Chapter 4 Mathematical Data Types

Problems for Section 4.4

Practice Problems

Problem 4.15.

The *inverse* R^{-1} of a binary relation R from A to B is the relation from B to A defined by:

$$b R^{-1} a$$
 iff $a R b$.

In other words, you get the diagram for R^{-1} from R by "reversing the arrows" in the diagram describing R. Now many of the relational properties of R correspond to different properties of R^{-1} . For example, R is *total* iff R^{-1} is a *surjection*.

Fill in the remaining entries is this table:

R is	iff	R^{-1} is
total		a surjection
a function		
a surjection		
an injection		
a bijection		

Hint: Explain what's going on in terms of "arrows" from A to B in the diagram for R.

Problem 4.16.

Describe a total injective function [=1 out], $[\le 1 \text{ in},]$ from $\mathbb{R} \to \mathbb{R}$ that is not a bijection.

Problem 4.17.

For a binary relation $R: A \to B$, some properties of R can be determined from just the arrows of R, that is, from graph(R), and others require knowing if there are elements in the domain R or the codomain R that don't show up in graph(R). For each of the following possible properties of R, indicate whether it is always determined by

- 1. graph(R) alone,
- 2. graph(R) and A alone,
- 3. graph(R) and B alone,

118

4.5. Finite Cardinality

119

4. all three parts of R.

Properties:

- (a) surjective
- (b) injective
- (c) total
- (d) function
- (e) bijection

Problem 4.18.

For each of the following real-valued functions on the real numbers, indicate whether it is a bijection, a surjection but not a bijection, an injection but not a bijection, or neither an injection nor a surjection.

- (a) $x \rightarrow x + 2$
- **(b)** $x \rightarrow 2x$
- (c) $x \rightarrow x^2$
- (d) $x \rightarrow x^3$
- (e) $x \to \sin x$
- (f) $x \to x \sin x$
- (g) $x \to e^x$

Problem 4.19.

Let $f: A \to B$ and $g: B \to C$ be functions and $h: A \to C$ be their composition, namely, h(a) := g(f(a)) for all $a \in A$.

- (a) Prove that if f and g are surjections, then so is h.
- (b) Prove that if f and g are bijections, then so is h.
- (c) If f is a bijection, then so is f^{-1} .

120 Chapter 4 Mathematical Data Types

Problem 4.20.

Give an example of a relation R that is a total injective function from a set A to itself but is not a bijection.

Class Problems

Problem 4.21. (a) Prove that if A surj B and B surj C, then A surj C.

- **(b)** Explain why A surj B iff B inj A.
- (c) Conclude from (a) and (b) that if A inj B and B inj C, then A inj C.
- (d) According to Definition 4.5.2, A inj B requires a total injective *relation*. Explain why A inj B iff there is a total injective *function* from A to B.

Problem 4.22.

Five basic properties of binary relations $R: A \rightarrow B$ are:

- 1. R is a surjection $[\geq 1 \text{ in}]$
- 2. R is an injection ≤ 1 in
- 3. R is a function $[\geq 1 \text{ out}]$
- 4. R is total $[\geq 1 \text{ out}]$
- 5. R is empty [= 0 out]

Below are some assertions about R. For each assertion, indicate all the properties above that the relation R must have. For example, the first assertion impllies that R is a total surjection. Variables a, a_1, \ldots range over A and b, b_1, \ldots range over B.

- (a) $\forall a \ \forall b. \ a \ R \ b.$
- **(b)** NOT($\forall a \ \forall b. \ a \ R \ b$).
- (c) $\forall a \ \forall b$. NOT $(a \ R \ b)$.
- (d) $\forall a \exists b. a \ R \ b.$
- (e) $\forall b \exists a. a \ R \ b.$
- (f) R is a bijection.
- (g) $\forall a \exists b_1 \ a \ R \ b_1 \land \forall b. \ a \ R \ b \text{ IMPLIES } b = b_1.$

4.5. Finite Cardinality

3.
$$x \neq y$$
 IMPLIES $f(x) \neq f(y)$

4.
$$f(x) = f(y)$$
 IMPLIES $x = y$

5. NOT[
$$\exists x \exists y (x \neq y \text{ AND } f(x) = f(y))$$

6. NOT[
$$\exists z \forall x (f(x) \neq z)$$

7.
$$\exists g \forall x (g(f(x)) = x)$$

8.
$$\exists g \forall x (f(g(x)) = x)$$

Problem 4.32.

Prove that if relation $R: A \to B$ is a total injection, $[\ge 1 \text{ out}], [\le 1 \text{ in}]$, then

$$R^{-1} \circ R = \mathrm{Id}_A$$

where Id_A is the identity function on A.

(A simple argument in terms of "arrows" will do the job.)

Problem 4.33.

Let $R: A \rightarrow B$ be a binary relation.

(a) Prove that R is a function iff $R \circ R^{-1} \subseteq \mathrm{Id}_{B}$.

Write similar containment formulas involving $R^{-1} \circ R$, $R \circ R^{-1}$, Id_a , Id_B equivalent to the assertion that R has each of the following properties. No proof is required.

- (b) total.
- (c) a surjection.
- (d) a injection.

Problem 4.34.

Let $R: A \to B$ and $S: B \to C$ be binary relations such that $S \circ R$ is a bijection and |A| = 2.

Give an example of such R, S where neither R nor S is a function. Indicate exactly which properties—total, surjection, function, and injection—your examples of R and S have.

Hint: Let |B| = 4.

127

128 Chapter 4 Mathematical Data Types

Problem 4.35.

The set $\{1, 2, 3\}^{\omega}$ consists of the **infinite** sequences of the digits 1,2, and 3, and likewise $\{4, 5\}^{\omega}$ is the set of infinite sequences of the digits 4,5. For example

```
123123123... \in \{1, 2, 3\}^{\omega}, 222222222222... \in \{1, 2, 3\}^{\omega}, 4554445554444... \in \{4, 5\}^{\omega}.
```

(a) Give an example of a total injective function

$$f: \{1, 2, 3\}^{\omega} \to \{4, 5\}^{\omega}.$$

- (b) Give an example of a bijection $g: (\{1,2,3\}^\omega \times \{1,2,3\}^\omega) \to \{1,2,3\}^\omega$.
- (c) Explain why there is a bijection between $\{1, 2, 3\}^{\omega} \times \{1, 2, 3\}^{\omega}$ and $\{4, 5\}^{\omega}$. (You need not explicitly define the bijection.)

Problems for Section 4.5

Practice Problems

Problem 4.36.

Assume $f: A \to B$ is total function, and A is finite. Replace the \star with one of \leq , =, \geq to produce the *strongest* correct version of the following statements:

- (a) $|f(A)| \star |B|$.
- **(b)** If f is a surjection, then $|A| \star |B|$.
- (c) If f is a surjection, then $|f(A)| \star |B|$.
- (d) If f is an injection, then $|f(A)| \star |A|$.
- (e) If f is a bijection, then $|A| \star |B|$.

Class Problems

Problem 4.37.

Let $A = \{a_0, a_1, \dots, a_{n-1}\}$ be a set of size n, and $B = \{b_0, b_1, \dots, b_{m-1}\}$ a set of size m. Prove that $|A \times B| = mn$ by defining a simple bijection from $A \times B$ to the nonnegative integers from 0 to mn - 1.