“mes” — 2018/6/6 — 13:43 — page 79 — #87

3.7. References 79

(b) A formula is valid iff its negation is

not valid

also valid

satisfiable

not satisfiable

(¢) Formula F is equivalent to formula G iff

F 1FF G is valid

F 1FF NOT(G) is not valid
F XOR G satisfiable

e [XOR G is not satisfiable

Problem 3.11.

Indicate whether each of the following propositional formulas is valid (V), satis-
fiable but not valid (S), or not satisfiable (N). For the satisfiable ones, indicate a
satisfying truth assignment.

M IMPLIES Q
M IMPLIES (P OR Q)
M IMPLIES [M AND (P IMPLIES M)]
(P OR Q) IMPLIES Q
(P OR Q) IMPLIES (P AND Q)
(P OR Q) IMPLIES [M AND (P IMPLIES M)]
(P XOR Q) IMPLIES Q
(P XOR Q) IMPLIES (P OR Q)
(P XOR Q) IMPLIES [M AND (P IMPLIES M)]

Problem 3.12.
Show truth tables that verify the equivalence of the following two propositional
formulas

(P XOR Q),
NOT(P IFF Q).

“mes” — 2018/6/6 — 13:43 — page 81 — #89

3.7. References 81

Class Problems
Problem 3.16. (a) Verify by truth table that
(P IMPLIES Q) OR (Q IMPLIES P)
is valid.
(b) Let P and Q be propositional formulas. Describe a single formula R using

only AND’s, OR’s, NOT’s, and copies of P and Q, such that R is valid iff P and Q
are equivalent.

(¢) A propositional formula is satisfiable iff there is an assignment of truth values
to its variables—an environment—that makes it true. Explain why

P isvalid iff NOT(P) is not satisfiable.

(d) A set of propositional formulas Py, ..., Py is consistent iff there is an envi-
ronment in which they are all true. Write a formula S such that the set Py, ..., P;
is not consistent iff S is valid.

Problem 3.17.
This problem* examines whether the following specifications are satisfiable:

1. If the file system is not locked, then. ..

(a) new messages will be queued.
(b) new messages will be sent to the messages buffer.

(c) the system is functioning normally, and conversely, if the system is
functioning normally, then the file system is not locked.

2. If new messages are not queued, then they will be sent to the messages buffer.
3. New messages will not be sent to the message buffer.

(a) Begin by translating the five specifications into propositional formulas using
the four propositional variables:
L ::= file system locked,
0 1= new messages are queued,
B ::= new messages are sent to the message buffer,

N ::= system functioning normally.

4Revised from Rosen, 5th edition, Exercise 1.1.36

“mes” — 2018/6/6 — 13:43 — page 85 — #93

3.7. References 85

It’s easy to see that any efficient way of solving the circuit-SAT problem would
yield an efficient way to solve the usual SAT problem for propositional formulas
(Section 3.5). Namely, for any formula F, just construct a circuit Cr using that
computes the values of the formula. Then there are inputs for which Cg gives
output true iff F is satisfiable. Constructing Cr from F is easy, using a binary
gate in Cg for each propositional connective in F. So an efficient circuit-SAT
procedure leads to an efficient SAT procedure.

Conversely, there is a simple recursive procedure that will construct, given C, a
formula E¢ thatis equivalent to C in the sense that the truth value E¢ and the out-
put of C are the same for every truth assignment of the variables. The difficulty is
that, in general, the “equivalent” formula Ec, will be exponentially larger than C.
For the purposes of showing that satifiability of circuits and satisfiability of formu-
las take roughly the same effort to solve, spending an exponential time translating
one problem to the other swamps any benefit in switching from one problem to the
other.

So instead of a formula E¢ that is equivalent to C, we aim instead for a formula
Fc that is “equisatisfiable” with C. That is, there will be input values that make
C output True iff there is a truth assignment that satisfies Fc. (In fact, Fc and C
need not even use the same variables.) But now we make sure that the amount of
computation needed to construct F¢ is not much larger than the size of the circuit
C. In particular, the size of F¢ will also not be much larger than C.

