊥ ⇒ s = ⊥ or t = ⊥. In [20] the authors showed that
for any pointed set S⊥ with base point ⊥, the pair (S⊥,3) is a (basic) C-set
with respect to the following action for all a, b ∈ S⊥ and α ∈ 3:

α[a, b] =


a, if α = T ;

b, if α = F ;

⊥, if α = U.

This basic C-set (S⊥, 3) equipped with ◦ : S⊥ × 3 → 3 defined below for all
s ∈ S⊥ and α ∈ 3 is a C-monoid.

s ◦ α =

{
α, if s ̸= ⊥;

U, if s = ⊥.

For verification of axioms (2.2) – (2.10) refer to A.3 in the Appendix.

3. Representation of a class of C-monoids

In this section we obtain a Cayley-type theorem for a class of C-monoids as
stated in the following main theorem.

Theorem 3.1. Every C-monoid (S⊥,M) where M is an ada is embeddable in
the C-monoid

(
To(X⊥),3X

)
for some set X. Moreover, if both S⊥ and M

are finite then so is X.

Sketch of the proof. For each maximal congruence θ of M , we consider the
C-set congruence (Eθ, θ) of (S⊥,M). Corresponding to each such congruence,
we construct a homomorphism of C-monoids from (S⊥,M) to the functional
C-monoid over the set S⊥/Eθ. This collection of homomorphisms has the
property that every distinct pair of elements from each component of the

8 G. Panicker, K. V. Krishna and P. Bhaduri

C-monoid will be separated by some homomorphism from this collection. We
then set X to be the disjoint union of S⊥/Eθ’s excluding the equivalence class
⊥Eθ . We complete the proof by constructing a monomorphism – by pasting
together each of the individual homomorphisms from the collection defined
earlier – from the C-monoid (S⊥,M) to the functional C-monoid over the
pointed set X⊥ with a new base point ⊥.

The proof of Theorem 3.1 will be developed through various subsections.
First in Subsection 3.1, we study some properties of maximal congruences of
adas. We then present a collection of homomorphisms which separate ev-
ery distinct pair of elements from each component of (S⊥,M) in Subsection
3.2. In Subsection 3.3, we construct the required functional C-monoid and
establish an embedding from (S⊥,M). Finally, we consolidate the proof in
Subsection 3.4.

In what follows (S⊥,M) is a C-monoid with M as an ada. Let θ be a
maximal congruence on M and Eθ be the equivalence on S⊥ as defined in
Proposition 1.6 so that the pair (Eθ, θ) is a congruence on (S⊥,M). We denote
the quotient set S⊥/Eθ by Sθ⊥ and use Sθ to denote the set Sθ⊥ \ {⊥Eθ }.
Further, we use q, s, t, u, v to denote elements of S⊥ and α, β, γ to denote
elements of the ada M .

3.1. Properties of maximal congruences

The following properties are useful in proving the main theorem.

Proposition 3.2. No two elements of {T, F, U} are related under θ. That is,
(T, F) /∈ θ, (T,U) /∈ θ and (F,U) /∈ θ.

Proof. If (T, F) ∈ θ then we show that θ = M ×M ; contradicting the max-
imality of θ. Suppose (T, F) ∈ θ and let α, β ∈ M . Then (T, F), (α, α) ∈
θ ⇒ (T ∧ α, F ∧ α) ∈ θ that is (α, F) ∈ θ. Similarly (β, F) ∈ θ and so us-
ing the symmetry and transitivity of θ we have (α, β) ∈ θ and consequently
θ =M ×M . The proof of (T,U) /∈ θ follows along similar lines. Finally since
(F,U) ∈ θ ⇔ (T,U) ∈ θ, the result follows. �

Proposition 3.3. For each q ∈ S⊥, we have

(i) (q ◦ T)[q,⊥] = q.
(ii) (q ◦ T, F) /∈ θ.
(iii) (q ◦ T,U) ∈ θ ⇔ (q,⊥) ∈ Eθ.
(iv) (q ◦ T, T) ∈ θ ⇔ (q ◦ F, F) ∈ θ ⇔ (q,⊥) /∈ Eθ.
(v) (s, t) ∈ Eθ ⇒ (s ◦ α, t ◦ α) ∈ θ for all α ∈M .
(vi) (1,⊥) /∈ Eθ.

Proof.

(i) Using (2.9) we have q = q·1 = q·T [1,⊥] = (q◦T)[q·1, q·⊥] = (q◦T)[q,⊥].
(ii) We prove the result by contradiction. Suppose (q ◦ T, F) ∈ θ. Using

the fact that θ is a congruence on M and (2.5) we have (q ◦ T, F) ∈
θ ⇒ (¬(q ◦ T),¬F) ∈ θ ⇒ (q ◦ (¬T),¬F) ∈ θ ⇒ (q ◦ F, T) ∈ θ.
Similarly using the fact that θ is a congruence, (2.6) and (2.5) we have

Monoids of non-halting programs with tests 9

((q◦F)∨(q◦T), (T∨F)) ∈ θ ⇒ (q◦(F∨T), (T∨F)) ∈ θ ⇒ (q◦T, T) ∈ θ.
Thus we have (q ◦ T, F) ∈ θ and (q ◦ T, T) ∈ θ. From the symmetry and
transitivity of θ it follows that (T, F) ∈ θ, a contradiction by Proposition
3.2. The result follows.

(iii) (⇒:) Let (q ◦ T,U) ∈ θ. Using Proposition 1.6(i) we can say that for
any choice of s, t ∈ S⊥ we have ((q ◦ T)[s, t],⊥) ∈ Eθ. On choosing
s = q, t = ⊥ and using Proposition 3.3(i) we have ((q ◦T)[q,⊥],⊥) ∈ Eθ

that is (q,⊥) ∈ Eθ as desired.
(:⇐) First note that, for α ∈M ,

α[⊥,⊥] = ⊥ (3.1)

(cf. [20, Proposition 2.8(1)]). Now assume that (q,⊥) ∈ Eθ. Then there

exists β ∈ T
θ
such that β[q,⊥] = β[⊥,⊥]. However, by (3.1), we have

β[q,⊥] = ⊥. Thus, β[q,⊥] ◦ T = ⊥ ◦ T so that βJq ◦ T,⊥ ◦ T K = U
(using (2.2) and (2.10)). Consequently, using (3.1) on (M,M), we have
βJq ◦ T,UK = βJU,UK. Hence (q ◦ T,U) ∈ EθM and so from Proposition
1.6(iii), (q ◦ T,U) ∈ θ.

Thus (q ◦ T,U) ∈ θ ⇔ (q,⊥) ∈ Eθ.
(iv) We first show that (q ◦ T, T) ∈ θ ⇔ (q ◦ F, F) ∈ θ by making use of the

substitution property of the congruence θ with respect to ¬, the fact that
¬ is an involution and (2.5). Thus (q ◦T, T) ∈ θ ⇔ (¬(q ◦T),¬T) ∈ θ ⇔
(q ◦ (¬T),¬T) ∈ θ ⇔ (q ◦ F, F) ∈ θ. Using Proposition 3.2, Proposition
3.3(ii) and Proposition 3.3(iii) we show the equivalence (q ◦T, T) ∈ θ ⇔
(q,⊥) /∈ Eθ. We have (q ◦ T, T) ∈ θ ⇒ (q ◦ T,U) /∈ θ ⇒ (q,⊥) /∈ Eθ.
Conversely (q,⊥) /∈ Eθ ⇒ (q ◦ T,U) /∈ θ. Using Proposition 3.3(ii) it
follows that (q ◦ T, F) /∈ θ. Since θ is a maximal congruence the only
remaining possibility is that (q ◦ T, T) ∈ θ which completes the proof.

(v) Consider (s, t) ∈ Eθ and α ∈ M . Then there exists β ∈ T
θ
such that

β[s, t] = β[t, t]. Thus β[s, t] ◦ α = β[t, t] ◦ α. Using (2.10) we have βJs ◦
α, t◦αK = βJt◦α, t◦αK from which it follows that (s◦α, t◦α) ∈ EθM ⊆ θ
by Proposition 1.6(iii).

(vi) Suppose that (1,⊥) ∈ Eθ. Using Proposition 3.3(v), (2.4), (2.2) we have
(1,⊥) ∈ Eθ ⇒ (1 ◦ T,⊥ ◦ T) ∈ θ and so (T,U) ∈ θ a contradiction by
Proposition 3.2.

�

3.2. A class of homomorphisms separating pairs of elements

For each maximal congruence θ on M , in this subsection, we present ho-
momorphisms ϕθ : S⊥ → To(Sθ⊥) and ρθ : M → 3Sθ . Then we establish
that (ϕθ, ρθ) is a homomorphism from (S⊥,M) to the functional C-monoid(
To(Sθ⊥),3

Sθ). Further, we ascertain that every pair of elements in S⊥ (or
M) are separated by some ϕθ (or ρθ).

Proposition 3.4. The function ϕθ : S⊥ → To(Sθ⊥) given by ϕθ(s) = ψs
θ, where

ψs
θ(t

Eθ) = t · sEθ , is a monoid homomorphism that maps the zero (and base
point) of S⊥ to that of To(Sθ⊥), that is ⊥ 7→ ζ⊥.

10 G. Panicker, K. V. Krishna and P. Bhaduri

Proof. Claim: ϕθ is well-defined. It suffices to show that ψs
θ is well-defined and

that ψs
θ ∈ To(Sθ⊥), that is ψ

s
θ(⊥) = ⊥. In order to show the well-definedness

of ψs
θ we consider u = t that is (u, t) ∈ Eθ. Then there exists β ∈ T

θ
such

that β[u, t] = β[t, t]. Consequently

β[u · s, t · s] = β[u, t] · s from (2.8)

= β[t, t] · s
= β[t · s, t · s] from (2.8)

Thus (u · s, t · s) ∈ Eθ and so ψs
θ(u) = ψs

θ(t). Also ψs
θ(⊥) = ⊥ · s = ⊥. Thus

ψs
θ ∈ To(Sθ⊥).

Claim: ϕθ(⊥) = ζ⊥ . We have ϕθ(⊥) = ψ⊥
θ where ψ⊥

θ (t) = t · ⊥ = ⊥.
Thus ϕθ(⊥) = ζ⊥.

