GLOBAL INITIATIVE OF ACADEMIC N RKS

An Introduction to UPPAAL

Purandar Bhaduri
Dept. of CSE
IIT Guwahati
Email: pbhaduri@iitg.ernet.in

OUTLINE

* Introduction

* Timed Automata
 UPPAAL

* Example: Train Gate

e Example: Task Scheduling

Introduction

 UPPAAL: a toolbox for modelling, simulating and verifying
real-time systems

e Appropriate for systems that cab be modelled as a network of timed
automata

* Nondeterministic finite automata
e Real-valued clocks
 Communication through channels and shared variables

* Applications: where time is a critical resource
* Real-time controllers
 Communication protocols

Timed Automata

Resource
Idle

Timed Automata Composition

Resource

Idle
use?
x=0 InUse

O

X <B

[Alur & Dill 90]

Locations in UPPAAL

e Normal Location
* Time can pass as long as the invariant is satisfied
* When the invariant becomes false the location must be exited

* Urgent Location
* No delay

e Committed Location
* No delay

* |In a composition the transition out of the committed location must be exited
first if more than one transition is enabled

Urgent Location

* No delay

e P and Q have the same behaviour.

Committed Location

* No delay

* Next transition must involve an edge in one of the processes in a
committed location.

x=k
P:

read?

Committed

* Location |12 is committed to ensure that no automaton can modify the x
before automaton Q reads x .

read!

* Enables accurate modelling of atomic behaviours.

Synchronization Semantics in UPPAAL

e Used to coordinate the action of two
Or more processes.

* Transitions with the same
synchronization channel are
activated simultaneously

e Guards must be true

)

al

0

s

ar’

£

Urgent Channel

e urgent chan a;

 Specifies synchronization that must be taken when the transition is
enabled, without delay
* No clock guard are allowed on the edges
* Guards on data-variables

e Encode urgent transition on a variable (e.g., busy waiting on a variable)

I
X >0 read!

- ® ©

Analysis: Model Checking

e Can check for invariant and reachability properties

 Whether certain combinations of locations and constraints on variables (clock
and integer) are reachable

* Bounded liveness
* Monitor automata
* Adding debugging information and checking reachability

e Generates diagnostic trace

Temporal Logic: TCTL

Validation Property

* E - exists a path (“E” in UPPAAL).

e A -for all paths (“A” in UPPAAL).

e G- all statesin a path (“[]” in UPPAAL).

* F - some state in a path (“<>” in UPPAAL).
Queries in UPPAAL

A[lp, A<>p, E<>p, E[Jpand p = ¢

R

AGp AFp EFp EGp

Possibly: E<>p

Propositions p and g are local properties
atomic clock/data constraints: integer bounds on clock variables
Component location

TCTL Quantifiers in UPPAAL

Safety Properties
Invariant: A[]p

* E - exists a path (“E” in UPPAAL).
e A -for all paths (“A” in UPPAAL).
e G- all statesin a path (“[]” in UPPAAL).
* F - some state in a path (“<>” in UPPAAL). Q

Queries in UPPAAL
Allp, A<>p, E<>p, E[]pand p = q @ Q
AGp AFp EFp EGp (p) (p) (p) (p)

p and q are local properties @

TCTL Quantifiers in UPPAAL

Safety Properties

* E - exists a path (“E” in UPPAAL).

e A -for all paths (“A” in UPPAAL).

e G- all statesin a path (“[]” in UPPAAL).

* F - some state in a path (“<>” in UPPAAL).
Queries in UPPAAL

Allp, A<>p, E<>p, E[]Jpand p - q

Lo

AGp AFp EFp EGp

Possibly Invariant: E[]p

p and g are local properties

TCTL Quantifiers in UPPAAL

Liveness Properties

Always Eventually: A<>p

e E - exists a path (“E” in UPPAAL).

e A -for all paths (“A” in UPPAAL).

e G- all statesin a path (“[]” in UPPAAL).

e F - some state in a path (“<>” in UPPAAL).
Queries in UPPAAL

A[lp, A<>p, E<>p, E[]Jpand p = q

Lo

AGp AFp EFp EGp

p and g are local properties

TCTL Quantifiers in UPPAAL

Liveness Properties

e E - exists a path (“E” in UPPAAL).

e A -for all paths (“A” in UPPAAL).

e G- all statesin a path (“[]” in UPPAAL).

