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Conclude that
R" =w® (10.12)

foralln € N.

(¢) Conclude that
|A]

R+=UR"

i=1

where R is the positive length walk relation determined by R on the set A.

Problem 10.12.
We can represent a relation S between two sets A = {aj,...,ap} and B =
{b1,...,bm} as an n x m matrix Mg of zeroes and ones, with the elements of

M defined by the rule
Ms(i,j)=1 1IFF a; S bj.

If we represent relations as matrices this way, then we can compute the com-
position of two relations R and S by a “boolean” matrix multiplication ® of their
matrices. Boolean matrix multiplication is the same as matrix multiplication except
that addition is replaced by OR, multiplication is replaced by AND, and 0 and 1 are
used as the Boolean values False and True. Namely, suppose R : B — C is a bi-
nary relation with C = {c1,...,c¢p}. So Mg is anm x p matrix. Then Mg ® Mg
is an n x p matrix defined by the rule:

[Ms ® Mg](i. j) == ORP_,[Ms(i.k) AND Mg(k, j)]. (10.13)

Prove that the matrix representation Mgos of R o S equals Mg ® Mg (note the
reversal of R and §).

Problem 10.13.

Chickens are rather aggressive birds that tend to establish dominance over other
chickens by pecking them—hence the term “pecking order.” So for any two chick-
ens in a farmyard, either the first pecks the second, or the second pecks the first, but
not both. We say that chicken u virtually pecks chicken v if either:

e Chicken u pecks chicken v, or

e Chicken u pecks some other chicken w who in turn pecks chicken v.




“mcs” — 2017/6/5 — 19:42 — page 416 — #424

416

Chapter 10  Directed graphs & Partial Orders

A chicken that virtually pecks every other chicken is called a king chicken.

We can model this situation with a chicken digraph whose vertices are chickens,
with an edge from chicken u to chicken v precisely when u pecks v. In the graph
in Figure 10.11, three of the four chickens are kings. Chicken c is not a king in
this example since it does not peck chicken b and it does not peck any chicken that
pecks chicken b. Chicken a is a king since it pecks chicken d, who in turn pecks
chickens b and c.

In general, a tournament digraph is a digraph with exactly one edge between
each pair of distinct vertices.

king H 4 king

king not a king
d c

Figure 10.11 A 4-chicken tournament in which chickens a, b and d are kings.

(a) Define a 10-chicken tournament graph with a king chicken that has outdegree
1.

(b) Describe a 5-chicken tournament graph in which every player is a king.

(¢) Prove
Theorem (King Chicken Theorem). Any chicken with maximum out-degree in a
tournament is a king.

The King Chicken Theorem means that if the player with the most victories is
defeated by another player x, then at least he/she defeats some third player that
defeats x. In this sense, the player with the most victories has some sort of bragging
rights over every other player. Unfortunately, as Figure 10.11 illustrates, there can
be many other players with such bragging rights, even some with fewer victories.
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(a) Explain how to model the delegate selection problem as a bipartite matching
problem. (This is a modeling problem; we aren’t looking for a description of an
algorithm to solve the problem.)

(b) The VP’s records show that no student is a member of more than 9 clubs. The
VP also knows that to be eligible for support from the Dean’s office, a club must
have at least 13 members. That’s enough for her to guarantee there is a proper
delegate selection. Explain. (If only the VP had taken an Algorithms class, she
could even have found a delegate selection without much effort.)

Problem 12.13.
A simple graph is called regular when every vertex has the same degree. Call
a graph balanced when it is regular and is also a bipartite graph with the same
number of left and right vertices.

Prove that if G is a balanced graph, then the edges of G can be partitioned into
blocks such that each block is a perfect matching.

For example, if G is a balanced graph with 2k vertices each of degree j, then the
edges of G can be partitioned into j blocks, where each block consists of k& edges,
each of which is a perfect matching.

Exam Problems

Problem 12.14.

Overworked and over-caffeinated, the Teaching Assistant’s (TA’s) decide to oust
the lecturer and teach their own recitations. They will run a recitation session at 4
different times in the same room. There are exactly 20 chairs to which a student can
be assigned in each recitation. Each student has provided the TA’s with a list of the
recitation sessions her schedule allows and each student’s schedule conflicts with
at most two sessions. The TA’s must assign each student to a chair during recitation
at a time she can attend, if such an assignment is possible.

(a) Describe how to model this situation as a matching problem. Be sure to spec-
ify what the vertices/edges should be and briefly describe how a matching would
determine seat assignments for each student in a recitation that does not conflict
with his schedule. (This is a modeling problem; we aren’t looking for a description
of an algorithm to solve the problem.)

(b) Suppose there are 41 students. Given the information provided above, is a
matching guaranteed? Briefly explain.
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A arrows B
Q
P XOR Q
PORQ
P AND Q

P OR Q OR (P AND Q)
NOT(P AND Q)

P

(c) The diagram in part (b) defines a bipartite graph G with L(G) = A, R(G) =
B and an edge between F and G iff F R G. Exhibit a subset S of A such that both
S and A — S are nonempty, and the set N(S) of neighbors of S is the same size as
S, thatis, IN(S)| = |S]|.