Claim: ϕθ(1) = idSθ⊥
. We have ϕθ(1) = ψ1

θ where ψ1
θ(t) = t · 1 = t.

Claim: ϕθ is a semigroup homomorphism. Consider ϕθ(s·t) = ψs·t
θ where

ψs·t
θ (u) = u · (s · t) = (u · s) · t = ψt

θ(u · s) = ψt
θ(ψ

s
θ(u)) = (ψs

θ · ψt
θ)(u). Thus

ϕθ(s · t) = ϕθ(s) · ϕθ(t). �

Proposition 3.5. The function ρθ : M → 3Sθ given by

ρθ(α) =


(Sθ, ∅), if α = T ;

(∅, Sθ), if α = F ;

(Aα
θ , B

α
θ), otherwise

where Aα
θ = {tEθ : t ◦ α ∈ T

θ} and Bα
θ = {tEθ : t ◦ α ∈ F

θ}, is a homomor-
phism of C-algebras with T, F, U .

Proof. Claim: ρθ is well-defined. If α ∈ {T, F} then the proof is obvious. If
α /∈ {T, F} then we show that Aα

θ ∩ Bα
θ = ∅ and that Aα

θ , B
α
θ ⊆ Sθ, that is,

⊥ /∈ Aα
θ ∪ Bα

θ . Let t ∈ Aα
θ ∩ Bα

θ . Then t ◦ α ∈ T
θ
and t ◦ α ∈ F

θ
and so

(T, F) ∈ θ which is a contradiction to Proposition 3.2. Using (2.2) we have

⊥ ◦ α = U and so if ⊥ ∈ Aα
θ ∪ Bα

θ we would have ⊥ ◦ α = U ∈ {T θ
, F

θ},
a contradiction to Proposition 3.2. Finally we show that the image under ρθ
is independent of the representative of the equivalence class chosen. Using
Proposition 3.3(v) we have s = t⇒ (s ◦ α, t ◦ α) ∈ θ. The result follows.

Claim: ρθ preserves the constants T, F, U . It is clear that ρθ(T) =
(Sθ, ∅), ρθ(F) = (∅, Sθ) and, using (2.3) and Proposition 3.2, that ρθ(U) =
(AU

θ , B
U
θ) = (∅, ∅) from which the result follows.

Claim: ρθ is a C-algebra homomorphism.We show that ρθ(¬α) = ¬(ρθ(α)).
If α ∈ {T, F} the proof is obvious. Suppose that α /∈ {T, F}. Then we have

Monoids of non-halting programs with tests 11

the following.

ρθ(¬α) = (A¬α
θ , B¬α

θ)

= ({t : t ◦ (¬α) ∈ T
θ}, {t : t ◦ (¬α) ∈ F

θ})

= ({t : ¬(t ◦ α) ∈ T
θ}, {t : ¬(t ◦ α) ∈ F

θ}) using (2.5)

= ({t : t ◦ α ∈ F
θ}, {t : t ◦ α ∈ T

θ})
= (Bα

θ , A
α
θ)

= ¬(ρθ(α))

Finally we show that ρθ(α ∧ β) = ρθ(α) ∧ ρθ(β). Note that the proof
of ρθ(α ∨ β) = ρθ(α) ∨ ρθ(β) follows using the double negation and De Mor-
gan’s laws, viz., (1.1) and (1.2) respectively in conjunction with the fact that
ρθ preserves ¬ and ∧. In order to prove that ρθ(α ∧ β) = ρθ(α) ∧ ρθ(β) we
proceed by considering the following cases.

Case I : α, β /∈ {T, F}. We have the following subcases:

Subcase 1 : α∧β /∈ {T, F}. Then ρθ(α∧β) = (Aα∧β
θ , Bα∧β

θ), ρθ(α) = (Aα
θ , B

α
θ)

and ρθ(β) = (Aβ
θ , B

β
θ). Now (Aα

θ , B
α
θ)∧(A

β
θ , B

β
θ) = (Aα

θ ∩A
β
θ , B

α
θ ∪(Aα

θ ∩B
β
θ)).

Thus we have to show that

(Aα∧β
θ , Bα∧β

θ) = (Aα
θ ∩Aβ

θ , B
α
θ ∪ (Aα

θ ∩Bβ
θ)).

We show that the pairs of sets are equal componentwise.

Let q ∈ Aα∧β
θ . Then q ◦ (α ∧ β) ∈ T

θ

⇒ ((q ◦ α) ∧ (q ◦ β), T) ∈ θ (using (2.6))

⇒ ((q ◦ α) ∧ ((q ◦ α) ∧ (q ◦ β)), (q ◦ α) ∧ T) ∈ θ (since θ is a congruence)

⇒ ((q ◦ α) ∧ (q ◦ β), q ◦ α) ∈ θ (using the properties of ∧)
⇒ (q ◦ α, T) ∈ θ (by transitivity of θ)

so that q ∈ Aα
θ . Along similar lines one can observe that

((((q ◦ α) ∧ (q ◦ β)) ∧ (q ◦ β)), T ∧ (q ◦ β)) ∈ θ.

Consequently (q ◦ β, T) ∈ θ so that q ∈ Aβ
θ . Hence A

α∧β
θ ⊆ Aα

θ ∩Aβ
θ .

For reverse inclusion let q ∈ Aα
θ ∩A

β
θ . Then (q◦α, T), (q◦β, T) ∈ θ. Since

θ is a congruence we have ((q ◦ α) ∧ (q ◦ β), T ∧ T) = ((q ◦ α) ∧ (q ◦ β), T) =
((q ◦ (α ∧ β), T) ∈ θ and so q ∈ Aα∧β

θ . Hence Aα∧β
θ = Aα

θ ∩Aβ
θ .

In order to show that Bα∧β
θ ⊆ Bα

θ ∪ (Aα
θ ∩Bβ

θ) consider q ∈ Bα∧β
θ that

is (q ◦ (α∧β), F) ∈ θ. Since θ is a maximal congruence consider the following
three possibilities:

(q ◦ α, F) ∈ θ. Then clearly q ∈ Bα
θ and so q ∈ Bα

θ ∪ (Aα
θ ∩Bβ

θ).

(q ◦ α, T) ∈ θ. Then we have q ∈ Aα
θ . We show that (q ◦β, F) ∈ θ. If this is

not the case then either (q ◦ β, T) ∈ θ or (q ◦ β, U) ∈ θ. If (q ◦ β, T) ∈ θ
then since (q ◦α, T) ∈ θ we have (q ◦ (α∧β), T ∧T) = (q ◦ (α∧β), T) ∈ θ

12 G. Panicker, K. V. Krishna and P. Bhaduri

using (2.6) and the fact that θ is a congruence. However since (q ◦ (α ∧
β), F) ∈ θ we obtain a contradiction that (T, F) ∈ θ (cf. Proposition
3.2). Along similar lines if (q ◦ β, U) ∈ θ then as (q ◦ α, T) ∈ θ we have
(q ◦ (α∧β), U) ∈ θ and so (F,U) ∈ θ a contradiction to Proposition 3.2.

Hence (q ◦ β, F) ∈ θ so that q ∈ (Aα
θ ∩Bβ

θ) ⊆ Bα
θ ∪ (Aα

θ ∩Bβ
θ).

(q ◦ α,U) ∈ θ. Since (q ◦ β, q ◦ β) ∈ θ we have (q ◦ (α ∧ β), U ∧ q ◦ β) =
(q ◦ (α ∧ β), U) ∈ θ using (2.6) and the fact that θ is a congruence.
However since (q ◦ (α∧β), F) ∈ θ we have (F,U) ∈ θ a contradiction to
Proposition 3.2. Thus this case cannot occur.

To show the reverse inclusion let q ∈ Bα
θ ∪ (Aα

θ ∩Bβ
θ) that is q ∈ Bα

θ or

q ∈ Aα
θ ∩Bβ

θ . If q ∈ Bα
θ then (q ◦ α, F) ∈ θ

⇒ ((q ◦ α) ∧ (q ◦ β), F ∧ (q ◦ β)) ∈ θ (since θ is a congruence)

⇒ (q ◦ (α ∧ β), F ∧ (q ◦ β)) ∈ θ (using (2.6))

⇒ (q ◦ (α ∧ β), F) ∈ θ (since F is a left-zero for ∧)

from which it follows that q ∈ Bα∧β
θ . In the case where q ∈ Aα

θ ∩ Bβ
θ that is

(q◦α, T), (q◦β, F) ∈ θ, along similar lines it follows that (q◦(α∧β), T ∧F) =
(q ◦ (α ∧ β), F) ∈ θ and so q ∈ Bα∧β

θ . Therefore Bα∧β
θ = Bα

θ ∪ (Aα
θ ∩Bβ

θ).

Subcase 2 : α ∧ β ∈ {T, F}. Using the fact that M ≤ 3X for some set X it
is easy to see that if α, β /∈ {T, F} then α ∧ β ̸= T . It follows that the only
possibility in this case is that α∧β = F . Therefore ρθ(α∧β) = ρθ(F) = (∅, Sθ)

and ρθ(α)∧ ρθ(β) = (Aα
θ ∩Aβ

θ , B
α
θ ∪ (Aα

θ ∩Bβ
θ)) and so we have to show that

(∅, Sθ) = (Aα
θ ∩Aβ

θ , B
α
θ ∪ (Aα

θ ∩Bβ
θ)).

We first show that Aα
θ ∩ Aβ

θ = ∅. If Aα
θ ∩ Aβ

θ ̸= ∅ then let q ∈ Aα
θ ∩ Aβ

θ

so that (q ◦ α, T) ∈ θ, (q ◦ β, T) ∈ θ

⇒ ((q ◦ α) ∧ (q ◦ β), T ∧ T) = ((q ◦ α) ∧ (q ◦ β), T) ∈ θ(as θ is a congruence)

⇒ (q ◦ (α ∧ β), T) ∈ θ (using (2.6))

⇒ (q ◦ F, T) ∈ θ (since α ∧ β = F)

⇒ (¬(q ◦ F),¬T) = (¬(q ◦ F), F) ∈ θ (as θ is a congruence)

⇒ (q ◦ ¬F, F) = (q ◦ T, F) ∈ θ (using (2.5))

which is a contradiction to Proposition 3.3(ii). Hence Aα
θ ∩Aβ

θ = ∅.
In order to show that Bα

θ ∪(Aα
θ ∩B

β
θ) = Sθ consider q ∈ Sθ that is q ̸= ⊥

which gives (q,⊥) /∈ Eθ. We proceed by considering the following three cases:

(q ◦ α, F) ∈ θ. Then it is clear that q ∈ Bα
θ ⊆ Bα

θ ∪ (Aα
θ ∩Bβ

θ).

