
An Introduction to UPPAAL

Purandar Bhaduri
Dept. of CSE
IIT Guwahati

Email: pbhaduri@iitg.ernet.in

OUTLINE

• Introduction

• Timed Automata

• UPPAAL

• Example: Train Gate

• Example: Task Scheduling

• UPPAAL: a toolbox for modelling, simulating and verifying
real-time systems
• Appropriate for systems that cab be modelled as a network of timed

automata
• Nondeterministic finite automata
• Real-valued clocks
• Communication through channels and shared variables

• Applications: where time is a critical resource
• Real-time controllers
• Communication protocols

Introduction

InUse

Idle

use? done!
x = 0

x ≤7

Timed Automata

x ≥ 4

Resource

Reset

Synchronization

Guard

Invariant Location

InUse

Idle

use? done!
x = 0

x ≤B

Timed Automata Composition

x ≥ B

Resource Synchronization

use! done?

Task

B=6

Shared Variable

Init Using Done

[Alur & Dill 90]

Locations in UPPAAL

• Normal Location
• Time can pass as long as the invariant is satisfied

• When the invariant becomes false the location must be exited

• Urgent Location
• No delay

• Committed Location
• No delay

• In a composition the transition out of the committed location must be exited
first if more than one transition is enabled

Urgent Location

• No delay

• P and Q have the same behaviour.

l1

X = 0
a?

P: X == 0
b!

X <=0

l2 l3 l1
a?

Q:
b!

l2 l3

Urgent

Committed Location

• No delay

• Next transition must involve an edge in one of the processes in a
committed location.

• Location l2 is committed to ensure that no automaton can modify the x
before automaton Q reads x .

• Enables accurate modelling of atomic behaviours.

l1

x=k

P:
read!

l2 l3 n1

read?
t=x Q:

n2

Committed

Synchronization Semantics in UPPAAL

• Used to coordinate the action of two
or more processes.

• Transitions with the same
synchronization channel are
activated simultaneously
• Guards must be true

I1

I2 S2

S1

a! a?

Urgent Channel

• urgent chan a;

• Specifies synchronization that must be taken when the transition is
enabled, without delay
• No clock guard are allowed on the edges

• Guards on data-variables

• Encode urgent transition on a variable (e.g., busy waiting on a variable)

l m
X > 0
read? d

read!P:

Analysis: Model Checking

• Can check for invariant and reachability properties
• Whether certain combinations of locations and constraints on variables (clock

and integer) are reachable

• Bounded liveness
• Monitor automata

• Adding debugging information and checking reachability

• Generates diagnostic trace

Temporal Logic: TCTL

• E - exists a path (“E” in UPPAAL).

• A - for all paths (“A” in UPPAAL).

• G - all states in a path (“[]” in UPPAAL).

• F - some state in a path (“<>” in UPPAAL).

Queries in UPPAAL

A[]p, A<>p, E<>p, E[]p and p → q

AG p AF p EF p EG p

Propositions p and q are local properties
• atomic clock/data constraints: integer bounds on clock variables
• Component location

Validation Property

Possibly: E<>p

p p

TCTL Quantifiers in UPPAAL

• E - exists a path (“E” in UPPAAL).

• A - for all paths (“A” in UPPAAL).

• G - all states in a path (“[]” in UPPAAL).

• F - some state in a path (“<>” in UPPAAL).

Queries in UPPAAL

A[]p, A<>p, E<>p, E[]p and p → q

AG p AF p EF p EG p

p and q are local properties

Safety Properties
Invariant: A[]p

Possibly Invariant: E[]p

p

p p

p p p p

p

TCTL Quantifiers in UPPAAL

• E - exists a path (“E” in UPPAAL).

• A - for all paths (“A” in UPPAAL).

• G - all states in a path (“[]” in UPPAAL).

• F - some state in a path (“<>” in UPPAAL).

Queries in UPPAAL

A[]p, A<>p, E<>p, E[]p and p → q

AG p AF p EF p EG p

p and q are local properties

Safety Properties
Invariant: A[]p

Possibly Invariant: E[]p

p

p

p

p

TCTL Quantifiers in UPPAAL

• E - exists a path (“E” in UPPAAL).

• A - for all paths (“A” in UPPAAL).

• G - all states in a path (“[]” in UPPAAL).

• F - some state in a path (“<>” in UPPAAL).

Queries in UPPAAL

A[]p, A<>p, E<>p, E[]p and p → q

AG p AF p EF p EG p

p and q are local properties

Liveness Properties

Always Eventually: A<>p

Always Leads to (p- ->q):

A<>[p -> A<>q]

p p p

p

TCTL Quantifiers in UPPAAL

• E - exists a path (“E” in UPPAAL).

• A - for all paths (“A” in UPPAAL).

• G - all states in a path (“[]” in UPPAAL).

• F - some state in a path (“<>” in UPPAAL).

