4.5. Finite Cardinality 123

State a similar propositional equivalence that would justify the key step in a proof for the following set equality organized as a chain of iff's:

$$\overline{A \cap B \cap C} = \overline{A} \cup (\overline{B} - \overline{A}) \cup \overline{C}.$$

(You are *not* being asked to write out an iff-proof of the equality or to write out a proof of the propositional equivalence. Just state the equivalence.)

Problem 4.13.

The set equation

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

follows from a certain equivalence between propositional formulas.

- (a) What is the equivalence?
- (b) Show how to derive the equation from this equivalence.

Problems for Section 4.2

Homework Problems

Problem 4.14.

Prove that for any sets A, B, C and D, if the Cartesian products $A \times B$ and $C \times D$ are disjoint, then either A and C are disjoint or B and D are disjoint.

Problem 4.15. (a) Give a simple example where the following result fails, and briefly explain why:

False Theorem. For sets A, B, C and D, let

$$L ::= (A \cup B) \times (C \cup D),$$

$$R ::= (A \times C) \cup (B \times D).$$

Then L = R.

(b) Identify the mistake in the following proof of the False Theorem.

Bogus proof. Since L and R are both sets of pairs, it's sufficient to prove that $(x, y) \in L \longleftrightarrow (x, y) \in R$ for all x, y.

The proof will be a chain of iff implications:

4.5. Finite Cardinality

Problem 4.18.

For a binary relation $R: A \to B$, some properties of R can be determined from just the arrows of R, that is, from $\operatorname{graph}(R)$, and others require knowing if there are elements in the domain A or the codomain B that don't show up in $\operatorname{graph}(R)$. For each of the following possible properties of R, indicate whether it is always determined by

- 1. graph(R) alone,
- 2. graph(R) and A alone,
- 3. graph(R) and B alone,
- 4. all three parts of R.

Properties:

- (a) surjective
- (b) injective
- (c) total
- (d) function
- (e) bijection

Problem 4.19.

For each of the following real-valued functions on the real numbers, indicate whether it is a bijection, a surjection but not a bijection, an injection but not a bijection, or neither an injection nor a surjection.

- (a) $x \rightarrow x + 2$
- **(b)** $x \rightarrow 2x$
- (c) $x \rightarrow x^2$
- (d) $x \rightarrow x^3$
- (e) $x \to \sin x$
- (f) $x \to x \sin x$
- (g) $x \to e^x$

125

128 Chapter 4 Mathematical Data Types

(b) Show there is a total injection f and a bijection, g, such that $g \circ f$ is not a bijection.

Problem 4.26.

Let A, B and C be nonempty sets, and let $f: B \to C$ and $g: A \to B$ be functions. Let $h:= f \circ g$ be the composition function of f and g, namely, the function with domain A and codomain C such that h(x) = f(g(x)).

(a) Prove that if h is surjective and f is total and injective, then g must be surjective.

Hint: contradiction.

(b) Suppose that h is injective and f is total. Prove that g must be injective and provide a counterexample showing how this claim could fail if f was *not* total.

Problem 4.27.

Let A, B and C be sets, and let $f: B \to C$ and $g: A \to B$ be functions. Let $h: A \to C$ be the composition $f \circ g$; that is, h(x) := f(g(x)) for $x \in A$. Prove or disprove the following claims:

- (a) If h is surjective, then f must be surjective.
- **(b)** If *h* is surjective, then *g* must be surjective.
- (c) If h is injective, then f must be injective.
- (d) If h is injective and f is total, then g must be injective.

Problem 4.28. (a)

Let $R: D \to D$ be a binary relation on a set D. Let x, y be variables ranging over D. Indicate the expressions below whose meaning is that R is an *injective relation* $[\le 1 \text{ in}]$. Remember that $R(x) := \{y \mid x \mid R \mid y\}$, and R is not necessarily a function or a total relation.

- (i) $R(x) \cap R(y) = \emptyset$
- (ii) R(x) = R(y) IMPLIES x = y
- (iii) $R(x) \cap R(y) = \emptyset$ IMPLIES $x \neq y$
- (iv) $x \neq y$ IMPLIES $R(x) \neq R(y)$

4.5. Finite Cardinality 131

- (e) The set of pages that have at least one incoming or outgoing link
- (f) The relation that relates word w and page p iff w appears on a page that links to p
- (g) The relation that relates word w and endorser e iff w appears on a page that links to a page that e recommends
- (h) The relation that relates pages p_1 and p_2 iff p_2 can be reached from p_1 by following a sequence of exactly 3 links

Exam Problems

Problem 4.30.

Let L_n be the length-n sequences of digits [0..9] whose sum of digits is less than 9n/2, and let G_n be the length-n sequences of digits [0..9] whose sum of digits is greater than 9n/2. For example, 2134 $\in L_4$ and 9786 $\in G_4$.

Describe a simple bijection between L_n and G_n . Prove carefully that your mapping is a bijection by verifying that it is a function, total, injective, and surjective.

Problem 4.31.

Let A be the set containing the five sets: $\{a\}, \{b, c\}, \{b, d\}, \{a, e\}, \{e, f\},$ and let B be the set containing the three sets: $\{a, b\}, \{b, c, d\}, \{e, f\}$. Let R be the "is subset of" binary relation from A to B defined by the rule:

$$X R Y$$
 IFF $X \subseteq Y$.

(a) Fill in the arrows so the following figure describes the graph of the relation, *R*:

134 Chapter 4 Mathematical Data Types

Problem 4.34.

Prove that if relation $R: A \to B$ is a total injection, $[\ge 1 \text{ out}], [\le 1 \text{ in}]$, then

$$R^{-1} \circ R = \mathrm{Id}_A$$

where Id_A is the identity function on A.

(A simple argument in terms of "arrows" will do the job.)

Problem 4.35.

Let $R: A \rightarrow B$ be a binary relation.

(a) Prove that R is a function iff $R \circ R^{-1} \subseteq \text{Id}_B$.

Write similar containment formulas involving $R^{-1} \circ R$, $R \circ R^{-1}$, Id_a , Id_B equivalent to the assertion that R has each of the following properties. No proof is required.

- **(b)** total.
- (c) a surjection.
- (d) a injection.

Problem 4.36.

Let $R: A \to B$ and $S: B \to C$ be binary relations such that $S \circ R$ is a bijection and |A| = 2.

Give an example of such R, S where neither R nor S is a function. Indicate exactly which properties—total, surjection, function, and injection—your examples of R and S have.

Hint: Let |B| = 4.

Problem 4.37.

The set $\{1, 2, 3\}^{\omega}$ consists of the **infinite** sequences of the digits 1,2, and 3, and likewise $\{4, 5\}^{\omega}$ is the set of infinite sequences of the digits 4,5. For example

$$\begin{array}{lll} 123123123\dots & \in \{1,2,3\}^{\omega}, \\ 2222222222222\dots & \in \{1,2,3\}^{\omega}, \\ 4554445554444\dots & \in \{4,5\}^{\omega}. \end{array}$$

(a) Give an example of a total injective function

$$f: \{1, 2, 3\}^{\omega} \to \{4, 5\}^{\omega}.$$

(b) Give an example of a bijection $g: (\{1, 2, 3\}^{\omega} \times \{1, 2, 3\}^{\omega}) \to \{1, 2, 3\}^{\omega}$.