(q ◦ α, T) ∈ θ. Then we have q ∈ Aα
θ . We show that (q◦β, F) ∈ θ. Suppose

that this is not the case. Since θ is a maximal congruence it implies
that either (q ◦ β, T) ∈ θ or (q ◦ β, U) ∈ θ. If (q ◦ β, T) ∈ θ then since
(q ◦ α, T) ∈ θ it follows that (q ◦ (α∧ β), T ∧ T) = (q ◦ F, T) ∈ θ so that

Monoids of non-halting programs with tests 13

(q ◦ T, F) ∈ θ. This is a contradiction to Proposition 3.3(ii). In the case
that (q ◦ β, U) ∈ θ proceeding as earlier we have (q ◦ (α ∧ β), T ∧ U) =
(q ◦ F,U) ∈ θ so that (q ◦ T,U) ∈ θ. It follows from Proposition
3.3(iii) that (q,⊥) ∈ Eθ which is a contradiction to the assumption
that q ∈ Sθ. Consequently it must be the case that (q ◦β, F) ∈ θ so that

q ∈ Aα
θ ∩Bβ

θ ⊆ Bα
θ ∪ (Aα

θ ∩Bβ
θ).

(q ◦ α,U) ∈ θ. Since θ is a congruence we have (q ◦ β, q ◦ β) ∈ θ

⇒ ((q ◦ α) ∧ (q ◦ β), U ∧ (q ◦ β)) ∈ θ (since θ is a congruence)

⇒ ((q ◦ (α ∧ β), U) = (q ◦ F,U) ∈ θ (since U is a left-zero for ∧
and using (2.6))

⇒ (¬(q ◦ F),¬U) ∈ θ (since θ is a congruence)

⇒ (q ◦ ¬F,¬U) = (q ◦ T,U) ∈ θ (using (2.5))

Thus using Proposition 3.3(iii) we have (q,⊥) ∈ Eθ which is a contra-
diction to the assumption that q ∈ Sθ. Hence this case cannot occur.

Thus Bα
θ ∪ (Aα

θ ∩ Bβ
θ) = Sθ which completes the proof in the case where

α, β /∈ {T, F}.

Case II : α ∈ {T, F}. The verification is straightforward by considering α = T
and α = F casewise.
Subcase 1 : α = T . Then ρθ(α ∧ β) = ρθ(T ∧ β) = ρθ(β) = (Sθ, ∅) ∧ ρθ(β) =
ρθ(T) ∧ ρθ(β) = ρθ(α) ∧ ρθ(β).

Subcase 2 : α = F . Then ρθ(α ∧ β) = ρθ(F ∧ β) = ρθ(F) = (∅, Sθ) =
(∅, Sθ) ∧ ρθ(β) = ρθ(F) ∧ ρθ(β) = ρθ(α) ∧ ρθ(β).

Case III : β ∈ {T, F}. We have the following subcases:
Subcase 1 : β = T . The proof follows along the same lines as Case II above
since T is the left and right-identity for ∧. Thus ρθ(α ∧ β) = ρθ(α ∧ T) =
ρθ(α) = ρθ(α) ∧ (Sθ, ∅) = ρθ(α) ∧ ρθ(T) = ρθ(α) ∧ ρθ(β).

Subcase 2 : β = F . If α ∈ {T, F} then this reduces to Case II proved above
and consequently we have ρθ(α ∧ β) = ρθ(α) ∧ ρθ(β) in this case. Thus it
remains to consider the case where α /∈ {T, F}. We then have the following
subcases depending on α ∧ β:
α ∧ β /∈ {T, F}. Then ρθ(α∧β) = ρθ(α∧F) = (Aα∧F

θ , Bα∧F
θ) while ρθ(α) =

(Aα
θ , B

α
θ) and ρθ(β) = ρθ(F) = (∅, Sθ). Thus ρθ(α) ∧ ρθ(F) = (∅, Aα

θ ∪
Bα

θ). We show that

(Aα∧F
θ , Bα∧F

θ) = (∅, Aα
θ ∪Bα

θ)

as earlier by proving that the pairs of sets are equal componentwise.

14 G. Panicker, K. V. Krishna and P. Bhaduri

We show that Aα∧F
θ = ∅ by contradiction. If Aα∧F

θ ̸= ∅ then
consider q ∈ Aα∧F

θ . It follows that (q ◦ (α ∧ F), T) ∈ θ

⇒ ((q ◦ (α ∧ F)) ∧ (q ◦ F), T ∧ q ◦ F) ∈ θ (since θ is a congruence)

⇒ ((q ◦ (α ∧ F)) ∧ (q ◦ F), q ◦ F) ∈ θ (since T is a left-identity for ∧)
⇒ (((q ◦ α) ∧ (q ◦ F)) ∧ (q ◦ F), q ◦ F) ∈ θ (using (2.6))

⇒ ((q ◦ α) ∧ (q ◦ F), q ◦ F) ∈ θ (using the properties of ∧)
⇒ (q ◦ F, T) ∈ θ (since θ is a congruence)

⇒ (q ◦ T, F) ∈ θ (from (2.5) and since θ is a congruence)

which is a contradiction to Proposition 3.3(ii). Hence Aα∧F
θ = ∅.

We show that Bα∧F
θ = Aα

θ ∪ Bα
θ using standard set theoretic ar-

guments. Let q ∈ Bα∧F
θ and so (q ◦ (α ∧ F), F) ∈ θ so that ((q ◦ α) ∧

(q ◦ F), F) ∈ θ. In view of the maximality of θ it suffices to consider
three cases. If either (q ◦α, T) ∈ θ or (q ◦α, F) ∈ θ then q ∈ Aα

θ ∪Bα
θ . If

(q◦α,U) ∈ θ then ((q◦α)∧((q◦α)∧(q◦F)), U∧F) = ((q◦α)∧(q◦F), U) ∈
θ.Thus (F,U) ∈ θ which is a contradiction to Proposition 3.2. Hence this
case cannot occur and so Bα∧F

θ ⊆ Aα
θ ∪Bα

θ .

For the reverse inclusion consider q ∈ Aα
θ ∪ Bα

θ so that q ∈ Aα
θ

or q ∈ Bα
θ . If q ∈ Aα

θ then (q ◦ α, T) ∈ θ. Since q ∈ Aα
θ ⊆ Sθ using

Proposition 3.3(iv) we have (q,⊥) /∈ Eθ ⇒ (q ◦ F, F) ∈ θ. Consequently
(q ◦ (α ∧ F), (T ∧ F)) = (q ◦ (α ∧ F), F) ∈ θ and so q ∈ Bα∧F

θ . Along
similar lines if q ∈ Bα

θ we have (q ◦ (α ∧ F), F) ∈ θ so that q ∈ Bα∧F
θ .

Hence (Aα∧F
θ , Bα∧F

θ) = (∅, Aα
θ ∪Bα

θ).

α ∧ β ∈ {T, F}. Using the fact that M ≤ 3X for some set X we have
α∧F ̸= T from which it follows that the only case is α∧β = α∧F = F .
Thus ρθ(α ∧ F) = ρθ(F) = (∅, Sθ) while ρθ(α) ∧ ρθ(F) = (∅, Aα

θ ∪Bα
θ).

We show that
(∅, Sθ) = (∅, Aα

θ ∪Bα
θ).

In order to show that Aα
θ ∪ Bα

θ = Sθ consider q ∈ Sθ. If (q ◦ α, T) ∈ θ
or (q ◦ α, F) ∈ θ then the proof is complete. If (q ◦ α,U) ∈ θ then since
q ̸= ⊥ that is (q,⊥) /∈ Eθ by Proposition 3.3(iv) we have (q ◦ F, F) ∈ θ.
Thus (q ◦ (α ∧ F), U ∧ F) = (q ◦ F,U) ∈ θ. Consequently from the
transitivity of θ it follows that (F,U) ∈ θ which is a contradiction to
Proposition 3.2. Hence (∅, Sθ) = (∅, Aα

θ ∪Bα
θ).

Thus ρθ is a homomorphism of C-algebras with T, F, U . �

Lemma 3.6. The pair (ϕθ, ρθ) is a C-monoid homomorphism from (S⊥,M)
to the functional C-monoid

(
To(Sθ⊥), 3

Sθ
)
.

Proof. In view of Proposition 3.4 and Proposition 3.5 it suffices to show that
ϕθ(α[s, t]) = ρθ(α)[ϕθ(s), ϕθ(t)] and ρθ(s ◦ α) = ϕθ(s) ◦ ρθ(α) hold. In order
to show that ϕθ(α[s, t]) = ρθ(α)[ϕθ(s), ϕθ(t)] we proceed casewise depending

Monoids of non-halting programs with tests 15

on the value of α as per the following:

Case I : α ∈ {T, F}. If α = T then ϕθ(α[s, t]) = ϕθ(T [s, t]) = ϕθ(s) =
(Sθ, ∅)[ϕθ(s), ϕθ(t)] = ρθ(T)[ϕθ(s), ϕθ(t)] = ρθ(α)[ϕθ(s), ϕθ(t)]. Along similar
lines if α = F then ϕθ(α[s, t]) = ϕθ(F [s, t]) = ϕθ(t) = (∅, Sθ)[ϕθ(s), ϕθ(t)] =
ρθ(F)[ϕθ(s), ϕθ(t)] = ρθ(α)[ϕθ(s), ϕθ(t)].

Case II : α /∈ {T, F}. If α /∈ {T, F} then using (2.9) we have ϕθ(α[s, t]) =

ψ
α[s,t]
θ where ψ

α[s,t]
θ (v) = v · (α[s, t]) = (v ◦ α)[v · s, v · t].

