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1.5 Each of the following languages is the complement of a simpler language. In each
part, construct a DFA for the simpler language, then use it to give the state diagram
of a DFA for the language given. In all parts, ¥ = {a, b}.
Aa. {w|w does not contain the substring ab}
Ab. {w|w does not contain the substring baba }
c. {w| w contains neither the substrings ab nor ba}
d. {w]|w is any string notin a*b*}
e. {w|w isany string notin (ab*)*}
f. {w|w is any string notin a* Ub"}
g. {w|w is any string that doesn’t contain exactly two a’s}

h. {w|w is any string except a and b}

1.6 Give state diagrams of DFAs recognizing the following languages. In all parts, the
alphabet is {0,1}.
a. {w|w begins with a 1 and ends with a 0}
b. {w|w contains at least three 1s}
¢. {w| w contains the substring 0101 (i.e., w = 20101y for some z and y)}
d. {w|w has length at least 3 and its third symbol isa 0}
e. {w|w starts with 0 and has odd length, or starts with 1 and has even length}
f. {w| w doesn’t contain the substring 110}

g. {w] the length of w is at most 5}
h. {w|w is any string except 11 and 111}
i. {w|every odd position of wisa 1}
j. {w|w contains at least two Os and at most one 1}
k. {e,0}
l. {w|w contains an even number of Os, or contains exactly two 1s}
m. The empty set
n. All strings except the empty string

1.7 Give state diagrams of NFAs with the specified number of states recognizing each
of the following languages. In all parts, the alphabet is {0,1}.

Aa. The language {w| w ends with 00} with three states

b. The language of Exercise 1.6¢c with five states
c. The language of Exercise 1.6] with six states
d. The language {0} with two states
e. The language 0*1*0* with three states

Af. The language 1*(001*)* with three states
g. The language {e} with one state
h. The language 0* with one state

1.8 Use the construction in the proof of Theorem 1.45 to give the state diagrams of
NFAs recognizing the union of the languages described in

a. Exercises 1.6a and 1.6b.
b. Exercises 1.6¢ and 1.6f.
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1.9 Use the construction in the proof of Theorem 1.47 to give the state diagrams of
NFAs recognizing the concatenation of the languages described in

a. Exercises 1.6g and 1.6i.
b. Exercises 1.6b and 1.6m.

1.10 Use the construction in the proof of Theorem 1.49 to give the state diagrams of
NFAs recognizing the star of the languages described in

a. Exercise 1.6b.
b. Exercise 1.6j.
c. Exercise 1.6m.

A1.11 Prove that every NFA can be converted to an equivalent one that has a single accept
state.

1.12 Let D = {w|w contains an even number of a’ and an odd number of b’ and does
not contain the substring ab}. Give a DFA with five states that recognizes D and a
regular expression that generates D. (Suggestion: Describe D more simply.)

1.13 Let F be the language of all strings over {0,1} that do not contain a pair of 1s that
are separated by an odd number of symbols. Give the state diagram of a DFA with
five states that recognizes F'. (You may find it helpful first to find a 4-state NFA for
the complement of F.)

1.14  a. Show that if M is a DFA that recognizes language B, swapping the accept
and nonaccept states in M yields a new DFA recognizing the complement of
B. Conclude that the class of regular languages is closed under complement.
b. Show by giving an example that if M is an NFA that recognizes language
C, swapping the accept and nonaccept states in M doesn’t necessarily yield
a new NFA that recognizes the complement of C'. Is the class of languages
recognized by NFAs closed under complement? Explain your answer.

1.15 Give a counterexample to show that the following construction fails to prove The-
orem 1.49, the closure of the class of regular languages under the star operation.’
Let N; = (Q1,%,01,q1, F1) recognize A;. Construct N = (Q1,%,9,q1, F') as
follows. N is supposed to recognize A7.

a. The states of N are the states of N;.

b. The start state of N is the same as the start state of N;.

c. F= {(11} U .F] 1
"The accept states F are the old accept states plus its start state.

d. Define ¢ so that for any ¢ € Q1 and any a € X,

d1(g,a) q¢Frora#e

6(q,a) =
(9:0) di(q,a) U{q1} g€ Franda=c¢e.

(Suggestion: Show this construction graphically, as in Figure 1.50.)

"In other words, you must present a finite automaton, N1, for which the constructed
automaton N does not recognize the star of Ny’s language.
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1.16 Use the construction given in Theorem 1.39 to convert the following two nonde-
terministic finite automata to equivalent deterministic finite automata.

©» Omn0

) O=

(@) (b)

1.17  a. Give an NFA recognizing the language (01 U 001 U 010)".

b. Convert this NFA to an equivalent DFA. Give only the portion of the DFA
that is reachable from the start state.

