University of lllinois
at Urbana-Champaign

Tutorial 1: Modern SMT Solvers
and Verification

Sayan Mitra

Electrical & Computer Engineering
Coordinated Science Laboratory
University of Illinois at Urbana Champaign

Tutorial 1: Modern SMT Solvers
and Verification

Sayan Mitra

slides adapted from a lecture by Clark Barrett

Plan

e SAT problem

— Logic and circuit representation
— Conversion to CNF

— DPLL

— Modeling and BMC using SAT (Z3)

* SMT

— Architecture
— Theories
— Examples

Lecture Slides by Sayan Mitra mitras@illinois.edu

The satisfiability problem

SAT Problem: Given a well-formed formula a in propositional
logic, decide whether there exists a satisfying solution for «.

Example: a(xq, Xy, ..., X)) = (Xy Axy VXx3) A(X1 A X3V X5)
Satisfying solution: (x; = 1;x, = 1;x3 = 0)

Complexity: 2™

First problem shown to be NP-complete [Cook’71]

Though exponential, makes sense to build SAT-solvers and 30+

years of engineering has led to solvers that can solve practical
problems

Lecture Slides by Sayan Mitra mitras@illinois.edu

SAT in Verification

Reachability and invariance questions automata can be encoded as
SAT questions

Q. U is (not) reachable from Q. in n steps:

Fo,(Xo) A Fr(Xo, X1) A Fr(X1, X2) A Fr(Xg, X3) A+ A Fr(Xp_1, Xn) A Fy(Xp)
SAT iff U is reachable (UNSAT iff not reachable)

Q. [is (not) an inductive invariant:

Fo,(X) = Fi(X) AF (X) AFr(X,X") = Fi(X")

Slides by Sayan Mitra (mitras@illinois.edu)

Terminology

variables: x4, x5

literals: positive or negative appearance of variables in
a formula, e.g., x{, =1x,,

clause: disjunction of literals, e.g. (x{ V =X, V Xx3)

conjunctive normal form (CNF) formula: E.g.,
(x1 V xz V _IXB) /\ (_IXZ V xl)

we Wwill assume a to be in CNF

Lecture Slides by Sayan Mitra mitras@illinois.edu

Propositional logic and circuits
D- D D D

NAND
—l>~ jD ij
XNOR
D D A(ANAB)
A
BI: I=(DANAAB))V(ACA(AAB))

CD o ~C A(AAB)

Slides by Sayan Mitra (mitras@illinois.edu)

Propositional logic and circuits

D DA(AAB)

B I=(DANMAANB))V(ACAANB))

CD o ~CA(AAB)

Overcome inefficiency by renaming subexpressions

Tautologically equivalent: Every satisfying solution of I is a satisfying
solution of I’

Equisatisfiable: I is satisfiable iff I" is satisfiable
(AANB) & E

I'=MOAE)V(-CAE)AN(AAB) < E)

1" and I are not tautologically equivalent, but are equisatisfiable (e.g., C =
0;A =B = 1;E = 0 satisfies I)

Slides by Sayan Mitra (mitras@illinois.edu)

Converting to CNF
A _D—b}

B I
C F H
View formula as a circuit E e (AAB)
1. Give new names to non-leaf nodes = (G(AAB)VE) A(=EV (AAB))
2. For each non-leaf add conjunction . (2AV =BV E)A(=EVA)A(-E V B))
£1/0 ¢ G o (DAE)
0 clauses Crer
3. Take conjunction of everything H o (FAE)
| o (HVG)

Slides by Sayan Mitra (mitras@illinois.edu)

SMT formats

Alternative notations
* (HAVABVE)AN(REVA)AN((=EVB)AN(=DVE)
« AVB' VE)E'VAE'VB)(D'VE)

e (=1 —25)(-51)A(=52)A(—45) [DIMACS]

Slides by Sayan Mitra (mitras@illinois.edu)

SAT solving algorithms

e Davis Putnam Logemann Loveland (DPLL) 1962
e Davis Putnam algorithm (DP) 1960

Basic idea: Given a perform a sequence of
satisfiability preserving transformations; if this
ends with empty clause then UNSAT and if this
ends with no clauses then SAT

Slides by Sayan Mitra (mitras@illinois.edu)

The DP rules

1. Unit propagation: If a clause has a single literal p then

— remove all instances of —p from all clauses

— remove all clauses with p

2. Pureliteral: If a variable appears only positively or negatively
in all clauses then delete all clauses containing that literal

3. Resolution: Choose literal p (appears both positively and
negatively)

— Let P be the set of clauses in which p is +ve

— Let N be the set of clauses in which p is —ve
— Replace P, N with clauses obtained by resolving p in all pairs

— Forasingle pair(pv®, V¥, ..4,);(=pVk Vk,..k,) resolved
clauseis (1 V¥y .., VkiVky..k,)

— Quadratic blow-up in size of formula

Slides by Sayan Mitra (mitras@illinois.edu)