Consider ρθ(α)[ϕθ(s), ϕθ(t)] = (Aα
θ , B

α
θ)[ψ

s
θ, ψ

t
θ], where

(Aα
θ , B

α
θ)[ψ

s
θ, ψ

t
θ](v) =


v · s, if v ∈ Aα

θ , that is (v ◦ α) ∈ T
θ
;

v · t, if v ∈ Bα
θ that is (v ◦ α) ∈ F

θ
;

⊥, otherwise.

It suffices to consider the following three cases:

Subcase 1 : (v◦α) ∈ T
θ
. using Proposition 1.6(i) we have ((v◦α)[v·s, v·t], v·s) ∈

Eθ. Consequently (v ◦ α)[v · s, v · t] = v · s.

Subcase 2 : (v ◦ α) ∈ F
θ
. Along similar lines if (v ◦ α) ∈ F

θ
then ((v ◦ α)[v ·

s, v · t], v · t) ∈ Eθ, by Proposition 1.6(i) and so (v ◦ α)[v · s, v · t] = v · t.

Subcase 3 : (v ◦ α) ∈ U
θ
. Then ((v ◦ α)[v · s, v · t],⊥) ∈ Eθ, by Proposition

1.6(i) which gives (v ◦ α)[v · s, v · t] = ⊥.

Thus we have ψ
α[s,t]
θ (v) = (Aα

θ , B
α
θ)[ψ

s
θ, ψ

t
θ](v) for every v ∈ Sθ⊥ and so

ϕθ(α[s, t]) = ρθ(α)[ϕθ(s), ϕθ(t)].

We show that ρθ(s ◦α) = ϕθ(s) ◦ ρθ(α) by proceeding casewise depend-
ing on the value of α and s ◦ α.

Case I : α /∈ {T, F}, s ◦ α /∈ {T, F}. Then ρθ(s ◦ α) = (As◦α
θ , Bs◦α

θ) and
ρθ(α) = (Aα

θ , B
α
θ). Then ϕθ(s) ◦ (Aα

θ , B
α
θ) = ψs

θ ◦ (Aα
θ , B

α
θ) = (C,D), where

C = {q ∈ Sθ : ψs
θ(q) ∈ Aα

θ } and D = {q ∈ Sθ : ψs
θ(q) ∈ Bα

θ }. We have to
show that

(As◦α
θ , Bs◦α

θ) = (C,D).

It is clear that q ∈ C

⇔ ψs
θ(q) ∈ Aα

θ

⇔ q · s ∈ Aα
θ

⇔ ((q · s) ◦ α, T) ∈ θ

⇔ (q ◦ (s ◦ α), T) ∈ θ (using (2.7))

⇔ q ∈ As◦α
θ

16 G. Panicker, K. V. Krishna and P. Bhaduri

Along similar lines we have q ∈ D ⇔ q ∈ Bs◦α
θ .

Case II : α ∈ {T, F}, s ◦ α /∈ {T, F}. If α = T then ρθ(s ◦ α) = ρθ(s ◦ T) =
(As◦T

θ , Bs◦T
θ). On the other hand ϕθ(s)◦ρθ(α) = ϕθ(s)◦ρθ(T) = ψs

θ◦(Sθ, ∅) =
(C,D) where C = {q ∈ Sθ : ψs

θ(q) ∈ Sθ} and D = ∅. We have to show that

(As◦T
θ , Bs◦T

θ) = (C, ∅).

We show that Bs◦T
θ = ∅ by contradiction. If Bs◦T

θ ̸= ∅ then let q ∈ Bs◦T
θ

⇒ (q ◦ (s ◦ T), F) ∈ θ

⇒ ((q · s) ◦ T, F) ∈ θ (using (2.7))

which is a contradiction to Proposition 3.3(ii). Thus Bs◦T
θ = ∅.

We now show that As◦T
θ = C. It is clear that q ∈ C

⇔ ψs
θ(q) ∈ Sθ

⇔ q · s ∈ Sθ

⇔ (q · s,⊥) /∈ Eθ

⇔ ((q · s) ◦ T, T) ∈ θ (using Proposition 3.3(iv))

⇔ (q ◦ (s ◦ T), T) ∈ θ (using (2.7))

⇔ q ∈ As◦T
θ

In the case where α = F the proof follows along similar lines.

Case III : α /∈ {T, F}, s ◦ α ∈ {T, F}. We have the following subcases:
Subcase 1 : s ◦ α = T . Then ρθ(s ◦ α) = ρθ(T) = (Sθ, ∅). On the other hand
ϕθ(s) ◦ ρθ(α) = ψs

θ ◦ (Aα
θ , B

α
θ) = (C,D) where C = {q ∈ Sθ : ψs

θ(q) ∈ Aα
θ }

and D = {q ∈ Sθ : ψs
θ(q) ∈ Bα

θ }. We have to show that

(C,D) = (Sθ, ∅).

We first show by contradiction that D = ∅. If D ̸= ∅ consider q ∈ D

⇒ ψs
θ(q) ∈ Bα

θ

⇒ q · s ∈ Bα
θ

⇒ ((q · s) ◦ α, F) ∈ θ

⇒ (q ◦ (s ◦ α), F) ∈ θ (using (2.7))

⇒ (q ◦ T, F) ∈ θ

Monoids of non-halting programs with tests 17

which is a contradiction to Proposition 3.3(ii).
In order to show that C = Sθ consider q ∈ Sθ that is (q,⊥) /∈ Eθ

⇒ (q ◦ T, T) ∈ θ (using Proposition 3.3(iv))

⇒ (q ◦ (s ◦ α), T) ∈ θ

⇒ ((q · s) ◦ α, T) ∈ θ (using (2.7))

⇒ q · s ∈ Aα
θ

⇒ ψs
θ(q) ∈ Aα

θ

⇒ q ∈ C.

Subcase 2 : s ◦α = F . Then ρθ(s ◦α) = ρθ(F) = (∅, Sθ) while ϕθ(s) ◦ ρθ(α) =
ψs
θ ◦ (Aα

θ , B
α
θ) = (C,D) where C = {q ∈ Sθ : ψs

θ(q) ∈ Aα
θ } and D = {q ∈ Sθ :

ψs
θ(q) ∈ Bα

θ }. We have to show that

(C,D) = (∅, Sθ).

We first show C = ∅ by contradiction. If C ̸= ∅ consider q ∈ C

⇒ ψs
θ(q) ∈ Aα

θ

⇒ q · s ∈ Aα
θ

⇒ ((q · s) ◦ α, T) ∈ θ

⇒ (q ◦ (s ◦ α), T) ∈ θ (using (2.7))

⇒ (q ◦ F, T) ∈ θ

⇒ (q ◦ T, F) ∈ θ

which is a contradiction to Proposition 3.3(ii).
In order to show that D = Sθ consider q ∈ Sθ that is (q,⊥) /∈ Eθ.

⇒ (q ◦ F, F) ∈ θ (using Proposition 3.3(iv))

⇒ (q ◦ (s ◦ α), F) ∈ θ

⇒ ((q · s) ◦ α, F) ∈ θ (using (2.7))

⇒ q · s ∈ Bα
θ

⇒ ψs
θ(q) ∈ Bα

θ

⇒ q ∈ D

which completes the proof for the case where α /∈ {T, F} and s ◦α ∈ {T, F}.

Case IV : α ∈ {T, F}, s ◦ α ∈ {T, F}. Note that s ◦ T ̸= F as a con-
sequence of Proposition 3.3(ii). If s ◦ T = F then as θ is a congruence,
(F, F) ∈ θ ⇒ (s ◦ T, F) ∈ θ, a contradiction to Proposition 3.3(ii). Similarly
we have s ◦ F ̸= T . In view of the above it suffices to consider the following
cases:

Subcase 1 : α = T, s ◦ α = T . Then ρθ(s ◦ α) = ρθ(T) = (Sθ, ∅) and ϕθ(s) ◦
ρθ(α) = ψs

θ ◦ (Sθ, ∅) = (C,D) where C = {q ∈ Sθ : ψs
θ(q) ∈ Sθ} and D = ∅.

18 G. Panicker, K. V. Krishna and P. Bhaduri

Thus it suffices to show that C = Sθ. Let q ∈ Sθ that is (q,⊥) /∈ Eθ

⇒ (q ◦ T, T) ∈ θ (using Proposition 3.3(iv))

⇒ (q ◦ (s ◦ T), T) ∈ θ

⇒ ((q · s) ◦ T, T) ∈ θ (using (2.7))

⇒ (q · s,⊥) /∈ Eθ (using Proposition 3.3(iv))

⇒ q · s ∈ Sθ

⇒ ψs
θ(q) ∈ Sθ

⇒ q ∈ C.

Thus C = Sθ.

Subcase 2 : α = F, s ◦ α = F . Then ρθ(s ◦ α) = ρθ(F) = (∅, Sθ) and ϕθ(s) ◦
ρθ(α) = ψs

θ ◦ (∅, Sθ) = (C,D) where C = ∅ and D = {q ∈ Sθ : ψs
θ(q) ∈ Sθ}.

The proof follows along similar lines as above. In order to show that D = Sθ

consider q ∈ Sθ that is (q,⊥) /∈ Eθ

⇒ (q ◦ F, F) ∈ θ (using Proposition 3.3(iv))

⇒ (q ◦ (s ◦ F), F) ∈ θ

⇒ ((q · s) ◦ F, F) ∈ θ (using (2.7))

⇒ (q · s,⊥) /∈ Eθ (using Proposition 3.3(iv))

⇒ q · s ∈ Sθ

⇒ ψs
θ(q) ∈ Sθ

⇒ q ∈ D.

Hence D = Sθ.
Thus (ϕθ, ρθ) is a homomorphism of C-monoids. �

Proposition 3.7. For all α ∈M the following statements hold:

(i) ρθ(α) = (Sθ, ∅) ⇒ (α, T) ∈ θ.
(ii) ρθ(α) = (∅, Sθ) ⇒ (α, F) ∈ θ.

Proof.

(i) If α = T then the result is obvious. Suppose that α ̸= T and ρθ(α) =
(Aα

θ , B
α
θ) = (Sθ, ∅). It follows that (t ◦ α, T) ∈ θ for all t ∈ Sθ. Using

Proposition 3.3(vi) and (2.4) we have 1 ∈ Sθ and so (1◦α, T) = (α, T) ∈
θ.

