- **(b)** Prove that $|x|^2 \neq 3$ for all $x \in \mathbb{Z}[\sqrt{-5}]$.
- (c) Prove that if $x \in \mathbb{Z}[\sqrt{-5}]$ and |x| = 1, then $x = \pm 1$.
- (d) Prove that if |xy| = 3 for some $x, y \in \mathbb{Z}[\sqrt{-5}]$, then $x = \pm 1$ or $y = \pm 1$. Hint: $|z|^2 \in \mathbb{N}$ for $z \in \mathbb{Z}[\sqrt{-5}]$.
- (e) Complete the proof of the Claim.

Problems for Section 9.6

Practice Problems

Problem 9.26.

Prove that if $a \equiv b \pmod{14}$ and $a \equiv b \pmod{5}$, then $a \equiv b \pmod{70}$.

Problem 9.27.

Show that there is an integer x such that

$$ax \equiv b \pmod{n}$$

iff

$$gcd(a, n) \mid b$$
.

Class Problems

Problem 9.28. (a) Prove if n is not divisible by 3, then $n^2 \equiv 1 \pmod{3}$.

- **(b)** Show that if *n* is odd, then $n^2 \equiv 1 \pmod{8}$.
- (c) Conclude that if p is a prime greater than 3, then $p^2 1$ is divisible by 24.

Problem 9.29.

The values of polynomial $p(n) := n^2 + n + 41$ are prime for all the integers from 0 to 39 (see Section 1.1). Well, p didn't work, but are there any other polynomials whose values are always prime? No way! In fact, we'll prove a much stronger claim.

Problems for Section 9.7

Practice Problems

Problem 9.30.

List the numbers of all statements below that are equivalent to

$$a \equiv b \pmod{n}$$
,

where n > 1 and a and b are integers. Briefly explain your reasoning.

- i) $2a \equiv 2b \pmod{n}$
- ii) $2a \equiv 2b \pmod{2n}$
- iii) $a^3 \equiv b^3 \pmod{n}$
- iv) rem(a, n) = rem(b, n)
- v) rem(n, a) = rem(n, b)
- vi) gcd(a, n) = gcd(b, n)
- vii) gcd(n, a b) = n
- viii) (a b) is a multiple of n
- ix) $\exists k \in \mathbb{Z}. a = b + nk$

Problem 9.31.

What is $rem(3^{101}, 21)$?

Homework Problems

Problem 9.32.

Prove that congruence is preserved by arithmetic expressions. Namely, prove that

$$a \equiv b \pmod{n},\tag{9.22}$$

then

$$eval(e, a) \equiv eval(e, b) \pmod{n}, \tag{9.23}$$

for all $e \in Aexp$ (see Section 7.4).

398 Chapter 9 Number Theory

Problem 9.36.

The following properties of equivalence mod n follow directly from its definition and simple properties of divisibility. See if you can prove them without looking up the proofs in the text.

- (a) If $a \equiv b \pmod{n}$, then $ac \equiv bc \pmod{n}$.
- **(b)** If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.
- (c) If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $ac \equiv bd \pmod{n}$.
- (d) $\operatorname{rem}(a, n) \equiv a \pmod{n}$.

Problem 9.37. (a) Why is a number written in decimal evenly divisible by 9 if and only if the sum of its digits is a multiple of 9? *Hint*: $10 \equiv 1 \pmod{9}$.

(b) Take a big number, such as 37273761261. Sum the digits, where every other one is negated:

$$3 + (-7) + 2 + (-7) + 3 + (-7) + 6 + (-1) + 2 + (-6) + 1 = -11$$

Explain why the original number is a multiple of 11 if and only if this sum is a multiple of 11.

Problem 9.38.

At one time, the Guinness Book of World Records reported that the "greatest human calculator" was a guy who could compute 13th roots of 100-digit numbers that were 13th powers. What a curious choice of tasks....

In this problem, we prove

$$n^{13} \equiv n \pmod{10} \tag{9.29}$$

for all n.

- (a) Explain why (9.29) does not follow immediately from Euler's Theorem.
- **(b)** Prove that

$$d^{13} \equiv d \pmod{10} \tag{9.30}$$

for $0 \le d < 10$.

(c) Now prove the congruence (9.29).

Problem 9.51.

What is $rem(24^{79}, 79)$?

Hint: You should not need to do any actual multiplications!

Problem 9.52. (a) Prove that 22¹²⁰⁰¹ has a multiplicative inverse modulo 175.

- (b) What is the value of $\phi(175)$, where ϕ is Euler's function?
- (c) What is the remainder of 22^{12001} divided by 175?