Some experimental results

Problem tautology dptaut dplltaut
prime 3 0.00 0.00 0.00
prime 4 0.02 0.06 0.04
prime 9 18.94 2.98 0.51
prime 10 11.40 3.03 0.96
prime 11 28.11 2.98 0.51
prime 16 >1 hour out of memory 9.15
prime 17 >1 hour out of memory 3.87
ramsey 3 3 5 0.03 0.06 0.02
ramsey 3 3 6 5.13 8.28 0.31
mk_adder_test32 | >>1 hour 6.50 7.34
mk_adder_test42 | >>1 hour 22.95 46.86
mk_adder_test52 | >>1 hour 4483 170.98
mk_adder_test53 | >>1 hour 38.27 250.16
mk_adder_test63 | >>1hour outof memory 1186.4
mk_adder_test73 | >>1hour outof memory 3759.9

Slides by Sayan Mitra (mitras@illinois.edu)

From talk by Clark Barrett

Incomplete SAT: GSAT [SLM92]

Input: a set of clauses [, MAX-FLIPS, MAX-TRIES
Output: a satisfying truth assignment of F

or), if none found
for 7z := 1 to MAX-TRIES

v := a randomly generated truth assignment
for 7 := 1 to MAX-FLIPS

if v satisfies F' then return v

p := a propositional variable such that a

change in its truth assignment gives the
largest increase in the total number of
clauses of I that are satisfied by v

v := v with the assignment to p reversed
end for

end for
return ()

——

Stalmarck’s Method [SS98]

Breadth-first approach instead of depth-first.

Dilemma Rule

Given a set of formulas A and any basic deduction algorithm,
R, the dilemma rule performs a case split on some literal p by
considering the new sets of formulas A U {(—p)} and

AU{(p)}.

To each of these sets, the algorithm R is applied to yield A,
and A, respectively.

The original set A is then augmented with Ay N A;.

—_

—

——

Abstract DPLL

We now return to DPLL. To facilitate a deeper look at DPLL,
we use a high-level framework called Abstract DPLL [NOTO6].

* Abstiract DPLL uses staies and (ransitions to model the
progress of the algorithm.

* Most states are of the form M | F', where

o M is a sequence of annotated literals denoting a
partial truth assignment, and

o F'is the CNF formula being checked, represented as a
sel of clauses.
* The initial stateis () | F', where F'is to be checked for
satisfiability.

* Transitions between states are defined by a set of
conditional transition rules.

——

Abstract DPLL

The final state is either:
* a special fail state: fail, if F' is unsatisfiable, or

* M | G, where G is a CNF formula equisatisfiable with the
original formula F', and M satisfies G

We write M = C to mean that for every truth assignment v,
v(M) = True implies v(C') = True.

——

Abstract DPLL Rules

UnitProp :
M|F,Cvl

PureLiteral :
M| F

Decide :
M|F
Backtrack :
MIEN|FC
Fail :

M|F,C

MIL|F,CvI

MIL|F

MU |F

M-l|F,C

fail

if ¢
if ¢

if ¢

if <

|

M E=-C
[1s undefined in M

[occurs in some clause of F
—1I occurs in no clause of F

[1s undefined in M

[or =l occurs in a clause of F
[1s undefined in M

M4 N E-C

N contains no decision literals

M E-C
M contains no decision literals

Example

1) 1v2,1v2,2Vv33Vv21V4= (Pureliteral 4)
4 1v2,1v2,2Vv33V21V4= (Decidel)
414 1v2,1v2,2v3,3Vv21V4= (Unitprop 2)
4192 |1v2,1v2,2Vv33Vv21V4= (Unitprop 3)
41923 |1v2,1v2,2Vv3,3Vv21V4= (Backtrack)
41 |1v2,1v2,2Vv3,3V21V4= (Unitprop)
4123 |1v2,1v2,2Vv3,3Vv21V4= (Fail

fail
Result: Unsatisfiable

Slides by Sayan Mitra (mitras@illinois.edu)

Modeling for SAT

Input:
A =(0Q,0y T S QXQ), Invariant I or unsafe set U

Output:

I is (not) an invariant of A

U is (not) reachable from Q,

U is (not) reachable from Q, in n steps

Slides by Sayan Mitra (mitras@illinois.edu)

Modeling for SAT (2)

A =(Q,0,, T S QxQ), Invariant I or unsafe set U
Assume Q is finite

Select k such that |Q] < 2F

Define state variables X = {xq, x5, ..., x;}, type(x;) = {0,1}
Then, Q = val(X)

Qo — Fy,(X) aformula encoding initial set

U — Fy(X) aformula encoding unsafe set

Define additional vars Y = {y4,y>, ..., Y&}, type(y;) = {0,1}
T — Fr(X,Y) aformula encoding transition relation

Slides by Sayan Mitra (mitras@illinois.edu)

Bounded model checking

Qo — Fy,(X) aformula encoding initial set

U — Fy(X) aformula encoding unsafe set
T +— F;(X,Y) aformula encoding transition relation
We need n + 1 copies of variables: Xy = {xg1, X02, ... Xor }, X1 =

(11, X12, o X1k} 0 Xy

Q. U is (not) reachable from Qg in n steps:

Fo,(Xo) A Fr(Xo,X1) A Fr(X1,X2) A Fr(Xp, X3) A==+ A
FT(Xn—l: Xn) A FU(Xn)

SAT iff U is reachable (UNSAT iff not reachable)

Slides by Sayan Mitra (mitras@illinois.edu)

Tutorial 1

FROM SAT TO SMT

Slides by Sayan Mitra (mitras@illinois.edu)

Architecture of SMT Solvers

Question: Input a(x) formula in some set of
logical theories, x,x E a?