e F - some state in a path (“<>” in UPPAAL).
Queries in UPPAAL

A[lp, A<>p, E<>p, E[]Jpand p = q

Lo

AGp AFp EFp EGp

Always Leads to (p- ->q):
Alllp -> A<>q]

p and g are local properties

TCTL Examples

e A deadlock never occurs
* A[] not deadlock

* An automaton A2 may never enter a location g
* E[] not A2.q

* There exists a reachable state from which ¢ always holds
e« E<>A[] &

* Infinitely often ¢
* A[]JA<> ¢

* Always ¢ is possible
 A[JE<> o

Example: Train Gate

 Two components: train, gate controller
* Trains running on separate tracks cross a common bridge
* Initially, trains are far enough from the bridge (location safe)

 When trains approach the bridge the gate controller is notified 20 time units
before the train reaches the bridge(location approaching)

* A train can be stopped within 10 time units; otherwise it must cross the bridge.

e Gate controller can stop a train and restart it

 If train is stopped (location stop) then it will be eventually restarted (location start) again and
it takes 7-15 time unit to reach the bridge.

* A train takes 3-5 time units to cross the bridge (location cross)
» After crossing, a train will go to its safe state again and notify the gate controller.
e Safety Property: Only one train at a time has access to the bridge.

[Kim Larsen: ARTIST Summer School 2009 slides + Uppaal distribution]

Time

---------------*

—mmmmmm =
|

-5

3

20

10

stoppable

Stoppable
Area

[
[
[
[
[
[
|
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
0

Example: Train Gate

Example: Train Gate

e Global declaration
e constint N =6; // no of trains
 typedefint [O,N-1] id_t; //used as argument for the template of trains
e Chan appr[N], stop[N], leave[N];
* urgent chan go[N];
* Local declaration (Train)
* clock x;
* Local declaration (Gate)
e typedef struct {id _t list[N]; int [O,N] len; } queue _t;
°* queue_tq;

Example: Train Gate

leave[id]! Free
X3

Safe Cross
Xx<5
e:id_t e:id_t
appr(id]! g.len>0 q.len == e == front()
<=0 x_> 7 go[front()]! apprle]? leave[e]?
x=0 enqueue(e) | dequeue()
Occ
Appr Start
< .
x <20 x<15 e:id_t stop[tail]!
appr(e]?
enqueue(e)
T late for the gat
Template for the trains emplate for fhe gate
The train template has the argument const id_t id e: id_t to unfold the corresponding edge with e

that defines its identifier ranging over the type id_t

Example: Train Gate

 Verification
* E<>Trainl.Cross
* E<>Trainl.Cross and Train2.Stop

e Safety Properties
e A[] Train1.Cross+Train2.Cross +Train3.Cross +Train4.Cross<=1

* Liveness Properties
* Trainl.Appr --> Train1.Cross

e System is deadlock free
* A[] not deadlock

Example: Task Scheduling

T

Ef,?,‘iy E[i] Earliest arrival for T,
\ Scheduler
{ T2] L[i] Latest arrival for T,

{ T3 J \ | C[i] Execution time for T,
|

. / \ -

s Stop D[i] Deadline for T,

Run
. _ {1, T, T,}ready ordered

{ T] Tyisrunning 5ccording to some given

L priority (e.g. Fixed Priority,

Earliest Deadlines, ...)

Kim G. Larsen, “Timing and Performance Analysis of Embedded Systems Using Model Checking”, JTRES 2011

Modeli

5088
N\

ng Task

Ready
Done

Scheduler

~

)

Stop
Run

head()==id
&&
ax == C[id]
done!
dequeue()

Idle
t <= L[id]

t >= E[id]
ready!

t=0,
enqueue(id)

t >= D[id]

Ready

head()==id
run’?
ax=>0

‘ t >= D[id] ‘
Running

ax <= C[id] Error

Modeling Scheduler nit
‘ T, [Ready initialize()
Free

SR pone lisEmpty()
T2 Scheduler A

done?

Occu

References

. UPPAAL. http://www.uppaal.com.

. “Timed Automata: Semantics, Algorithms and Tools”, Bengtsson,
Johan, and Wang Yi. Advanced Course on Petri Nets. Springer,
Berlin, Heidelberg, 2003.

. “A Tutorial on Uppaal”, Behrmann, Gerd, Alexandre David, and Kim
Larsen. Formal methods for the design of real-time systems
(2004): 33-35.

. “Uppaal in a Nutshell”, Larsen, Kim G., Paul Pettersson, and Wang

Yi. International Journal on Software Tools for Technology Transfer
(STTT) 1.1 (1997): 134-152.

http://www.uppaal.com/