(ii) Along similar lines if α ̸= F then ρθ(α) = (Aα
θ , B

α
θ) = (∅, Sθ) gives

(t ◦α, F) ∈ θ for all t ∈ Sθ. Using Proposition 3.3(vi) and (2.4) we have
1 ∈ Sθ and so (1 ◦ α, F) = (α, F) ∈ θ.

�

Lemma 3.8. For every s, t ∈ S⊥ where s ̸= t there exists a maximal congru-
ence θ on M such that ϕθ(s) ̸= ϕθ(t).

Monoids of non-halting programs with tests 19

Proof. Using Proposition 1.6(iv) we have
∩
Eθ = ∆S⊥ and so since s ̸= t

there exists a maximal congruence θ on M such that (s, t) /∈ Eθ, i.e., s ̸= t.
For this θ, consider ϕθ : S⊥ → To(Sθ⊥). Then ϕθ(s) = ψs

θ, ϕθ(t) = ψt
θ. For

1 ∈ Sθ⊥ we have ψs
θ(1) = 1 · s = s while ψt

θ(1) = 1 · t = t. Since s ̸= t it
follows that ϕθ(s) ̸= ϕθ(t). �

Lemma 3.9. For every α, β ∈M where α ̸= β there exists a maximal congru-
ence θ on M such that ρθ(α) ̸= ρθ(β).

Proof. Using Proposition 1.6(v) since α ̸= β there exists a maximal congru-
ence θ on M such that (α, β) /∈ θ. We show that ρθ(α) ̸= ρθ(β). If α or β is
in {T, F} but ρθ(α) = ρθ(β) then using Proposition 3.7 we have (α, β) ∈ θ,
a contradiction. In the case where α, β /∈ {T, F} we show that

(Aα
θ , B

α
θ) ̸= (Aβ

θ , B
β
θ)

by showing that either Aα
θ ̸= Aβ

θ or that Bα
θ ̸= Bβ

θ . Owing to Proposition 3.2
it suffices to consider the following three cases:
Case I : (α, T) ∈ θ. Note that Proposition 3.3(vi) gives 1 ∈ Sθ. Thus we have

1 ∈ Sθ for which 1 ◦ α = α ∈ T
θ
and so 1 ∈ Aα

θ . However 1 /∈ Aβ
θ since

(α, β) /∈ θ.

Case II : (α, F) ∈ θ. Along similar lines for 1 ∈ Sθ we have 1 ◦ α = α ∈ F
θ

and so 1 ∈ Bα
θ . It is clear that 1 /∈ Bβ

θ since (α, β) /∈ θ.

Case III : (α,U) ∈ θ. In view of Proposition 3.2 it suffices to consider the
following cases:

Subcase 1 : (β, T) ∈ θ. As earlier we have 1 ∈ Aβ
θ \Aα

θ .

Subcase 2 : (β, F) ∈ θ. It is clear that 1 ∈ Bβ
θ \Bα

θ .
Thus ρθ(α) ̸= ρθ(β) which completes the proof. �

3.3. Embedding into a functional C-monoid

Let {θ} be the collection of all maximal congruences of M . Define the set
X to be the disjoint union of Sθ taken over all maximal congruences of M ,
written

X =
⊔
θ

Sθ (3.2)

Set X⊥ = X ∪ {⊥} with base point ⊥ /∈ X. For notational convenience we
use the same symbol ⊥ in X⊥ as well as in S⊥. Which ⊥ we are referring to
will be clear from the context of the statement.

In this subsection we obtain monomorphisms ϕ : S⊥ → To(X⊥) and
ρ : M → 3X , using which we establish that (S⊥,M) can be embedded into
the functional C-monoid

(
To(X⊥), 3X

)
.

Remark 3.10.

(i) Let q ∈ S be fixed. For different θ’s the representation of classes qEθ ’s
are different in the disjoint union X of Sθ’s.

20 G. Panicker, K. V. Krishna and P. Bhaduri

(ii) Let {Aλ}, {Bλ} be two families of sets indexed over Λ. Then
⊔
λ

(Aλ ∩

Bλ) =
(⊔

λ

Aλ

)
∩
(⊔

λ

Bλ

)
and

⊔
λ

(Aλ ∪Bλ) =
(⊔

λ

Aλ

)
∪
(⊔

λ

Bλ

)
.

Notation 3.11.

(i) For the pair of sets (A,B), we denote by π1(A,B) the first component
A, and by π2(A,B) the second component B.

(ii) For a family of pairs of sets (Aλ, Bλ) where λ ∈ Λ we denote by⊔
λ

(Aλ, Bλ) the pair of sets
(⊔

λ

Aλ,
⊔
λ

Bλ

)
.

Lemma 3.12. Consider ϕ : S⊥ → To(X⊥) given by

(ϕ(s))(x) =

{
(ϕθ(s))(qEθ), if x = qEθ ∈ Sθ and (ϕθ(s))(qEθ) ̸= ⊥Eθ ;

⊥, otherwise.

Then ϕ is a monoid monomorphism that maps the zero (and base point) of
S⊥ to that of To(X⊥), that is ⊥ 7→ ζ⊥.

Proof. It is clear that ϕ is well-defined and that ϕ(s) ∈ To(X⊥) since (ϕ(s))(⊥) =
⊥.

Claim: ϕ is injective. Let s ̸= t ∈ S⊥. Using Lemma 3.8 there exists
a maximal congruence θ on M such that ϕθ(s) ̸= ϕθ(t). Hence there exists
a qEθ (̸= ⊥Eθ) such that (ϕθ(s))(q) ̸= (ϕθ(t))(q). By extrapolation it follows
that (ϕ(s))(q) ̸= (ϕ(t))(q) and so ϕ(s) ̸= ϕ(t).

Claim: ϕ(⊥) = ζ⊥. Using Proposition 3.4 we have ϕθ(⊥) = ζ⊥Eθ for all
θ and so by definition (ϕ(⊥))(x) = ⊥ for all x ∈ X⊥.

Claim: ϕ(1) = idX⊥ . It is clear that (ϕ(1))(⊥) = ⊥. Consider q ∈ X
that is qEθ ∈ Sθ for some θ. Then by Proposition 3.4 we have (ϕ(1))(qEθ) =
(ϕθ(1))(qEθ) = qEθ and hence ϕ(1) = idX⊥ .

Claim: ϕ(s · t) = ϕ(s) ·ϕ(t). Clearly (ϕ(s · t))(⊥) = ⊥ = (ϕ(s) ·ϕ(t))(⊥).
Let q ∈ X that is qEθ ∈ Sθ for some θ. Suppose that (ϕ(s · t))(q) = ⊥ so that
(ϕθ(s · t))(q) = ⊥

⇒ ((ϕθ(s) · ϕθ(t))(q) = ⊥ (using Proposition 3.4)

⇒ ϕθ(t)(ϕθ(s)(q)) = ⊥
⇒ ϕ(t)(ϕθ(s)(q)) = ⊥

Noting that there are only two possibilities for ϕ(s)(q) we see that if ϕ(s)(q) =
ϕθ(s)(q) then we are through. On the other hand if ϕ(s)(q) = ⊥ that is
ϕθ(s)(q) = ⊥ then we have (ϕ(s·t))(q) = ⊥ = (ϕ(s)·ϕ(t))(q) which completes
the proof in this case.

Monoids of non-halting programs with tests 21

Consider the case where (ϕ(s · t))(q) ̸= ⊥. Using Proposition 3.4 it
follows that (ϕ(s · t))(q) = (ϕθ(s · t))(q) = (ϕθ(s) · ϕθ(t))(q) = ϕθ(t)(ϕθ(s)(q))
and so (ϕθ(s))(q) ̸= ⊥. Consequently ϕ(t)(ϕ(s)(q)) = ϕθ(t)(ϕθ(s)(q)) since
(ϕθ(s))(q) ̸= ⊥. It follows that (ϕ(s · t))(q) = (ϕ(s) ·ϕ(t))(q) which completes
the proof. �

Lemma 3.13. The function ρ : M → 3X defined by

ρ(α) = ⊔θρθ(α)

is a monomorphism of C-algebras with T, F, U .

Proof. Claim: ρ is well defined. Let α ∈M . Using Remark 3.10(i) we have
π1(ρ(α)) ∩ π2(ρ(α)) = ∅ due to the distinct representation of equivalence
classes. Also by Proposition 3.5 we have π1(ρθ(α)), π2(ρθ(α)) ⊆ Sθ and so
⊥ /∈ π1(ρ(α)) ∪ π2(ρ(α)) that is ρ(α) is can be identified with a pair of sets
over X.

Claim: ρ is injective. Let α ̸= β ∈ M . By Lemma 3.9 there exists a θ
such that ρθ(α) ̸= ρθ(β). Without loss of generality we infer that there exists
a qEθ ∈ π1(ρθ(α)) \ π1(ρθ(β)). Since ρ(α) is formed by taking the disjoint
union of the individual images under ρθ(α), using Remark 3.10(i) we can say
that q ∈ π1(ρ(α)) \ π1(ρ(β)) that is ρ(α) ̸= ρ(β).

Claim: ρ preserves the constants T, F, U . It follows easily from Propo-
sition 3.5 that ρ(T) = (X, ∅), ρ(F) = (∅, X) and ρ(U) = (∅, ∅).

Claim: ρ(¬α) = ¬(ρ(α)). If α ∈ {T, F} then the result is obvious.
If α /∈ {T, F} then ¬α /∈ {T, F}. Using Proposition 3.5 we have ρ(¬α) =
(⊔A¬α

θ ,⊔B¬α
θ) = (⊔Bα

θ ,⊔Aα
θ). Thus ρ(¬α) = (⊔Bα

θ ,⊔Aα
θ) = ¬(ρ(α)).