Problem 9.53.

How many numbers between 1 and 6042 (inclusive) are relatively prime to 3780? Hint: 53 is a factor.

Problem 9.54.

How many numbers between 1 and 3780 (inclusive) are relatively prime to 3780?

Problem 9.55.

- (a) What is the probability that an integer from 1 to 360 selected with uniform probability is relatively prime to 360?
- (b) What is the value of $rem(7^{98}, 360)$?

Class Problems

Problem 9.56.

Find the remainder of $26^{1818181}$ divided by 297.

Hint: $1818181 = (180 \cdot 10101) + 1$; use Euler's theorem.

Problem 9.57.

Find the last digit of 7^{7^7} .

Problem 9.58.

404 Chapter 9 Number Theory

Prove that n and n^5 have the same last digit. For example:

$$2^5 = 32$$
 $79^5 = 3077056399$

Problem 9.59.

Use Fermat's theorem to find the inverse i of 13 modulo 23 with $1 \le i < 23$.

Problem 9.60.

Let ϕ be Euler's function.

- (a) What is the value of $\phi(2)$?
- (b) What are three nonnegative integers k > 1 such that $\phi(k) = 2$?
- (c) Prove that $\phi(k)$ is even for k > 2.

Hint: Consider whether *k* has an odd prime factor or not.

(d) Briefly explain why $\phi(k) = 2$ for exactly three values of k.

Problem 9.61.

Suppose a, b are relatively prime and greater than 1. In this problem you will prove the *Chinese Remainder Theorem*, which says that for all m, n, there is an x such that

$$x \equiv m \pmod{a},\tag{9.31}$$

$$x \equiv n \pmod{b}. \tag{9.32}$$

Moreover, x is unique up to congruence modulo ab, namely, if x' also satisfies (9.31) and (9.32), then

$$x' \equiv x \pmod{ab}$$
.

(a) Prove that for any m, n, there is some x satisfying (9.31) and (9.32).

Hint: Let b^{-1} be an inverse of b modulo a and define $e_a := b^{-1}b$. Define e_b similarly. Let $x = me_a + ne_b$.

(b) Prove that

$$[x \equiv 0 \pmod{a} \text{ AND } x \equiv 0 \pmod{b}]$$
 implies $x \equiv 0 \pmod{ab}$.

(c) Conclude that

$$x \equiv x' \pmod{a}$$
 AND $x \equiv x' \pmod{b}$ implies $x \equiv x' \pmod{ab}$.

- (d) Conclude that the Chinese Remainder Theorem is true.
- (e) What about the converse of the implication in part (c)?

Problem 9.62.

The *order* of $k \in \mathbb{Z}_n$ is the smallest positive m such that $k^m = 1$ (\mathbb{Z}_n).

(a) Prove that

$$k^m = 1 (\mathbb{Z}_n)$$
 IMPLIES $\operatorname{ord}(k, n) \mid m$.

Hint: Take the remainder of *m* divided by the order.

Now suppose p > 2 is a prime of the form $2^s + 1$. For example, $2^1 + 1$, $2^2 + 1$, $2^4 + 1$ are such primes.

- (b) Conclude from part (a) that if 0 < k < p, then ord(k, p) is a power of 2.
- (c) Prove that ord(2, p) = 2s and conclude that s is a power of 2.²¹

Hint: $2^k - 1$ for $k \in [1..r]$ is positive but too small to equal 0 (\mathbb{Z}_p).

Homework Problems

Problem 9.63.

This problem is about finding square roots modulo a prime p.

(a) Prove that $x^2 \equiv y^2 \pmod{p}$ if and only if $x \equiv y \pmod{p}$ or $x \equiv -y \pmod{p}$. Hint: $x^2 - y^2 = (x + y)(x - y)$

An integer x is called a *square root* of $n \mod p$ when

$$x^2 \equiv n \pmod{p}.$$

An integer with a square root is called a *square* mod p. For example, if n is congruent to 0 or 1 mod p, then n is a square and it is its own square root.

So let's assume that p is an odd prime and $n \not\equiv 0 \pmod{p}$. It turns out there is a simple test we can perform to see if n is a square mod p:

²¹Numbers of the form $2^{2^k} + 1$ are called *Fermat numbers*, so we can rephrase this conclusion as saying that any prime of the form $2^s + 1$ must actually be a Fermat number. The Fermat numbers are prime for k = 1, 2, 3, 4, but not for k = 5. In fact, it is not known if any Fermat number with k > 4 is prime.