1.18 Give regular expressions generating the languages of Exercise 1.6.
1.19 Use the procedure described in Lemma 1.55 to convert the following regular ex-
pressions to nondeterministic finite automata.
a. (0U1)*000(0U1)*
b. (((00)*(11)) U 01)*
c. 0*

1.20 For each of the following languages, give two strings that are members and two
strings that are 7ot members—a total of four strings for each part. Assume the
alphabet ¥ = {a,b} in all parts.

a. a'b" e. Yra¥X'bX*al”
b. a(ba)*b f. abaUbab

c. a*Ub” g. (eUa)d

d. (aaa)* h. (aUbaUDbb)X*

1.21 Use the procedure described in Lemma 1.60 to convert the following finite au-
tomata to regular expressions.
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1.22 In certain programming languages, comments appear between delimiters such as
/# and #/. Let C be the language of all valid delimited comment strings. A mem-
ber of C must begin with /# and end with #/ but have no intervening #/. For
simplicity, assume that the alphabet for C'is ¥ = {a,b, /, #}.

a. Give a DFA that recognizes C'.
b. Give a regular expression that generates C'.
A1.23 Let B be any language over the alphabet . Prove that B = B* itt BB C B.

1.24 A finite state transducer (FST) is a type of deterministic finite automaton whose
output is a string and not just accept or reject. The following are state diagrams of
1/0 2/1 a/o

finite state transducers 1 and T5.
(Y 21 [

0/0 a/1

0/0 1/1 o/

T, T

Each transition of an FST is labeled with two symbols, one designating the input
symbol for that transition and the other designating the output symbol. The two
symbols are written with a slash, /, separating them. In 71, the transition from
q1 to g2 has input symbol 2 and output symbol 1. Some transitions may have
multiple input-output pairs, such as the transition in T from ¢, to itself. When
an FST computes on an input string w, it takes the input symbols w; - - - wy, one by
one and, starting at the start state, follows the transitions by matching the input
labels with the sequence of symbols wy - -w, = w. Every time it goes along a
transition, it outputs the corresponding output symbol. For example, on input
2212011, machine T} enters the sequence of states q1, g2, g2, 42, g2, q1, g1, g1 and
produces output 1111000. On input abbb, 7> outputs 1011. Give the sequence of
states entered and the output produced in each of the following parts.

a. T oninput 011 e. T oninputb

b. T\ on input 211 f. T on input bbab

c. Ty oninput 121 g. T5 on input bbbbbb
d. 7' on input 0202 h. 7% oninpute

1.25 Read the informal definition of the finite state transducer given in Exercise 1.24.
Give a formal definition of this model, following the pattern in Definition 1.5
(page 35). Assume that an FST has an input alphabet ¥ and an output alphabet I" but
not a set of accept states. Include a formal definition of the computation of an FST.
(Hint: An FSTis a 5-tuple. Its transition function is of the form §: Q@ xX—Q xT'.)

1.26 Using the solution you gave to Exercise 1.25, give a formal description of the ma-
chines Ty and 7% depicted in Exercise 1.24.
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1.27 Read the informal definition of the finite state transducer given in Exercise 1.24.
Give the state diagram of an FST with the following behavior. Its input and output
alphabets are {0,1}. Its output string is identical to the input string on the even
positions but inverted on the odd positions. For example, on input 0000111 it
should output 1010010.

1.28 Convert the following regular expressions to NFAs using the procedure given in
Theorem 1.54. In all parts, ¥ = {a, b}.

a. a(abb)* Ub

b. a* U (ab)*

c. (aub*)a'd*

1.29 Use the pumping lemma to show that the following languages are not regular.

Aa. A = {0"1"2"|n > 0}

b. Az = {www|w € {a,b}"}
Ac. Az ={a?"|n >0} (Here,a®" means a string of 2" a’.)

1.30 Describe the error in the following “proof” that 0*1* is not a regular language. (An
error must exist because 0*1* is regular.) The proof is by contradiction. Assume
that 0%1* is regular. Let p be the pumping length for 01" given by the pumping
lemma. Choose s to be the string 0”1”. You know that s is a member of 0*1*, but

Example 1.73 shows that s cannot be pumped. Thus you have a contradiction. So
0%1" is not regular.

PROBLEMS

1.31 For languages A and B, let the perfect shuffle of A and B be the language
{w| w = aby - - - agby, wherear---ar € Aand by --- by € B, each a;, b; € L}.

Show that the class of regular languages is closed under perfect shuffle.

1.32 For languages A and B, let the shuffle of A and B be the language
{w| w = aib; ---arby, wherea,---ax € A and by - - by € B, each a;,b; € Z*}.

Show that the class of regular languages is closed under shuffle.

1.33 Let A be any language. Define DROP-OUT (A) to be the language containing all
strings that can be obtained by removing one symbol from a string in A. Thus,
DROP-OUT(A) = {az| zyz € A where 2,z € &%,y € L}. Show that the class
of regular languages is closed under the DROP-OUT operation. Give both a proof
by picture and a more formal proof by construction as in ‘Theorem 1.47.

A1.34 Let B and C be languages over © = {0, 1}. Define
B & ¢ = {weB| forsome y€C, strings w and y contain equal numbers of 1s}.

- . 1 .
Show that the class of regular languages is closed under the < operation.
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