Claim: ρ(α ∧ β) = ρ(α) ∧ ρ(β). In view of Remark 3.10(ii) we have
⊔((Aλ, Bλ)∧ (Cλ, Dλ)) = (⊔Aγ ,⊔Bγ)∧ (⊔Cγ ,⊔Dγ) for the family of pairs of
sets (Aλ, Bλ), (Cλ, Dλ) where λ ∈ Λ over X. In view of the above and Propo-
sition 3.5 we have ⊔ρθ(α ∧ β) = ⊔(ρθ(α) ∧ ρθ(β)) = (⊔ρθ(α)) ∧ (⊔ρθ(β)) =
ρ(α) ∧ ρ(β) which completes the proof. �

Lemma 3.14. The pair (ϕ, ρ) is a C-monoid monomorphism from (S⊥,M) to
the functional C-monoid

(
To(X⊥),3X

)
.

Proof. In view of Lemma 3.12 and Lemma 3.13 it suffices to show ϕ(α[s, t]) =
(ρ(α))[ϕ(s), ϕ(t)] and ρ(s ◦ α) = ϕ(s) ◦ ρ(α).

In order to show that ϕ(α[s, t]) = (ρ(α))[ϕ(s), ϕ(t)] we show that
ϕ(α[s, t])(x) = (ρ(α))[ϕ(s), ϕ(t)](x) for all x ∈ X⊥. Thus we have the fol-
lowing cases:

22 G. Panicker, K. V. Krishna and P. Bhaduri

Case I : x = ⊥. It is clear that ϕ(α[s, t])(⊥) = ⊥ = (ρ(α))[ϕ(s), ϕ(t)](⊥) since
π1(ρ(α)), π2(ρ(α)) ⊆ X and ⊥ /∈ X.

Case II : x ∈ X. Consider q ∈ X that is qEθ ∈ Sθ for some θ. We have the
following subcases:

Subcase 1 : ϕ(α[s, t])(q) = ⊥. then ϕθ(α[s, t])(q) = ⊥ and so using Lemma
3.6 we have ϕθ(α[s, t])(q) = ⊥ = (ρθ(α))[ϕθ(s), ϕθ(t)](q). It follows that ei-
ther q /∈ π1(ρθ(α)) ∪ π2(ρθ(α)) or that q ∈ π1(ρθ(α)) and ϕθ(s)(q) = ⊥ or,
similarly, that q ∈ π2(ρθ(α)) and ϕθ(t)(q) = ⊥. Thus we have the following:

q /∈ π1(ρθ(α)) ∪ π2(ρθ(α)). In view of Remark 3.10(i) it follows that q /∈
π1(ρ(α)) ∪ π2(ρ(α)) and so (ρ(α))[ϕ(s), ϕ(t)](q) = ⊥.

q ∈ π1(ρθ(α)) and ϕθ(s)(q) = ⊥. Then q ∈ π1(ρ(α)) and ϕ(s)(q) = ⊥ and
so (ρ(α))[ϕ(s), ϕ(t)](q) = ⊥.

q ∈ π2(ρθ(α)) and ϕθ(t)(q) = ⊥. Along similar lines we have
(ρ(α))[ϕ(s), ϕ(t)](q) = ⊥.

Subcase 2 : ϕ(α[s, t])(q) ̸= ⊥. Then ϕ(α[s, t])(q) = ϕθ(α[s, t])(q) and so using
Lemma 3.6 we have ϕ(α[s, t])(q) = (ρθ(α))[ϕθ(s), ϕθ(t)](q). It follows that

ϕ(α[s, t])(q) = (ρθ(α))[ϕθ(s), ϕθ(t)](q) =


ϕθ(s)(q), if q ∈ π1(ρθ(α));

ϕθ(t)(q), if q ∈ π2(ρθ(α));

⊥, otherwise.

q ∈ π1(ρθ(α)). It follows that q ∈ π1(ρ(α)) and so (ρ(α))[ϕ(s), ϕ(t)](q) =
ϕ(s)(q). Note that ϕθ(s)(q) ̸= ⊥ else ϕ(α[s, t])(q) = ⊥, a contradiction.
Thus ϕ(s)(q) = ϕθ(s)(q) so that ϕ(α[s, t])(q) = (ρ(α))[ϕ(s), ϕ(t)](q).

q ∈ π2(ρθ(α)). The proof follows along similar lines as above.
q /∈ (π1(ρθ(α)) ∪ π2(ρθ(α))). This case cannot occur since we assumed that
ϕ(α[s, t])(q) ̸= ⊥.

Thus ϕ(α[s, t]) = (ρ(α))[ϕ(s), ϕ(t)].

We now show that ρ(s ◦ α) = ϕ(s) ◦ ρ(α). In order to prove this we
proceed by showing that

πi(ρ(s ◦ α)) = πi(ϕ(s) ◦ ρ(α))

for i ∈ {1, 2}.

Monoids of non-halting programs with tests 23

Let q ∈ π1(ρ(s ◦ α)) = ⊔π1(ρθ(s ◦ α)). Then qEθ ∈ Sθ for some θ and
qEθ ∈ π1(ρθ(s ◦ α))

⇒ qEθ ∈ π1(ϕθ(s) ◦ ρθ(α)) (using Lemma 3.6)

⇒ ϕθ(s)(qEθ) ∈ π1(ρθ(α)) ⊆ Sθ

⇒ ϕθ(s)(qEθ) ̸= ⊥
⇒ ϕ(s)(qEθ) = ϕθ(s)(qEθ)

⇒ ϕ(s)(qEθ) ∈ ⊔π1(ρθ(α))
⇒ ϕ(s)(qEθ) ∈ π1(ρ(α))

⇒ qEθ ∈ π1(ϕ(s) ◦ ρ(α))

and so π1(ρ(s ◦ α)) ⊆ π1(ϕ(s) ◦ ρ(α)).
For the reverse inclusion assume that q ∈ π1(ϕ(s) ◦ ρ(α)). Consequently

we have qEθ ∈ Sθ for some θ and ϕ(s)(qEθ) ∈ π1(ρ(α)) ⊆ X

⇒ ϕ(s)(qEθ) ̸= ⊥
⇒ ϕ(s)(qEθ) = ϕθ(s)(qEθ)(̸= ⊥Eθ)

⇒ ϕθ(s)(qEθ) ∈ π1(ρθ(α)) (using Remark 3.10(i))

⇒ qEθ ∈ π1(ϕθ(s) ◦ ρθ(α))
⇒ qEθ ∈ π1(ρθ(s ◦ α)) (using Lemma 3.14)

⇒ qEθ ∈ ⊔π1(ρθ(s ◦ α)) = π1(ρ(s ◦ α))

from which it follows that π1(ϕ(s) ◦ ρ(α)) ⊆ π1(ρ(s ◦ α)). Proceeding along
exactly the same lines we can show that π2(ρ(s ◦α)) = π2(ϕ(s) ◦ ρ(α)) which
completes the proof. �

3.4. Proof of Theorem 3.1

Let {θ} be the collection of all maximal congruences of M . Consider the set
X as in (3.2). The functions ϕ : S⊥ → To(X⊥) and ρ : M → 3X as defined
in Lemma 3.12 and Lemma 3.13, respectively, are monomorphisms. Further,
by Lemma 3.14, the pair (ϕ, ρ) is a monomorphism from (S⊥,M) to the
functional C-monoid

(
To(X⊥), 3X

)
. From the construction of X it is also

evident that ifM and S⊥ are finite then there are only finitely many maximal
congruences θ on M and finitely many equivalence classes Eθ on S⊥ and so
X must be finite.

Corollary 3.15. An identity is satisfied in every C-monoid (S⊥,M) where M
is an ada if and only if it is satisfied in all functional C-monoids.

In view of Corollary 3.15 and (2.1), we have the following result.

Corollary 3.16. In every C-monoid (S⊥,M) where M is an ada we have
(f ◦ T)[f, f] = f .

24 G. Panicker, K. V. Krishna and P. Bhaduri

4. Conclusion and future work

The notion of C-sets axiomatize the program construct if-then-else con-
sidered over possibly non-halting programs and non-halting tests. In this
work, we extended the axiomatization to C-monoids which include the com-
position of programs as well as composition of programs with tests. For the
class of C-monoids where the C-algebra is an ada we obtained a Cayley-type
theorem which exhibits the embedding of such C-monoids into functional C-
monoids. Using this, we obtained a mechanism to determine the equivalence
of programs through functional C-monoids. As future work, one may study
such a representation for the general class of C-monoids with no restriction
on the C-algebra. Note that the term f ◦T in the standard functional model
of a C-monoid represents the aspect of the domain of the function, as used
in [5, 12]. It is interesting to study the relation between these two concepts
in the current set up.

Appendix. Verification of examples

A.1. Verification of Example 2.2

We use the pairs of sets representation given by Guzmán and Squier in [7]
and identify α ∈ 3X with a pair of sets (A,B) of X where A = α−1(T) and
B = α−1(F). In this representation T = (X, ∅),F = (∅, X) and U = (∅, ∅).
Thus the operation ◦ is given as follows:

(f ◦ α)(x) =


T, if f(x) ∈ A;

F, if f(x) ∈ B;

U, otherwise.

In other words f ◦ α can be identified with the pair of sets (C,D) where
C = {x ∈ X : f(x) ∈ A} and D = {x ∈ X : f(x) ∈ B}.

Axiom (2.2): Let α be identified with the pair of sets (A,B). Then
ζ⊥ ◦ α = (∅, ∅) = U as ζ⊥(x) = ⊥ /∈ (A ∪B).

Axiom (2.3): Consider U = (∅, ∅). Then f ◦U = (∅, ∅) = U.

Axiom (2.4):

(1 ◦ α)(x) =


T, if idX⊥(x) ∈ A;

F, if idX⊥(x) ∈ B;

U, otherwise

= α(x).

Thus 1 ◦ α = α.

Monoids of non-halting programs with tests 25

Axiom (2.5): Let α be identified with the pair of sets (A,B). Then
f ◦ α = (C,D) where C = {x ∈ X : f(x) ∈ A} and D = {x ∈ X : f(x) ∈ B}.
Thus ¬(f ◦ α) = (D,C). Also f ◦ (¬α) = f ◦ (B,A) = (E,F) where
E = {x ∈ X : f(x) ∈ B} and F = {x ∈ X : f(x) ∈ A}. It follows that
(E,F) = (D,C).