(d) Let G be an arbitrary, finite, bipartite graph. For any subset S C L(G), let

S ::=L(G)— S, and likewise for any M C R(G), let M ::= R(G) — M. Suppose
S is a subset of L(G) such that [N(S)| = |S|, and both S and S are nonempty.
Circle the formula that correctly completes the following statement:

There is a matching from L(G) to R(G) if and only if there is both a matching
from S to its neighbors, N(S), and also a matching from S to

NGS) N©S)  NTING)  NTINE)  NE)-NES)  N(S)-N(S)

Hint: The proof of Hall’s Bottleneck Theorem.

Problem 12.17. (a) Show that there is no matching for the bipartite graph G in
Figure 12.25 that covers L(G).

(b) The bipartite graph H in Figure 12.26 has an easily verified property that
implies it has a matching that covers L(H). What is the property?
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Figure 12.25 Bipartite graph G.

Homework Problems

Problem 12.18.

A Latin square is n x n array whose entries are the number 1,...,n. These en-
tries satisfy two constraints: every row contains all # integers in some order, and
also every column contains all n integers in some order. Latin squares come up
frequently in the design of scientific experiments for reasons illustrated by a little
story in a footnote'”

10 At Guinness brewery in the eary 1900’s, W. S. Gosset (a chemist) and E. S. Beavan (a “maltster”)
were trying to improve the barley used to make the brew. The brewery used different varieties of
barley according to price and availability, and their agricultural consultants suggested a different
fertilizer mix and best planting month for each variety.

Somewhat sceptical about paying high prices for customized fertilizer, Gosset and Beavan planned
a season long test of the influence of fertilizer and planting month on barley yields. For as many
months as there were varieties of barley, they would plant one sample of each variety using a different
one of the fertilizers. So every month, they would have all the barley varieties planted and all the
fertilizers used, which would give them a way to judge the overall quality of that planting month.
But they also wanted to judge the fertilizers, so they wanted each fertilizer to be used on each variety
during the course of the season. Now they had a little mathematical problem, which we can abstract
as follows.

Suppose there are n barley varieties and an equal number of recommended fertilizers. Form an
n x n array with a column for each fertilizer and a row for each planting month. We want to fill in
the entries of this array with the integers 1,...,n numbering the barley varieties, so that every row
contains all » integers in some order (so every month each variety is planted and each fertilizer is
used), and also every column contains all # integers (so each fertilizer is used on all the varieties over
the course of the growing season).
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R(H) ~

Figure 12.26 Bipartite Graph H.

For example, here is a 4 x 4 Latin square:

2|3

AN W =
N W =

42
14
301

(a) Here are three rows of what could be part of a 5 x 5 Latin square:

2141531
411131215
31211(5/4

Fill in the last two rows to extend this “Latin rectangle” to a complete Latin square.

(b) Show that filling in the next row of an n x n Latin rectangle is equivalent to
finding a matching in some 2n-vertex bipartite graph.

(c) Prove that a matching must exist in this bipartite graph and, consequently, a
Latin rectangle can always be extended to a Latin square.
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(b) In a planar embedding of a connected graph with at least three vertices, each

face is of length at least three.

Homework Problems
Problem 13.8.

A simple graph is triangle-free when it has no cycle of length three.

(a) Prove for any connected triangle-free planar graph with v > 2 vertices and e

edges,
e <2v—4.

(13.9)

(b) Show that any connected triangle-free planar graph has at least one vertex of

degree three or less.
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(c) Prove that any connected triangle-free planar graph is 4-colorable.

Problem 13.9. (a) Prove

Lemma (Switch Edges). Suppose that, starting from some embeddings of planar
graphs with disjoint sets of vertices, it is possible by two successive applications of
constructor operations to add edges e and then f to obtain a planar embedding F.
Then starting from the same embeddings, it is also possible to obtain F by adding
f and then e with two successive applications of constructor operations.

Hint: There are four cases to analyze, depending on which two constructor opera-
tions are applied to add e and then f. Structural induction is not needed.

(b) Prove

Corollary (Permute Edges). Suppose that, starting from some embeddings of pla-
nar graphs with disjoint sets of vertices, it is possible to add a sequence of edges
€o, €1, ..., ey by successive applications of constructor operations to obtain a pla-
nar embedding F. Then starting from the same embeddings, it is also possible
to obtain F by applications of constructor operations that successively add any
permutation5 of the edges eg, e1, ..., en.

Hint: By induction on the number of switches of adjacent elements needed to con-

vert the sequence 0,1,...,n into a permutation 7 (0), 7 (1), ..., w(n).

(¢) Prove
Corollary (Delete Edge). Deleting an edge from a planar graph leaves a planar
graph.

(d) Conclude that any subgraph of a planar graph is planar.

Sif 7 {0,1,...,n} — {0,1,...,n} is a bijection, then the sequence € (0),€n(1)s - »Cx(n) is
called a permutation of the sequence eg, e1,...,ep.




