Chapter 3 Logical Formulas

Problems for Section 3.6

Practice Problems

Problem 3.24.

For each of the following propositions:

- 1. $\forall x \, \exists y. \, 2x y = 0$
- 2. $\forall x \, \exists y. \, x 2y = 0$
- 3. $\forall x. x < 10 \text{ implies } (\forall y. y < x \text{ implies } y < 9)$
- 4. $\forall x \, \exists y. \, [y > x \land \exists z. \, y + z = 100]$

determine which propositions are true when the variables range over:

- (a) the nonnegative integers.
- (b) the integers.
- (c) the real numbers.

Problem 3.25.

Let Q(x, y) be the statement

"x has been a contestant on television show y."

The universe of discourse for x is the set of all students at your school and for y is the set of all quiz shows that have ever been on television.

Determine whether or not each of the following expressions is logically equivalent to the sentence:

"No student at your school has ever been a contestant on a television quiz show."

- (a) $\forall x \forall y$. NOT(Q(x, y))
- **(b)** $\exists x \exists y$. NOT(Q(x, y))
- (c) NOT($\forall x \forall y. Q(x, y)$)
- (d) NOT($\exists x \exists y. \ Q(x, y)$)

86

3.7. References 87

Problem 3.26.

Express each of the following statements using quantifiers, logical connectives, and/or the following predicates

P(x): x is a monkey,

Q(x): x is a 6.042 TA,

R(x): x comes from the 23rd century,

S(x): x likes to eat pizza,

where *x* ranges over all living things.

- (a) No monkeys like to eat pizza.
- **(b)** Nobody from the 23rd century dislikes eating pizza.
- (c) All 6.042 TAs are monkeys.
- (d) No 6.042 TA comes from the 23rd century.
- (e) Does part (d) follow logically from parts (a), (b), (c)? If so, give a proof. If not, give a counterexample.
- (f) Translate into English: $(\forall x)(R(x) \lor S(x) \longrightarrow Q(x))$.
- **(g)** Translate into English:

$$[\exists x. R(x) \text{ AND NOT}(Q(x))]$$
 IMPLIES $\forall x. (P(x) \text{ IMPLIES } S(x))$.

Problem 3.27.

Find a counter-model showing the following is not valid.

$$\exists x. P(x) \text{ IMPLIES } \forall x. P(x)$$

(Just define your counter-model. You do not need to verify that it is correct.)

Problem 3.28.

Find a counter-model showing the following is not valid.

$$[\exists x. P(x) \text{ AND } \exists x. Q(x)] \text{ IMPLIES } \exists x. [P(x) \text{ AND } Q(x)]$$

(Just define your counter-model. You do not need to verify that it is correct.)

88 Chapter 3 Logical Formulas

Problem 3.29.

Which of the following are *valid*? For those that are not valid, desribe a countermodel.

- (a) $\exists x \exists y. P(x, y)$ IMPLIES $\exists y \exists x. P(x, y)$
- **(b)** $\forall x \exists y. \ Q(x, y) \text{ IMPLIES } \exists y \forall x. \ Q(x, y)$
- (c) $\exists x \forall y. R(x, y)$ IMPLIES $\forall y \exists x. R(x, y)$
- (d) NOT($\exists x \ S(x)$) IFF $\forall x \ NOT(S(x))$

Problem 3.30. (a) Verify that the propositional formula

$$(P \text{ IMPLIES } Q) \text{ OR } (Q \text{ IMPLIES } P)$$

is valid.

(b) The valid formula of part (a) leads to sound proof method: to prove that an implication is true, just prove that its converse is false.⁵ For example, from elementary calculus we know that the assertion

If a function is continuous, then it is differentiable

is false. This allows us to reach at the correct conclusion that its converse,

If a function is differentiable, then it is continuous

is true, as indeed it is.

But wait a minute! The implication

If a function is differentiable, then it is not continuous

is completely false. So we could conclude that its converse

If a function is not continuous, then it is differentiable,

should be true, but in fact the converse is also completely false.

So something has gone wrong here. Explain what.

⁵This problem was stimulated by the discussion of the fallacy in [4].