Axiom (2.6): Let α, β be represented by the pairs of sets (A1, A2) and
(B1, B2) respectively. Then α ∧ β = (A1 ∩B1, A2 ∪ (A1 ∩B2)). Also let
f ◦ α = (C1, C2) where C1 = {x ∈ X : f(x) ∈ A1} and
C2 = {x ∈ X : f(x) ∈ A2}, and f ◦ β = (D1, D2) where
D1 = {x ∈ X : f(x) ∈ B1} and D2 = {x ∈ X : f(x) ∈ B2}. Then
(C1, C2) ∧ (D1, D2) = (C1 ∩D1, C2 ∪ (C1 ∩D2)). Thus
C1 ∩D1 = {x ∈ X : f(x) ∈ A1 ∩B1} and
C2 ∪ (C1 ∩D2) = {x ∈ X : f(x) ∈ A2 ∪ (A1 ∩B2)}. Hence
f ◦ (α ∧ β) = (f ◦ α) ∧ (f ◦ β).

Axiom (2.7): Consider f, g ∈ To(X⊥) and α ∈ 3X represented by the pair of
sets (A,B).

((f · g) ◦ α)(x) =


T, if g(f(x)) ∈ A;

F, if g(f(x)) ∈ B;

U, otherwise.

Let g ◦ α = (C,D) where C = {x ∈ X : g(x) ∈ A} and
D = {x ∈ X : g(x) ∈ B}.

(f ◦ (g ◦ α))(x) =


T, if f(x) ∈ C;

F, if f(x) ∈ D;

U, otherwise.

We may consider the following three cases.
Case I : x ∈ X such that g(f(x)) ∈ A: Then ((f · g) ◦ α)(x) = T . Also
f(x) ∈ C as g(f(x)) ∈ A. Thus (f ◦ (g ◦ α))(x) = T .
Case II : x ∈ X such that g(f(x)) ∈ B: Then ((f · g) ◦ α)(x) = F . Similarly
g(f(x)) ∈ B means that f(x) ∈ D. Thus (f ◦ (g ◦ α))(x) = F .
Case III : x ∈ X such that g(f(x)) /∈ (A ∪B): Then ((f · g) ◦ α)(x) = U .
Since f(x) is in neither C nor D it follows that (f ◦ (g ◦ α))(x) = U .

Axiom (2.8): Consider α ∈ 3X represented by the pair of sets (A,B).

(α[f, g] · h)(x) = h(α[f, g](x)) =


h(f(x)), if x ∈ A;

h(g(x)), if x ∈ B;

⊥, otherwise.

Hence α[f, g] · h = α[f · h, g · h].

26 G. Panicker, K. V. Krishna and P. Bhaduri

Axiom (2.9): Let α ∈ 3X be represented by the pair of sets (A,B).

(h · α[f, g])(x) = α[f, g](h(x)) =


f(h(x)), if h(x) ∈ A;

g(h(x)), if h(x) ∈ B;

⊥, otherwise.

Let h ◦ α be represented by the pair of sets (C,D) where
C = {x ∈ X : h(x) ∈ A} and D = {x ∈ X : h(x) ∈ B}.

(h ◦ α)[h · f, h · g](x) =


(h · f)(x), if x ∈ C;

(h · g)(x), if x ∈ D;

⊥, otherwise

=


f(h(x)), if h(x) ∈ A;

g(h(x)), if h(x) ∈ B;

⊥, otherwise.

Thus h · α[f, g] = (h ◦ α)[h · f, h · g].

Axiom (2.10): Let α, β ∈ 3X be represented by the pairs of sets (A1, A2)
and (B1, B2) respectively. For f, g ∈ To(X⊥) we have the following:

h(x) = α[f, g](x) =


f(x), if x ∈ A1;

g(x), if x ∈ A2;

⊥, otherwise.

Also h ◦ β = (C1, C2) where C1 = {x ∈ X : h(x) ∈ B1} and
C2 = {x ∈ X : h(x) ∈ B2}. Similarly f ◦ β = (D1, D2) where
D1 = {x ∈ X : f(x) ∈ B1} and D2 = {x ∈ X : f(x) ∈ B2}. Let
g ◦ β = (E1, E2) where E1 = {x ∈ X : g(x) ∈ B1} and
E2 = {x ∈ X : g(x) ∈ B2}. Thus
αJf ◦ β, g ◦ βK = (

(A1, A2) ∧ (D1, D2)
)
∨
(
¬(A1, A2) ∧ (E1, E2)

)
.

This evaluates to

αJf ◦ β, g ◦ βK = (
A1 ∩D1, A2 ∪ (A1 ∩D2)

)
∨
(
A2 ∩ E1, A1 ∪ (A2 ∩ E2)

)
=

(
(A1 ∩D1) ∪

(
(A2 ∪ (A1 ∩D2)) ∩ (A2 ∩ E1)

)
,

(A2 ∪ (A1 ∩D2)) ∩ (A1 ∪ (A2 ∩ E2))
)

= (S1, S2) (say)

We show that (C1, C2) = (S1, S2) by standard set theoretic arguments.
First we prove that C1 ⊆ S1. Let x ∈ C1. Then h(x) ∈ B1. Consider the
following cases:
Case I : x ∈ A1: Then h(x) = f(x) ∈ B1 hence x ∈ D1. Therefore
x ∈ A1 ∩D1 and so x ∈ S1.
Case II : x ∈ A2: Then h(x) = g(x) ∈ B1 hence x ∈ E1. Hence
x ∈ A2 ∩ E1 ⊆ A2 we have x ∈ S1.

Monoids of non-halting programs with tests 27

Case III : x /∈ (A1 ∪A2): Then h(x) = ⊥ /∈ B1 a contradiction to our
assumption that h(x) ∈ B1. It follows that this case cannot occur.
We show that S1 ⊆ C1. Let x ∈ S1. Thus x ∈ A1 ∩D1 or
x ∈

(
(A2 ∪ (A1 ∩D2)) ∩ (A2 ∩ E1)

)
. If x ∈ A1 ∩D1 then h(x) = f(x) as

x ∈ A1 and f(x) ∈ B1 as x ∈ D1. Thus h(x) ∈ B1 and so x ∈ C1. If
x ∈

(
(A2 ∪ (A1 ∩D2)) ∩ (A2 ∩ E1)

)
, then x ∈ (A2 ∩ E1). Thus h(x) = g(x)

as x ∈ A2 and g(x) ∈ B1 as x ∈ E1. Hence h(x) ∈ B1, thus x ∈ C1.
We show that C2 ⊆ S2. Let x ∈ C2 hence h(x) ∈ B2. Consider the following
cases:
Case I : x ∈ A1: Then h(x) = f(x) ∈ B2, therefore x ∈ D2. Hence
x ∈ A1 ∩D2 ⊆ A1 and so x ∈ S2.
Case II : x ∈ A2: Then h(x) = g(x) ∈ B2 therefore x ∈ E2. Thus
x ∈ A2 ∩ E2 ⊆ A2 and so x ∈ S2.
Case III : x /∈ (A1 ∪A2): Then h(x) = ⊥ /∈ B2 which is a contradiction. It
follows that this case cannot occur.
Finally we show that S2 ⊆ C2. Since A1 ∩A2 = ∅ it follows that
x ∈ A1 ∩D2 or x ∈ A2 ∩ E2. If x ∈ A1 ∩D2 then h(x) = f(x) ∈ B2 and
hence x ∈ C2. If x ∈ A2 ∩ E2 then h(x) = g(x) ∈ B2 hence x ∈ C2.

Thus α[f, g] ◦ β = αJf ◦ β, g ◦ βK.

A.2. Verification of Example 2.3

Let f, g, h ∈ SX
⊥ and α, β ∈ 3X .

Axiom (2.2): It is easy to see that (ζ⊥ ◦ α)(x) = U for all x ∈ X.

Axiom (2.3): It is clear that (f ◦U)(x) = U .

Axiom (2.4): Since S⊥ is non-trivial we must have 1 ̸= ⊥. If not then for
a ∈ S⊥ \ {⊥} we have a = a · 1 = a · ⊥ = ⊥ a contradiction. It follows that
ζ1 ̸= ζ⊥. Hence (ζ1 ◦ α)(x) = α(x) as ζ1(x) = 1 ̸= ⊥.

Axiom (2.5): We have

(f ◦ (¬α))(x) =

{
(¬α)(x), if f(x) ̸= ⊥;

U, otherwise

=

{
¬(α(x)), if f(x) ̸= ⊥;

U, otherwise

= ¬(f ◦ α)(x).

Thus f ◦ (¬α) = ¬(f ◦ α).

28 G. Panicker, K. V. Krishna and P. Bhaduri

Axiom (2.6): We have

(f ◦ (α ∧ β))(x) =

{
(α ∧ β)(x), if f(x) ̸= ⊥;

U, otherwise

=

{
α(x) ∧ β(x), if f(x) ̸= ⊥;

U ∧ U, otherwise

= (f ◦ α)(x) ∧ (f ◦ β)(x).

Thus f ◦ (α ∧ β) = (f ◦ α) ∧ (f ◦ β).

Axiom (2.7): Since S⊥ has no zero-divisors we have
f(x) · g(x) = ⊥ ⇔ f(x) = ⊥ or g(x) = ⊥. Consequently

((f · g) ◦ α)(x) =

{
α(x), if (f · g)(x) ̸= ⊥;

U, otherwise

=

{
α(x), if f(x) · g(x) ̸= ⊥;

U, otherwise

=

{
α(x), if f(x) ̸= ⊥ and g(x) ̸= ⊥;

U, otherwise

= (f ◦ (g ◦ α))(x).

Thus (f · g) ◦ α = f ◦ (g ◦ α).

Axiom (2.8): We have

(α[f, g] · h)(x) = α[f, g](x) · h(x) =


f(x) · h(x), if α(x) = T ;

g(x) · h(x), if α(x) = F ;

⊥, otherwise

= α[f · h, g · h](x).

Thus α[f, g] · h = α[f · h, g · h].

Axiom (2.9): Consider

h · α[f, g](x) = h(x) · α[f, g](x) =


h(x) · f(x), if α(x) = T ;

h(x) · g(x), if α(x) = F ;

⊥, otherwise.

On the other hand

(h ◦ α)[h · f, h · g](x) =


h(x) · f(x), if (h ◦ α)(x) = T ;

h(x) · g(x), if (h ◦ α)(x) = F ;

⊥, otherwise.

