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Inductive case: We assume that the induction hypothesis holds for some n > 1
and prove that it holds for n 4+ 1. Let G, be any two-ended graph with n edges.
By the induction assumption, G, is a line graph. Now suppose that we create a
two-ended graph G, by adding one more edge to G,. This can be done in only
one way: the new edge must join one of the two endpoints of G, to a new vertex;
otherwise, G +1 would not be two-ended.

ey new edge

Clearly, G, is also a line graph. Therefore, the induction hypothesis holds for
all graphs with n + 1 edges, which completes the proof by induction.

Problem 12.11.

If G is any simple graph, then a graph isomorphism from G to the same graph
G is called a graph automorphism''. As a simple example, the identity function
id : V(G) — V(G) is always a graph automorphism.

(a) If D is the Diirer graph pictured in Figure 12.25, briefly describe a graph
automorphism of D that is not the identity function.

(b) Define a relation R on V(G) by declaring that v R w precisely when there
exists a graph automorphism f of G with f(v) = w. In the special case of the
Diirer graph, prove that 1 R 10.

Hint: Try to map 1, 2,3 to 10, 11, 12, respectively. Where must the other vertices
go?

(¢) In the Diirer graph, prove that NOT(1 R 4).
Hint: Length 3 cycles.

(d) Prove carefully that for any simple graph G (not necessarily the Diirer graph),
the relation R defined above is an equivalence relation.

11S0-named because “auto” means “self”, so an automorphism is a “self-isomorphism.”
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Figure 12.25 The Diirer graph, D.

Hint: If f and g are graph automorphisms, prove that g o f is, too.

(e) Because R is an equivalence relation, it partitions the vertices into equivalence
classes.'> What are these equivalence classes for the Diirer graph? How do you
know?

Hint: There are only two classes.

Problems for Section 12.5

Practice Problems

Problem 12.12.

Let B be a bipartite graph with vertex sets L(B), R(B). Explain why the sum of
the degrees of the vertices in L (B) equals the sum of the degrees of the vertices in
R(B).

Class Problems

Problem 12.13.

A certain Institute of Technology has a lot of student clubs; these are loosely over-
seen by the Student Association. Each eligible club would like to delegate one of its
members to appeal to the Dean for funding, but the Dean will not allow a student to

12Nodes in the same equivalence class can be thought of, informally, as having the “same role” in
the graph, since you can move one to the other through an isomorphism.
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be the delegate of more than one club. Fortunately, the Association VP took Math
for Computer Science and recognizes a matching problem when she sees one.

(a) Explain how to model the delegate selection problem as a bipartite matching
problem. (This is a modeling problem; we aren’t looking for a description of an
algorithm to solve the problem.)

(b) The VP’s records show that no student is a member of more than 9 clubs. The
VP also knows that to be eligible for support from the Dean’s office, a club must
have at least 13 members. That’s enough for her to guarantee there is a proper
delegate selection. Explain. (If only the VP had taken an Algorithms class, she
could even have found a delegate selection without much effort.)

Problem 12.14.
A simple graph is called regular when every vertex has the same degree. Call
a graph balanced when it is regular and is also a bipartite graph with the same
number of left and right vertices.

Prove that if G is a balanced graph, then the edges of G can be partitioned into
blocks such that each block is a perfect matching.

For example, if G is a balanced graph with 2k vertices each of degree j, then the
edges of G can be partitioned into j blocks, where each block consists of k edges,
each of which is a perfect matching.

Exam Problems

Problem 12.15.

Marvel is staging 4 test screenings of Avengers: oo War exclusively for a random
selection of MIT students!'? For scheduling purposes, each of the selected students
will specify which of the four screenings don’t conflict with their schedule—every
student is available for at least two out of the four screenings. However, each
screening has only 20 available seats, not all of which need to be filled each time.
Marvel is thus faced with a difficult scheduling problem: how do they make sure
each of the chosen students is able to find a seat at a screening? They’ve recruited
you to help solve this dilemma.

(a) Describe how to model this situation as a matching problem. Be sure to specify
what the vertices/edges should be and briefly describe how a matching would deter-
mine seat assignments for each student in a screening for which they are available.
(This is a modeling problem; we aren’t looking for a description of an algorithm to

13Sadly this isn’t actually happening, as far as we know.
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Figure 12.26 Bipartite graph G.

Homework Problems

Problem 12.19.

A Latin square is n x n array whose entries are the number 1,...,n. These en-
tries satisfy two constraints: every row contains all n integers in some order, and
also every column contains all n integers in some order. Latin squares come up
frequently in the design of scientific experiments for reasons illustrated by a little
story in a footnote. '

14 At Guinness brewery in the eary 1900°s, W. S. Gosset (a chemist) and E. S. Beavan (a “maltster”)
were trying to improve the barley used to make the brew. The brewery used different varieties of
barley according to price and availability, and their agricultural consultants suggested a different
fertilizer mix and best planting month for each variety.

Somewhat sceptical about paying high prices for customized fertilizer, Gosset and Beavan planned
a season long test of the influence of fertilizer and planting month on barley yields. For as many
months as there were varieties of barley, they would plant one sample of each variety using a different
one of the fertilizers. So every month, they would have all the barley varieties planted and all the
fertilizers used, which would give them a way to judge the overall quality of that planting month.
But they also wanted to judge the fertilizers, so they wanted each fertilizer to be used on each variety
during the course of the scason. Now they had a little mathematical problem, which we can abstract
as follows.