The idea behind the construction of F¢ is that, given any digital circuit C with
binary gates and one output, we can assign a distinct variable to each wire of C.
Then for each gate of C, we can set up a propositional formula that represents the
constraints that the gate places on the values of its input and output wires. For
example, for an AND gate with input wire variables P and Q and output wire
variable R, the constraint proposition would be

(P AND Q) IFF R. (3.32)

(a) Given a circuit C, explain how to easily find a formula F¢ of size proportional
to the number of wires in C such that F¢ is satisfiable iff C gives output T for some
set of input values.

(b) Conclude that any efficient way of solving SAT would yield an efficient way
to solve circuit-SAT.

Problem 3.25.
A 3-conjunctive normal form (3CNF) formula is a conjunctive normal form (CNF)

“mes” — 2018/6/6 — 13:43 — page 86 — #94

86

Chapter 3 Logical Formulas

formula in which each OR-term is an OR of at most 3 literals (variables or nega-
tions of variables). Although it may be hard to tell if a propositional formula F is
satisfiable, it is always easy to construct a formula C(F’) that is

e a 3CNF,
e has at most 24 times as many occurrences of variables as F', and

e is satisfiable iff I is satisfiable.

Note that we do not expect C(F) to be equivalent to F. We do know how to
convert any F into an equivalent CNF formula, and this equivalent CNF formula
will certainly be satisfiable iff F is. But in many cases, the smallest CNF formula
equivalent to F may be exponentially larger than F instead of only 24 times larger.
Even worse, there may not be any 3CNF equivalent to F.

To construct C(F), the idea is to introduce a different new variable for each
operator that occurs in F. For example, if F was

((P XOR Q) XOR R) OR (P AND S) (3.33)

we might use new variables X1, X», O and A corresponding to the operator occur-
rences as follows:

((P XOR Q) XOR R) OR (P AND S§).
—— —— N—— ——
X1 X> o A
Next we write a formula that constrains each new variable to have the same truth
value as the subformula determined by its corresponding operator. For the example
above, these constraining formulas would be
X1 IFF (P XOR Q),
X> IFF (X1 XOR R),
A1FE (P AND S),
O TFF (X2 OR A)
(a) Explain why the AND of the four constraining formulas above along with a

fifth formula consisting of just the variable O will be satisfiable iff (3.33) is satisfi-
able.

(b) Explain why each constraining formula will be equivalent to a 3CNF formula
with at most 24 occurrences of variables.

(¢) Using the ideas illustrated in the previous parts, briefly explain how to con-
struct C(F) for an arbitrary propositional formula F. (No need to fill in all the
details for this part—a high-level description is fine.)

“mes” — 2018/6/6 — 13:43 — page 89 — #97

3.7. References 89

Problem 3.31.
Find a counter-model showing the following is not valid.

[3x. P(x) AND Ix.Q(x)] IMPLIES Ix.[P(x) AND Q(x)]

(Just define your counter-model. You do not need to verify that it is correct.)

Problem 3.32.
Which of the following are valid? For those that are not valid, desribe a counter-
model.

(a) Ix3y. P(x, y) IMPLIES dy3dx. P(x,y)

(b) Vx3y. Q(x,y) IMPLIES yVx. Q(x, y)
(¢) 3xVy. R(x, y) IMPLIES Vy3x. R(x, y)

(d) NoT(3x S(x)) IFF Yx NOT(S(x))

Problem 3.33. (a) Verify that the propositional formula
(P IMPLIES Q) OR (Q IMPLIES P)
is valid.

(b) The valid formula of part (a) leads to sound proof method: to prove that an im-
plication is true, just prove that its converse is false.” For example, from elementary
calculus we know that the assertion

If a function is continuous, then it is differentiable
is false. This allows us to reach at the correct conclusion that its converse,
If a function is differentiable, then it is continuous

is true, as indeed it is.

But wait a minute! The implication
If a function is differentiable, then it is not continuous

is completely false. So we could conclude that its converse

SThis problem was stimulated by the discussion of the fallacy in [4].

“mes” — 2018/6/6 — 13:43 — page 91 — #99

3.7. References 91

(e) How could you express “Everyone except for Claire likes Emily” using just
propositional connectives without using any quantifiers (V, 3)? Can you generalize
to explain how any logical formula over this domain of discourse can be expressed
without quantifiers? How big would the formula in the previous part be if it was
expressed this way?

Problem 3.35.

