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• UPPAAL: a toolbox for modelling, simulating and verifying 
real-time systems
• Appropriate for systems that cab be modelled as a network of timed 

automata
• Nondeterministic finite automata
• Real-valued clocks
• Communication through channels and shared variables

• Applications: where time is a critical resource
• Real-time controllers
• Communication protocols

Introduction
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Locations in UPPAAL

• Normal Location
• Time can pass as long as the invariant is satisfied

• When the invariant becomes false the location must be exited

• Urgent Location
• No delay

• Committed Location
• No delay

• In a composition the transition out of the committed location must be exited 
first if more than one transition is enabled



Urgent Location

• No delay

• P and Q have the same behaviour.

l1

X = 0 
a?

P: X == 0 
b!

X <=0

l2 l3 l1
a?

Q:
b!

l2 l3

Urgent



Committed Location

• No delay

• Next transition must involve an edge in one of the processes in a 
committed location.

• Location l2 is committed to ensure that no automaton can modify the x 
before automaton Q reads x .

• Enables accurate modelling of atomic behaviours.

l1

x=k

P:
read!

l2 l3 n1

read?
t=x Q:

n2

Committed



Synchronization Semantics in UPPAAL

• Used to coordinate the action of two 
or more processes. 

• Transitions with the same 
synchronization channel are 
activated simultaneously
• Guards must be true

I1

I2 S2

S1

a! a?



Urgent Channel

• urgent chan a;

• Specifies synchronization that must be taken when the transition is 
enabled, without delay
• No clock guard are allowed on the edges

• Guards on data-variables

• Encode urgent transition on a variable (e.g., busy waiting on a variable)

l m
X > 0  
read? d

read!P:



Analysis: Model Checking

• Can check for invariant and reachability properties
• Whether certain combinations of locations and constraints on variables (clock 

and integer) are reachable

• Bounded liveness
• Monitor automata

• Adding debugging information and checking reachability

• Generates diagnostic trace



Temporal Logic: TCTL

• E - exists a path ( “E” in UPPAAL).

• A - for all paths ( “A” in UPPAAL).

• G - all states in a path ( “[]” in UPPAAL).

• F - some state in a path ( “<>” in UPPAAL).

Queries in UPPAAL

A[]p, A<>p, E<>p, E[]p and p → q

AG p AF p EF p EG p

Propositions p and q are local properties
• atomic clock/data constraints: integer bounds on clock variables
• Component location

Validation Property

Possibly: E<>p

p p



TCTL Quantifiers in UPPAAL

• E - exists a path ( “E” in UPPAAL).

• A - for all paths ( “A” in UPPAAL).

• G - all states in a path ( “[]” in UPPAAL).

• F - some state in a path ( “<>” in UPPAAL).

Queries in UPPAAL

A[]p, A<>p, E<>p, E[]p and p → q

AG p AF p EF p EG p

p and q are local properties

Safety Properties
Invariant: A[]p 

Possibly Invariant: E[]p
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TCTL Quantifiers in UPPAAL

• E - exists a path ( “E” in UPPAAL).

• A - for all paths ( “A” in UPPAAL).
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TCTL Quantifiers in UPPAAL

• E - exists a path ( “E” in UPPAAL).

• A - for all paths ( “A” in UPPAAL).

• G - all states in a path ( “[]” in UPPAAL).

• F - some state in a path ( “<>” in UPPAAL).

Queries in UPPAAL

A[]p, A<>p, E<>p, E[]p and p → q

AG p AF p EF p EG p

p and q are local properties

Liveness Properties
Eventually: A<>p

Always Leads to (p- ->q):

A[][p -> A<>q]

q

p p

q q

q

qqq



TCTL Examples

• A deadlock never occurs
• A[] not deadlock

• An automaton A2 may never enter a location q
• E[] not A2.q

• There exists a reachable state from which φ always holds
• E<>A[] φ

• Infinitely often φ
• A[]A<> φ

• Always φ is possible
• A[]E<> φ



Example: Train Gate 

• Two components: train, gate controller

• Trains running on separate tracks cross a common bridge

• Initially, trains are far enough from the bridge (location safe)

• When trains approach the bridge the gate controller is notified 20 time units 
before the train reaches the bridge(location approaching)
• A train can be stopped within 10 time units; otherwise it must cross the bridge.

• Gate controller can stop a train and restart it
• If train is stopped (location stop) then it will be eventually restarted (location start) again and 

it takes 7-15 time unit to reach the bridge.

• A train takes 3-5 time units to cross the bridge (location cross)

• After crossing, a train will go to its safe state again and notify the gate controller.

• Safety Property: Only one train at a time has access to the bridge.

[Kim Larsen: ARTIST Summer School 2009 slides + Uppaal distribution]
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Example: Train Gate

• Global declaration
• const int N = 6; // no of trains

• typedef int [0,N-1] id_t; //used as argument for the template of trains

• Chan appr[N], stop[N], leave[N];

• urgent chan go[N]; 

• Local declaration (Train)
• clock x; 

• Local declaration (Gate)
• typedef struct { id_t list[N]; int [0,N] len; } queue_t;

• queue_t q; 



Safe Cross
x ≤ 5

Appr
x ≤ 20

Stop

appr[id]!
x = 0

leave[id]!
x ≥ 3

x ≥ 10

x=0

x ≥ 7
x=0

x=0

go[id]?x ≤10
stop[id]?

C

Free

Occ

q.len > 0
go[front()]!

e: id_t
q.len == 0
appr[e]?

enqueue(e)

e: id_t
e == front()
leave[e]?

dequeue()

stop[tail]!e: id_t
appr[e]?

enqueue(e)

Template for the trains
Template for the gate

Start
x ≤ 15

Example: Train Gate

The train template has the argument const id_t id 
that defines its identifier

e: id_t to unfold the corresponding edge with e
ranging over the type id_t



Example: Train Gate

• Verification
• E<>Train1.Cross

• E<> Train1.Cross and Train2.Stop

• Safety Properties
• A[] Train1.Cross+Train2.Cross +Train3.Cross +Train4.Cross<=1

• Liveness Properties
• Train1.Appr --> Train1.Cross

• System is deadlock free
• A[] not deadlock



Example: Task Scheduling

T1

T2

T3

Tn

2 3 1 4

Scheduler

Ready
Done

Stop
Run

T2 is running
{ T3, T1, T4 } ready ordered 
according to some given 
priority (e.g. Fixed Priority, 
Earliest Deadlines, …)

E[i] Earliest arrival for Ti

L[i] Latest arrival for Ti

C[i] Execution time for Ti

D[i] Deadline for Ti

Kim G. Larsen, “Timing and Performance Analysis of Embedded Systems Using Model Checking”, JTRES 2011
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