Suppose there are n barley varieties and an equal number of recommended fertilizers. Form an
n x n array with a column for each fertilizer and a row for each planting month. We want to fill in
the entries of this array with the integers 1,...,n numbering the barley varieties, so that every row
contains all n integers in some order (so every month each variety is planted and each fertilizer is
used), and also every column contains all n integers (so each fertilizer is used on all the varieties over
the course of the growing season).
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R(H) ~

Figure 12.27 Bipartite Graph H.

For example, here is a 4 x 4 Latin square:

2|3

AN W=
N W=

4]2
14
301

(a) Here are three rows of what could be part of a 5 x 5 Latin square:

2145|131
411(3(2]|5
312/1(5|4

Fill in the last two rows to extend this “Latin rectangle” to a complete Latin square.

(b) Show that filling in the next row of an n x n Latin rectangle is equivalent to
finding a matching in some 2n-vertex bipartite graph.

(¢) Prove that a matching must exist in this bipartite graph and, consequently, a
Latin rectangle can always be extended to a Latin square.
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Problem 12.20.

Take a regular deck of 52 cards. Each card has a suit and a value. The suit is one of
four possibilities: heart, diamond, club, spade. The value is one of 13 possibilities,
A,2,3,....10,J, Q. K. There is exactly one card for each of the 4 x 13 possible
combinations of suit and value.

Ask your friend to lay the cards out into a grid with 4 rows and 13 columns.
They can fill the cards in any way they’d like. In this problem you will show that
you can always pick out 13 cards, one from each column of the grid, so that you
wind up with cards of all 13 possible values.

(a) Explain how to model this trick as a bipartite matching problem between the
13 column vertices and the 13 value vertices. Is the graph necessarily degree-
constrained?

(b) Show that any n columns must contain at least n different values and prove
that a matching must exist.

Problem 12.21.
Scholars through the ages have identified twenty fundamental human virtues: hon-
esty, generosity, loyalty, prudence, completing the weekly course reading-response,
etc. At the beginning of the term, every student in Math for Computer Science pos-
sessed exactly eight of these virtues. Furthermore, every student was unique; that
is, no two students possessed exactly the same set of virtues. The Math for Com-
puter Science course staff must select one additional virtue to impart to each student
by the end of the term. Prove that there is a way to select an additional virtue for
each student so that every student is unique at the end of the term as well.

Hint: Look for a matching in an appropriately defined bipartite graph. Be sure
to clearly specify your (left and right) vertices and edges.

Problem 12.22.
Suppose n teams play in a round-robin tournament. Each day, each team will play
a match with another team. Over a period of n — 1 days, every team plays every
other team exactly once. There are no ties. Show that for each day we can select a
winning team, without selecting the same team twice.!”

Hint: Define a bipartite graph G with L(G) the set of days and R(G) the set of
teams. For any set D of days, there may, or may not, have been a team that lost on
all of those days.

15Based on 2012 Putnam Exam problem B3.
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Two recitations can not be held in the same 90-minute time slot if some staff
member is assigned to both recitations. The problem is to determine the minimum
number of time slots required to complete all the recitations.

(a) Recast this problem as a question about coloring the vertices of a particular
graph. Draw the graph and explain what the vertices, edges, and colors represent.

(b) Show a coloring of this graph using the fewest possible colors; explain why
no fewer colors will work. What schedule of recitations does this imply?

Problem 12.27.
This problem generalizes the result proved Theorem 12.6.3 that any graph with
maximum degree at most w is (w + 1)-colorable.

A simple graph G is said to have width w iff its vertices can be arranged in a
sequence such that each vertex is adjacent to at most w vertices that precede it in
the sequence. If the degree of every vertex is at most w, then the graph obviously
has width at most w—just list the vertices in any order.

(a) Prove that every graph with width at most w is (w + 1)-colorable.
(b) Describe a 2-colorable graph with minimum width n.
(¢) Prove that the average degree of a graph of width w is at most 2w.

(d) Describe an example of a graph with 100 vertices, width 3, but average degree
more than 5.

Problem 12.28.

A sequence of vertices of a graph has width w iff each vertex is adjacent to at most
w vertices that precede it in the sequence. A simple graph G has width w if there
is a width-w sequence of all its vertices.




“mes” — 2018/6/6 — 13:43 — page 552 — #560

552

Chapter 12 Simple Graphs

(a) Explain why the width of a graph must be at least the minimum degree of its
vertices.

(b) Prove that if a finite graph has width w, then there is a width-w sequence of
all its vertices that ends with a minimum degree vertex.

(¢) Describe a simple algorithm to find the minimum width of a graph.

Problem 12.29.

Let G be a simple graph whose vertex degrees are all < k. Prove by induction on
number of vertices that if every connected component of G has a vertex of degree
strictly less than k, then G is k-colorable.

Problem 12.30.

A basic example of a simple graph with chromatic number # is the complete graph
on n vertices, thatis y(Ky) = n. This implies that any graph with K}, as a subgraph
must have chromatic number at least n. It’s a common misconception to think that,
conversely, graphs with high chromatic number must contain a large complete sub-
graph. In this problem we exhibit a simple example countering this misconception,
namely a graph with chromatic number four that contains no triangle—length three
cycle—and hence no subgraph isomorphic to K, for n > 3. Namely, let G be the
11-vertex graph of Figure 12.28. The reader can verify that G is triangle-free.

Figure 12.28 Graph G with no triangles and y(G) = 4.

(a) Show that G is 4-colorable.

(b) Prove that G can’t be colored with 3 colors.