For each of the logical formulas, indicate whether or not it is true when the do-
main of discourse is N, (the nonnegative integers 0, 1, 2, ...), Z (the integers), Q
(the rationals), R (the real numbers), and C (the complex numbers). Add a brief
explanation to the few cases that merit one.

Ix.x2=2
Vxdy.x?2 =y
Vy.EI)c.)c2 =y

Vx £03dy.xy =1
dxdy.x+2y =2 AND 2x +4y =5

Problem 3.36.

The goal of this problem is to translate some assertions about binary strings into
logic notation. The domain of discourse is the set of all finite-length binary strings:
A, 0,1, 00,01, 10, 11, 000, 001, (Here A denotes the empty string.) In your
translations, you may use all the ordinary logic symbols (including =), variables,
and the binary symbols 0, 1 denoting O, 1.

A string like 01x0y of binary symbols and variables denotes the concatenation
of the symbols and the binary strings represented by the variables. For example, if
the value of x is 011 and the value of y is 1111, then the value of 01x0y is the
binary string 0101101111.

Here are some examples of formulas and their English translations. Names for
these predicates are listed in the third column so that you can reuse them in your
solutions (as we do in the definition of the predicate NO-1S below).

Meaning Formula Name
x is a prefix of y Az (xz =y) PREFIX(X, y)
X is a substring of y Juav (uxv = y) SUBSTRING(x, y)

X is empty or a string of 0’s NOT(SUBSTRING(1, x)) NO-1S(x)

“mes” — 2018/6/6 — 13:43 — page 92 — #100

Chapter 3 Logical Formulas

(a) x consists of three copies of some string.
(b) x is an even-length string of 0’s.
(¢) x does not contain both a0 and a 1.
(d) x is the binary representation of 2K + 1 for some integer k > 0.
(e) An elegant, slightly trickier way to define NO-1S(x) is:
PREFIX (X, 0X). *)

Explain why (¥) is true only when x is a string of 0’s.

Problem 3.37.

In this problem we’ll examine predicate logic formulas where the domain of dis-
course is N. In addition to the logical symbols, the formulas may contain ternary
predicate symbols A and M, where

A(k,m,n) means k = m + n,

M(k,m,n) means k = m - n.
For example, a formula “Zero(n)” meaning that n is zero could be defined as
Zero(n) ::= A(n.n,n).

Having defined “Zero,” it is now OK to use it in subsequent formulas. So a formula
“Greater(m, n)” meaning /n > n could be defined as

Greater(m, n) ::= k. NOT(Zero(k)) AND A(m, n, k).

This makes it OK to use “Greater” in subsequent formulas.
Write predicate logic formulas using only the allowed predicates A, M that de-
fine the following predicates:

(a) Equal(m, n) meaning that m = n.

(b) One(n) meaning thatn = 1.
(©n=im-j+k?

(d) Prime(p) meaning p is a prime number.

(e) Two(n) meaning that n = 2.

“mes” — 2018/6/6 — 13:43 — page 93 — #101

3.7. References 93

The results of part (e) will entend to formulas Three(rn), Four(n), Five(n), .. .
which are allowed from now on.

(f) Even(n) meaning n is even.

(g) (Goldbach Conjecture) Every even integer n > 4 can be expressed as the sum
of two primes.

(h) (Fermat’s Last Theorem) Now suppose we also have
X(k,m,n) meansk =m".
Express the assertion that there are no positive integer solutions to the equation:
X"+ Yyt =z
whenn > 2.

(i) (Twin Prime Conjecture) There are infinitely many primes that differ by two.

Homework Problems

Problem 3.38.

Express each of the following predicates and propositions in formal logic notation.
The domain of discourse is the nonnegative integers, N. Moreover, in addition to
the propositional operators, variables and quantifiers, you may define predicates
using addition, multiplication, and equality symbols, and nonnegative integer con-
stants (0, 1,...), but no exponentiation (like x”). For example, the predicate “n is
an even number” could be defined by either of the following formulas:

dm. 2m = n), Im. (m + m = n).
(a) m is a divisor of n.
(b) n is a prime number.

(¢) n is a power of a prime.

Problem 3.39.
Translate the following sentence into a predicate formula:

There is a student who has e-mailed at most two other people in the
class, besides possibly himself.