Queries in UPPAAL

A[]p, A<>p, E<>p, E[]p and p → q

AG p AF p EF p EG p

p and q are local properties

Liveness Properties
Eventually: A<>p

Always Leads to (p- ->q):

A[][p -> A<>q]

q

p p

q q

q

qqq

TCTL Examples

• A deadlock never occurs
• A[] not deadlock

• An automaton A2 may never enter a location q
• E[] not A2.q

• There exists a reachable state from which φ always holds
• E<>A[] φ

• Infinitely often φ
• A[]A<> φ

• Always φ is possible
• A[]E<> φ

Example: Train Gate

• Two components: train, gate controller

• Trains running on separate tracks cross a common bridge

• Initially, trains are far enough from the bridge (location safe)

• When trains approach the bridge the gate controller is notified 20 time units
before the train reaches the bridge(location approaching)
• A train can be stopped within 10 time units; otherwise it must cross the bridge.

• Gate controller can stop a train and restart it
• If train is stopped (location stop) then it will be eventually restarted (location start) again and

it takes 7-15 time unit to reach the bridge.

• A train takes 3-5 time units to cross the bridge (location cross)

• After crossing, a train will go to its safe state again and notify the gate controller.

• Safety Property: Only one train at a time has access to the bridge.

[Kim Larsen: ARTIST Summer School 2009 slides + Uppaal distribution]

Stoppable
Area

0 10 20
3 - 5

Time

Train is
stoppable

Train must
proceed

Safe Approaching Crossing Safe

7 - 5

Example: Train Gate

Example: Train Gate

• Global declaration
• const int N = 6; // no of trains

• typedef int [0,N-1] id_t; //used as argument for the template of trains

• Chan appr[N], stop[N], leave[N];

• urgent chan go[N];

• Local declaration (Train)
• clock x;

• Local declaration (Gate)
• typedef struct { id_t list[N]; int [0,N] len; } queue_t;

• queue_t q;

Safe Cross
x ≤ 5

Appr
x ≤ 20

Stop

appr[id]!
x = 0

leave[id]!
x ≥ 3

x ≥ 10

x=0

x ≥ 7
x=0

x=0

go[id]?x ≤10
stop[id]?

C

Free

Occ

q.len > 0
go[front()]!

e: id_t
q.len == 0
appr[e]?

enqueue(e)

e: id_t
e == front()
leave[e]?

dequeue()

stop[tail]!e: id_t
appr[e]?

enqueue(e)

Template for the trains
Template for the gate

Start
x ≤ 15

Example: Train Gate

The train template has the argument const id_t id
that defines its identifier

e: id_t to unfold the corresponding edge with e
ranging over the type id_t

Example: Train Gate

• Verification
• E<>Train1.Cross

• E<> Train1.Cross and Train2.Stop

• Safety Properties
• A[] Train1.Cross+Train2.Cross +Train3.Cross +Train4.Cross<=1

• Liveness Properties
• Train1.Appr --> Train1.Cross

• System is deadlock free
• A[] not deadlock

Example: Task Scheduling

T1

T2

T3

Tn

2 3 1 4

Scheduler

Ready
Done

Stop
Run

T2 is running
{ T3, T1, T4 } ready ordered
according to some given
priority (e.g. Fixed Priority,
Earliest Deadlines, …)

E[i] Earliest arrival for Ti

L[i] Latest arrival for Ti

C[i] Execution time for Ti

D[i] Deadline for Ti

Kim G. Larsen, “Timing and Performance Analysis of Embedded Systems Using Model Checking”, JTRES 2011

C

Idle

head()==id
&&

ax == C[id]
done!

dequeue()
t >= D[id]

Ready

Running
Error

t >= D[id]

t >= E[id]

ready!
t = 0,
enqueue(id)

t <= L[id]

head()==id
run?
ax = 0

ax <= C[id]

T1

T2

T3

Tn

2 3 1 4

Scheduler

Ready
Done

Stop
Run

Modeling Task

T1

T2

T3

Tn

2 3 1 4

Scheduler

Ready
Done

Stop
Run

C

C

C
Init

Free

Select

Occu

run!

done?ready?

initialize()

!isEmpty()

isEmpty()

Modeling Scheduler

References

1. UPPAAL. http://www.uppaal.com.

2. “Timed Automata: Semantics, Algorithms and Tools”, Bengtsson,
Johan, and Wang Yi. Advanced Course on Petri Nets. Springer,
Berlin, Heidelberg, 2003.

3. “A Tutorial on Uppaal”, Behrmann, Gerd, Alexandre David, and Kim
Larsen. Formal methods for the design of real-time systems
(2004): 33-35.

4. “Uppaal in a Nutshell”, Larsen, Kim G., Paul Pettersson, and Wang
Yi. International Journal on Software Tools for Technology Transfer
(STTT) 1.1 (1997): 134-152.

http://www.uppaal.com/