Note that if h(x) = ⊥ then h · α[f, g](x) = ⊥ = (h ◦ α)[h · f, h · g](x).
Suppose that h(x) ̸= ⊥ then (h ◦ α)(x) = α(x). It is clear that in this case

Monoids of non-halting programs with tests 29

as well h · α[f, g](x) = (h ◦ α)[h · f, h · g](x) holds. Thus
h · α[f, g] = (h ◦ α)[h · f, h · g].

Axiom (2.10): Consider

(α[f, g] ◦ β)(x) =

{
β(x), if α[f, g](x) ̸= ⊥;

U, otherwise

=

{
β(x), if (f(x) ̸= ⊥, α(x) = T) or (g(x) ̸= ⊥, α(x) = F);

U, otherwise.

We have (αJf ◦ β, g ◦ βK)(x) = (α(x) ∧ (f ◦ β)(x)) ∨ (¬α(x) ∧ (g ◦ β)(x)).
If f(x) ̸= ⊥ and α(x) = T we have (αJf ◦ β, g ◦ βK)(x) =
(T ∧ β(x)) ∨ (F ∧ (g ◦ β)(x)) = β(x) ∨ F = β(x) = (α[f, g] ◦ β)(x).
If g(x) ̸= ⊥ and α(x) = F we have (αJf ◦ β, g ◦ βK)(x) =
(F ∧ (f ◦ β)(x)) ∨ (T ∧ β(x)) = F ∨ β(x) = β(x) = (α[f, g] ◦ β)(x).
In all other cases it can be easily ascertained that
(αJf ◦ β, g ◦ βK)(x) = U = (α[f, g] ◦ β)(x). Thus α[f, g] ◦ β = αJf ◦ β, g ◦ βK.
A.3. Verification of Example 2.4

Axiom (2.2): It is clear that ⊥ ◦ α = U .

Axiom (2.3): It is obvious that t ◦ U = U .

Axiom (2.4): Since S⊥ is non-trivial it follows that 1 ̸= ⊥. Consequently
1 ◦ α = α.

Axiom (2.5): If s = ⊥ then s ◦ (¬α) = U = ¬(s ◦ α). If s ̸= ⊥ then
s ◦ (¬α) = ¬α = ¬(s ◦ α). Thus s ◦ (¬α) = ¬(s ◦ α).

Axiom (2.6): If s = ⊥ then s ◦ (α ∧ β) = U and
(s ◦ α) ∧ (s ◦ β) = U ∧ U = U . If s ̸= ⊥ then
s ◦ (α ∧ β) = α ∧ β = (s ◦ α) ∧ (s ◦ β). Thus s ◦ (α ∧ β) = (s ◦ α) ∧ (s ◦ β).

Axiom (2.7): Consider s, t ∈ S⊥ such that s · t = ⊥. Then
(s · t) ◦ α = ⊥ ◦ α = U . Since S⊥ has no non-zero zero-divisors we have
s = ⊥ or t = ⊥ and so s ◦ (t ◦ α) = U in either case. If s · t ̸= ⊥ then
(s · t) ◦ α = α and s ◦ (t ◦ α) = t ◦ α = α as neither s nor t are ⊥. Thus
(s · t) ◦ α = s ◦ (t ◦ α).

Axiom (2.8): As α ∈ {T, F, U} we consider the following three cases:
Case I : α = T : Then α[s, t] · u = T [s, t] · u = s · u = T [s · u, t · u].
Case II : α = F : Then α[s, t] · u = F [s, t] · u = t · u = F [s · u, t · u].
Case III : α = U : Then α[s, t] · u = U [s, t] · u = ⊥ · u = ⊥ = U [s · u, t · u].
Thus α[s, t] · u = α[s · u, t · u].

30 G. Panicker, K. V. Krishna and P. Bhaduri

Axiom (2.9): Consider the following cases:
Case I : r = ⊥: Then
r ·α[s, t] = ⊥·α[s, t] = ⊥ = U [r · s, r · t] = (⊥◦α)[r · s, r · t] = (r ◦α)[r · s, r · t].
Case II : r ̸= ⊥: We again consider the following three cases:
Case i : α = T :
r ·α[s, t] = r ·T [s, t] = r ·s = T [r ·s, r · t] = (r ◦T)[r ·s, r · t] = (r ◦α)[r ·s, r · t].
Case ii : α = F :
r ·α[s, t] = r ·F [s, t] = r · t = F [r ·s, r · t] = (r ◦F)[r ·s, r · t] = (r ◦α)[r ·s, r · t].
Case iii : α = U :
r·α[s, t] = r·U [s, t] = r·⊥ = ⊥ = U [r·s, r·t] = (r◦U)[r·s, r·t] = (r◦α)[r·s, r·t].
Thus r · α[s, t] = (r ◦ α)[r · s, r · t].

Axiom (2.10): Consider the following three cases:
Case I : α = T : α[s, t] ◦ β = T [s, t] ◦ β = s ◦ β = T Js ◦ β, t ◦ βK.
Case II : α = F : α[s, t] ◦ β = F [s, t] ◦ β = t ◦ β = F Js ◦ β, t ◦ βK.
Case III : α = U : α[s, t] ◦ β = U [s, t] ◦ β = ⊥ ◦ β = U = UJs ◦ β, t ◦ βK.
Thus α[s, t] ◦ β = αJs ◦ β, t ◦ βK.

Acknowledgements

We are thankful to the referee for providing insightful comments, which have
improved the presentation of the paper.

References

[1] Bergman, G.M.: Actions of Boolean rings on sets. Algebra Universalis 28, 153–
187 (1991)

[2] Bloom, S.L., Ésik, Z., Manes, E.G.: A Cayley theorem for Boolean algebras.
Amer. Math. Monthly 97, 831–833 (1990)

[3] Bloom, S.L., Tindell, R.: Varieties of “if-then-else”. SIAM J. Comput. 12, 677–
707 (1983)

[4] Bochvar, D.A.: Ob odnom tréhznacnom isčislenii i égo priménénii k anal-
iza paradoksov klassičéskogo rǎssirénnogo funkcional’nogo isčisléniá (in Rus-
sian). matématičeskij sbornik, 4: 287–308, 1939. Translated to English by M.
Bergmann “On a three-valued logical calculus and its application to the analy-
sis of the paradoxes of the classical extended functional calculus”. History and
Philosophy of Logic 2, 87–112 (1981)

[5] Desharnais, J., Jipsen, P., Struth, G.: Domain and antidomain semigroups. In:
Relations and Kleene algebra in computer science, Lecture Notes in Comput.
Sci., vol. 5827, pp. 73–87. Springer, Berlin (2009)

[6] Guessarian, I., Meseguer, J.: On the axiomatization of “if-then-else”. SIAM J.
Comput. 16, 332–357 (1987)

[7] Guzmán, F., Squier, C.C.: The algebra of conditional logic. Algebra Universalis
27, 88–110 (1990)

Monoids of non-halting programs with tests 31

[8] Heyting, A.: Die formalen regeln der intuitionistischen logik, sitzungsberichte
der preuszischen akademie der wissenschaften, physikalischmathematische
klasse,(1930), 42–56 57–71 158–169 in three parts. Sitzungsber. preuss. Akad.
Wiss 42, 158–169 (1934)

[9] Igarashi, S.: Semantics of ALGOL-like statements. In: Symposium on Seman-
tics of Algorithmic Languages, pp. 117–177. Springer (1971)

[10] Jackson, M., Stokes, T.: Agreeable semigroups. J. Algebra 266, 393–417 (2003)

[11] Jackson, M., Stokes, T.: Semigroups with if-then-else and halting programs.
Int. J. Algebra Comput. 19, 937–961 (2009)

[12] Jackson, M., Stokes, T.: Monoids with tests and the algebra of possibly non-
halting programs. J. Log. Algebr. Methods Program. 84, 259–275 (2015)

[13] Kennison, J.F.: Triples and compact sheaf representation. J. Pure Appl. Alge-
bra 20, 13–38 (1981)

[14] Kleene, S.: On notation for ordinal numbers. The Journal of Symbolic Logic 3,
150–155 (1938)

[15] Lukasiewicz, J.: On three-valued logic. Ruch Filozoficzny 5,(1920), English
translation in Borkowski, L.(ed.) 1970. Jan Lukasiewicz: Selected Works (1920)

[16] Manes, E.G.: Adas and the equational theory of if-then-else. Algebra Univer-
salis 30, 373–394 (1993)

[17] Manes, E.G.: A transformational characterization of if-then-else. Theoret.
Comput. Sci. 71, 413–417 (1990)

[18] McCarthy, J.: A basis for a mathematical theory of computation. In: Com-
puter programming and formal systems, pp. 33–70. North-Holland, Amsterdam
(1963)

[19] Mekler, A.H., Nelson, E.M.: Equational bases for if-then-else. SIAM J. Comput.
16, 465–485 (1987)

[20] Panicker, G., Krishna, K.V., Bhaduri, P.: Axiomatization of if-then-else over
possibly non-halting programs and tests. Int. J. Algebra Comput. 27, 273–297
(2017)

[21] Pigozzi, D.: Equality-test and if-then-else algebras: Axiomatization and speci-
fication. SIAM J. Comput. 20, 766–805 (1991)

[22] Sethi, R.: Conditional expressions with equality tests. J. ACM 25, 667–674
(1978)

[23] Stokes, T.: Sets with B-action and linear algebra. Algebra Universalis 39, 31–43
(1998)

[24] Stokes, T.: Comparison semigroups and algebras of transformations. Semigroup
Forum 81, 325–334 (2010)

Gayatri Panicker
Department of Mathematics
Indian Institute of Technology Guwahati
Guwahati, India

e-mail: p.gayatri@iitg.ac.in

32 G. Panicker, K. V. Krishna and P. Bhaduri

K. V. Krishna
Department of Mathematics
Indian Institute of Technology Guwahati
Guwahati, India
URL: http://www.iitg.ac.in/kvk
e-mail: kvk@iitg.ac.in

Purandar Bhaduri
Department of Computer Science and Engineering
Indian Institute of Technology Guwahati
Guwahati, India
URL: http://www.iitg.ac.in/pbhaduri
e-mail: pbhaduri@iitg.ac.in