CNF formula in

/

Theories

vectors, ...

_

theory of Arrays

w,

Arithmetic, Arrays, UF, Bit | solution/ cE

Core

assertions

/

Decision procedures ideally:
incremental, backtrackable,

conflict generating

boolean
skeleton of
problem

Slides by Sayan Mitra (mitras@illinois.edu)

g
DPLL]
'\

Theories and terminology

Signature : function symbol, predicate ¢ Zp= {0,+}, IRES {<}, arity(0): =

symbol, arity, set of variables 0, arity(+): = 2, arity(<): =
Terms(Z,V): 2,V:={x,y,z}
— v|f(to.., tr) e Terms:
— ground terms x,¥,2,0,+(x,), +(+(x,y),0)
* AF:

Atomic formula AF(Z,V):

— TEp(to, .., tx)
— literal: AF or its negation

x <y, +(xy) =+, x)
* QFF:
(V) +(x,y) =0Ax >y
QFF(3,V): b, =, 1 A bz, 1 V ror e o
b, p1 > ¢, Where ¢, p; € AF :Vx, 3y: +(x,y) x>y
FOF(2,V):

— QFF under universal and existential
guantifiers

— Free and bound variables
Sentence: FOF with no free variables

Theory(Z,V): set of all sentences
Slides by Sayan Mitra (mitras@illinois.edu)

Decision procedures

Models give meaning to symbols and formula

A model M for X,V defines a domain, gives
interpretation to all symbols and assignment to all the

variables

Given a theory T a theory solver (decision procedure)
takes as input a set of literals @ and determines
whether @ is T-satisfiable, i.e., does there exist a
model M, such that M & @?

Slides by Sayan Mitra (mitras@illinois.edu)

Example theories

Uninterpreted functions (UF)

S =1{f,g,.}5 = =}V =x,

X1 # Xy Axz # X3 A f(x3) = f(x2)
Arithmetic

X, ={<,>,5,2,=)

Difference logic

X ={-}LI,={<>< 2=}

X1 — X, >k

Linear arithmetic: 7xqy — 3x, + 6x3 < 10
Nonlinear arithmetic: 7xZ — 3x,x; + 6x5 < 1
Arrays

Bit vectors

Slides by Sayan Mitra (mitras@illinois.edu)

A decision procedure for UF

Di=x; =X, AXy = X3 ANXq = X5 ANXs # X1 ANF(xq) # F(x3)

Rules: {21 oo} {x3} (s} s HE (e) HF (x3)}
1. Put all variables and function {x1, %2} {x3} {24, xs HF (1) H{F (x3)}
instances in their own classes {x1, %2, x3} {x4, xs HF (x1)H{F (x3)}

2. ift; = t;is the predicate then merge {x1, %2, x3} {x4, Xs HF (x1), F (x3) }
the containing classes; repeat UNSAT

3. Ift;and t; are in the same class, then
merge F(t;) and F(t;); repeat

4. Ift; # tjisin @ such thatt; and ¢;

are in the same class then return
UNSAT else return SAT

Slides by Sayan Mitra (mitras@illinois.edu)

Back to SMT

Two approaches
* Eager: Translate to equisatisfiable
propositional formula

* Lazy: Abstract to propositional form, feed to
DPLL, refine

Slides by Sayan Mitra (mitras@illinois.edu)

SMT solver example

d := g(a) =c/\f(g(a)) *+ f(c)vgla)=dAc+d

\

}

\ }
Y \ } \ Y }

NI
w

1
Send {1,2 V 3,4} to SAT
SAT solver returns model {1, 2, 4}
UF-solver finds concretization of {1, 2,4} UNSAT
Send {1,2V 3,4, (1 A2 A4)} to SAT
Send {1,2V 3,4,1V 2V 4)} to SAT
SAT solver returns model {1,3, 4}
UF-solver finds concretization of {1,3, A_L} UNSAT
Send {1,2V 3,4,1V2V4,1V3V4}toSAT
SAT solver returns UNSAT; Original formula is UNSAT in UF

Slides by Sayan Mitra (mitras@illinois.edu)

N

Summary

This was just an introduction to SMT solvers

Modern solvers Z3, CVC4, Chaff, have been used to solve
practical verification problems

Many, many tools use SAT solvers for verification, synthesis,
symbolic simulation, etc.

The international SAT Competitions web page

mmmmmmmmmmmmm

SMT competitions: o

http://www.satcompetition.org/ =—

balduriti it edu/sat-race-2015

Slides by Sayan Mitra (mitras@illinois.edu)

