Exercises 219

decision problems for w-automata have been addressed by Landweber [261] and later by
Emerson and Lei [143] and Sistla, Vardi, and Wolper [373]. For a survey of automata on
infinite words, transformations between the several classes of w-automata, complementa-
tion operators and other algorithms on w-automata, we refer to the articles by Choueka
[81], Kaminsky [229], Staiger [376], and Thomas [390, 391]. An excellent overview of the
main concepts of and recent results on w-automata is provided by the tutorial proceedings
[174].

Automata and linear-time properties. The use of Biichi automata for the representation
and verification of linear-time properties goes back to Vardi and Wolper [411, 412] who
studied the connection of Biichi automata with linear temporal logic. Approaches with
similar automata models have been developed independently by Lichtenstein, Pnueli, and
Zuck [274] and Kurshan [250]. The verification of (regular) safety properties has been
described by Kupferman and Vardi [249]. The notion of persistence property has been
introduced by Manna and Pnueli [282] who provided a hierarchy of temporal properties.
The nested depth-first algorithm (see Algorithm 8) originates from Courcoubetis et al. [102]
and its implementation in the model checker SPIN has been reported by Holzmann, Peled,
and Yannakakis [212]. The Murp verifier developed by Dill [132] focuses on verifying
safety properties. Variants of the nested depth-first search have been proposed by several
authors, see, e.g., [106, 368, 161, 163]. Approaches that treat generalized Biichi conditions
(i.e., conjunctions of Biichi conditions) are discussed in [102, 388, 184, 107]. Further
implementation details of the nested depth-first search approach can be found in the book
by Holzman [209].

4.7 Exercises

EXERCISE 4.1. Let AP = {a,b,c}. Consider the following LT properties:

a

b

(a) If a becomes valid, afterward b stays valid ad infinitum or until ¢ holds.

(b) Between two neighboring occurrences of a, b always holds.

(¢) Between two neighboring occurrences of a, b occurs more often than c.
)

(d) a A —=band bA —a are valid in alternation or until ¢ becomes valid.

For each property P; (1 < i < 4), decide if it is a regular safety property (justify your answers) and
if so, define the NFA A; with £(A;) = BadPref(P;). (Hint: You may use propositional formulae
over the set AP as transition labels.)

Exercises 221

Construct the product T'S ® A of the transition system and the NFA.

EXERCISE 4.6. Consider the following transition system TS

{a,c} {a,c} {a,b}

and the regular safety property

“always if a is valid and b A —¢ was valid somewhere before,
then a and b do not hold thereafter at least until ¢ holds”

Psafe -

As an example, it holds:

{b}a{a,b}{a,b,c} € pref{ Psyfe)
{a,b}{a,b}a{b,c} € pref{ Pyyfe)
{bHa,c}{a}{a,bc} € BadPref(Psu.)
{bHa,cH{a,c}{a} € BadPref{Psuy)

Questions:
(a) Define an NFA A such that £(A) = MinBadPref(Py,).

(b) Decide whether T'S |= Py, ¢e using the TS ® A construction.
Provide a counterexample if TS & Py, fe.

EXERCISE 4.7. Prove or disprove the following equivalences for w-regular expressions:

222 Regular Properties

(a) (E1 +E2).FY = E.F°+EpF*
(b) E(Fi +F2)* = EFY+EFS
(¢) E(F.F)* = EF¥
(d) (E*F)* = E*F*

where E, Eq, Eo, F, Fq, Fo are arbitrary regular expressions with € ¢ L(F) U L(F1) U L(F2).

EXERCISE 4.8. Generalized w-regular expressions are built from the symbols @ (to denote the
empty language), € (to denote the language {e} consisting of the empty word), the symbols A for
A € ¥ (for the singleton sets {A}) and the language operators “+” (union), “.” (concatenation),
“+” (Kleene star, finite repetition), and “w” (infinite repetition). The semantics of a generalized
w-regular expression G is a language £,(G) C ¥* U X, which is defined by

° EQ(@) = 9, Eg(g) = {5}7 Eg(A) - {A}’
° Eg(Gl + GQ) = Lg(Gl) U Eg(GQ) and Eg(Gl.GQ) = Eg(Gl).Eg(GQ),
o £,(G%) = £,(G)", and £,(G) = L, (G)*.

Two generalized w-regular expressions G and G’ are called equivalent iff £,(G) = L,(G").
Show that for each generalized w-regular expression G there exists an equivalent generalized w-
regular expression G’ of the form

G =E+E;.F{ +...E,.F¥

where E,Eq,...,E,, F1,...,F, are regular expressions and ¢ ¢ L(F;),i=1,...,n.

EXERCISE 4.9. Let ¥ = {A,B}. Construct an NBA A that accepts the set of infinite words o
over X such that A occurs infinitely many times in ¢ and between any two successive A’s an odd
number of B’s occur.

EXERCISE 4.10. Let ¥ = { A, B, C} be an alphabet.

(a) Construct an NBA A that accepts exactly the infinite words o over ¥ such that A occurs
infinitely many times in o and between any two successive A’s an odd number of B’s or an
odd number of C’s occur. Moreover, between any two successive A’s either only B’s or only
C’s are allowed. That is, the accepted words should have the form

wAv1AvoAvs. ..

where w € {B,C}*, v; € {B*™ |k > 0}U{C*™ | k >0} for all i > 0. Give also an
w-regular expression for this language.

Exercises 223

(b) Repeat the previous exercise such that any accepting word contains only finitely many C’s.

(¢) Change your automaton from part (a) such that between any two successive A’s an odd
number of symbols from the set { B, C'} may occur.

(d) Same exercise as in (c), except that now an odd number of B’s and an odd number of C’s
must occur between any two successive A symbols.

EXERCISE 4.11. Depict an NBA for the language described by the w-regular expression

(AB+ C)*((AA + B)C) + (A*C).

224 Regular Properties

EXERCISE 4.12. Consider the following NBA A; and A over the alphabet { A, B,C' }:

Find w-regular expressions for the languages accepted by A; and As.

EXERCISE 4.13. Consider the NFA A; and As:

Construct an NBA for the language £(A;).L (A2)“.

EXERCISE 4.14. Let AP = {a,b}. Give an NBA for the LT property consisting of the infinite
words AgA1As. .. (2AP)W such that

Fj>0(acA;AbeA;) and Fj>0.(acA;Abd Aj).

Provide an w-regular expression for £, (.A).

EXERCISE 4.15. Let AP = {a, b, c}. Depict an NBA for the LT property consisting of the infinite
words AgAi1As. .. (ZAP)w such that

Vi > 0.Ag = (a v (bAC)

