362 Chapter 9 Number Theory

Problem 9.50.

What is $rem(24^{79}, 79)$?

Hint: You should not need to do any actual multiplications!

Problem 9.51. (a) Prove that 22^{12001} has a multiplicative inverse modulo 175.

- **(b)** What is the value of $\phi(175)$, where ϕ is Euler's function?
- (c) What is the remainder of 22^{12001} divided by 175?

Problem 9.52.

How many numbers between 1 and 6042 (inclusive) are relatively prime to 3780? Hint: 53 is a factor.

Problem 9.53.

How many numbers between 1 and 3780 (inclusive) are relatively prime to 3780?

Problem 9.54.

- (a) What is the probability that an integer from 1 to 360 selected with uniform probability is relatively prime to 360?
- **(b)** What is the value of $rem(7^{98}, 360)$?

Class Problems

Problem 9.55.

Find the remainder of 26¹⁸¹⁸¹⁸¹ divided by 297.

Hint: $1818181 = (180 \cdot 10101) + 1$; use Euler's theorem.

Problem 9.56.

Find the last digit of 7^{7^7} .

9.13. *References* 363

Problem 9.57.

Prove that n and n^5 have the same last digit. For example:

$$2^5 = 32$$
 $79^5 = 3077056399$

Problem 9.58.

Use Fermat's theorem to find the inverse i of 13 modulo 23 with $1 \le i < 23$.

Problem 9.59.

Let ϕ be Euler's function.

- (a) What is the value of $\phi(2)$?
- (b) What are three nonnegative integers k > 1 such that $\phi(k) = 2$?
- (c) Prove that $\phi(k)$ is even for k > 2.

Hint: Consider whether k has an odd prime factor or not.

(d) Briefly explain why $\phi(k) = 2$ for exactly three values of k.

Problem 9.60.

Suppose a, b are relatively prime and greater than 1. In this problem you will prove the *Chinese Remainder Theorem*, which says that for all m, n, there is an x such that

$$x \equiv m \bmod a, \tag{9.31}$$

$$x \equiv n \mod b. \tag{9.32}$$

Moreover, x is unique up to congruence modulo ab, namely, if x' also satisfies (9.31) and (9.32), then

$$x' \equiv x \mod ab$$
.

(a) Prove that for any m, n, there is some x satisfying (9.31) and (9.32).

Hint: Let b^{-1} be an inverse of b modulo a and define $e_a := b^{-1}b$. Define e_b similarly. Let $x = me_a + ne_b$.

(b) Prove that

 $[x \equiv 0 \mod a \text{ AND } x \equiv 0 \mod b]$ implies $x \equiv 0 \mod ab$.

364 Chapter 9 Number Theory

(c) Conclude that

$$[x \equiv x' \mod a \text{ AND } x \equiv x' \mod b]$$
 implies $x \equiv x' \mod ab$.

- (d) Conclude that the Chinese Remainder Theorem is true.
- (e) What about the converse of the implication in part (c)?

Problem 9.61.

The *order* of $k \in \mathbb{Z}_n$ is the smallest positive m such that $k^m = 1$ (\mathbb{Z}_n).

(a) Prove that

$$k^m = 1 (\mathbb{Z}_n)$$
 IMPLIES ord $(k, n) \mid m$.

Hint: Take the remainder of *m* divided by the order.

Now suppose p > 2 is a prime of the form $2^s + 1$. For example, $2^1 + 1$, $2^2 + 1$, $2^4 + 1$ are such primes.

- (b) Conclude from part (a) that if 0 < k < p, then ord(k, p) is a power of 2.
- (c) Prove that ord(2, p) = 2s and conclude that s is a power of 2^{22} .

Hint: $2^k - 1$ for $k \in [1..r]$ is positive but too small to equal $0 (\mathbb{Z}_p)$.

Homework Problems

Problem 9.62.

This problem is about finding square roots modulo a prime p.

(a) Prove that $x^2 \equiv y^2 \pmod{p}$ if and only if $x \equiv y \pmod{p}$ or $x \equiv -y \pmod{p}$. Hint: $x^2 - y^2 = (x + y)(x - y)$

An integer x is called a *square root* of $n \mod p$ when

$$x^2 \equiv n \pmod{p}.$$

An integer with a square root is called a *square* mod p. For example, if n is congruent to 0 or 1 mod p, then n is a square and it is it's own square root.

So let's assume that p is an odd prime and $n \not\equiv 0 \pmod{p}$. It turns out there is a simple test we can perform to see if n is a square mod p:

²²Numbers of the form $2^{2^k} + 1$ are called *Fermat numbers*, so we can rephrase this conclusion as saying that any prime of the form $2^s + 1$ must actually be a Fermat number. The Fermat numbers are prime for k = 1, 2, 3, 4, but not for k = 5. In fact, it is not known if any Fermat number with k > 4 is prime.

9.13. References 365

Euler's Criterion

- i. If *n* is a square modulo *p*, then $n^{(p-1)/2} \equiv 1 \pmod{p}$.
- ii. If *n* is not a square modulo *p* then $n^{(p-1)/2} \equiv -1 \pmod{p}$.
- **(b)** Prove Case (i) of Euler's Criterion. *Hint:* Use Fermat's theorem.
- (c) Prove Case (ii) of Euler's Criterion. *Hint:* Use part (a)
- (d) Suppose that $p \equiv 3 \pmod{4}$, and n is a square mod p. Find a simple expression in terms of n and p for a square root of n. Hint: Write p as p = 4k + 3 and use Euler's Criterion. You might have to multiply two sides of an equation by n at one point.

Problem 9.63.

Suppose a, b are relatively prime integers greater than 1. In this problem you will prove that Euler's function is *multiplicative*, that is, that

$$\phi(ab) = \phi(a)\phi(b).$$

The proof is an easy consequence of the Chinese Remainder Theorem (Problem 9.60).

(a) Conclude from the Chinese Remainder Theorem that the function $f:[0..ab) \rightarrow [0..a) \times [0..b)$ defined by

$$f(x) ::= (\text{rem}(x, a), \text{rem}(x, b))$$

is a bijection.

- (b) For any positive integer k let \mathbb{Z}_k^* be the integers in [0..k) that are relatively prime to k. Prove that the function f from part (a) also defines a bijection from \mathbb{Z}_{ab}^* to $\mathbb{Z}_a^* \times \mathbb{Z}_b^*$.
- (c) Conclude from the preceding parts of this problem that

$$\phi(ab) = \phi(a)\phi(b). \tag{9.33}$$

(d) Prove Corollary 9.10.11: for any number n > 1, if $p_1, p_2, ..., p_j$ are the (distinct) prime factors of n, then

$$\phi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_j}\right).$$