
Tutorial	1:	Modern	SMT	Solvers	
and	Verification

Sayan	Mitra
Electrical	&	Computer	Engineering
Coordinated	Science	Laboratory

University	of	Illinois	at	Urbana	Champaign

University of Illinois
at Urbana-Champaign

Tutorial	1:	Modern	SMT	Solvers	
and	Verification

Sayan	Mitra

slides	adapted	from	a	lecture	by	Clark	Barrett

Plan

• SAT	problem
– Logic	and	circuit	representation
– Conversion	to	CNF
– DPLL
–Modeling	and	BMC	using	SAT	(Z3)

• SMT	
– Architecture
– Theories	
– Examples

Lecture	Slides	by	Sayan	Mitra mitras@illinois.edu

The	satisfiability	problem
SAT	Problem: Given	a	well-formed	formula	𝛼	in	propositional	
logic,	decide	whether	there	exists	a	satisfying	solution	for	𝛼.

Example:		𝛼 𝑥%, 𝑥', … , 𝑥) ≔ 𝑥% ∧ 𝑥' ∨ 𝑥- ∧ 𝑥% ∧ ¬𝑥- ∨ 𝑥'

Satisfying	solution:	(𝑥% = 1; 𝑥' = 1; 𝑥- = 0)

Complexity:	2)

First	problem	shown	to	be	NP-complete	[Cook’71]

Though	exponential,	makes	sense	to	build	SAT-solvers	and	30+	
years	of	engineering	has	led	to	solvers	that	can	solve	practical	
problems

Lecture	Slides	by	Sayan	Mitra mitras@illinois.edu

SAT	in	Verification
Reachability	and	invariance	questions	automata	can	be	encoded	as	
SAT	questions

Q.	𝑈 is	(not)	reachable	from	𝑄8 in	𝑛 steps:

𝐹;< 𝑋8 ∧ 𝐹> 𝑋8, 𝑋% ∧ 𝐹> 𝑋%, 𝑋' ∧ 𝐹> 𝑋', 𝑋- ∧ ⋯∧ 𝐹> 𝑋)@%, 𝑋) ∧ 𝐹A(𝑋))
SAT	iff 𝑈 is	reachable	(UNSAT	iff not	reachable)

Q.	𝐼 is	(not)	an	inductive	invariant:

𝐹;< 𝑋 → 𝐹D 𝑋 ∧ 𝐹D 𝑋 	∧ 𝐹> 𝑋, 𝑋E → 𝐹D(𝑋E)

Slides	by	Sayan	Mitra	(mitras@illinois.edu)

Terminology
variables:	𝑥%, 𝑥'

literals:	positive	or	negative	appearance	of	variables	in	
a	formula,	e.g.,	𝑥%, ¬𝑥',

clause:	disjunction	of	literals,	e.g.	(𝑥% ∨ ¬𝑥' ∨ 𝑥-)

conjunctive	normal	form	(CNF)	formula:	E.g.,	
𝑥% ∨ 𝑥' ∨ ¬𝑥- ∧ (¬𝑥' ∨ 𝑥%)

we	will	assume	𝛼 to	be	in	CNF
Lecture	Slides	by	Sayan	Mitra mitras@illinois.edu

Propositional	logic	and	circuits

Slides	by	Sayan	Mitra	(mitras@illinois.edu)

𝐵

𝐴

𝐶

𝐷 𝐷 ∧ (𝐴 ∧ 𝐵)

¬𝐶 ∧ (𝐴 ∧ 𝐵)

𝐼 ≡ 𝐷 ∧ (𝐴 ∧ 𝐵)	 ∨ ¬𝐶 ∧ (𝐴 ∧ 𝐵)	

Propositional	logic	and	circuits

Slides	by	Sayan	Mitra	(mitras@illinois.edu)

𝐵

𝐴

𝐶

𝐷 𝐷 ∧ (𝐴 ∧ 𝐵)

¬𝐶 ∧ (𝐴 ∧ 𝐵)

𝐼 ≡ 𝐷 ∧ (𝐴 ∧ 𝐵)	 ∨ ¬𝐶 ∧ (𝐴 ∧ 𝐵)	

Overcome	inefficiency	by	renaming	subexpressions
Tautologically	equivalent:	Every	satisfying	solution	of	𝐼 is	a	satisfying	
solution	of	𝐼E

Equisatisfiable: 𝐼 is	satisfiable iff 𝐼E is	satisfiable
𝐴 ∧ 𝐵 ↔ 𝐸
𝐼E ≡ 𝐷 ∧ 𝐸 ∨ ¬𝐶 ∧ 𝐸	 ∧ (𝐴 ∧ 𝐵 ↔ 𝐸)
𝐼E and 𝐼 are	not	tautologically	equivalent,	but	are	equisatisfiable (e.g.,	𝐶 =
0; 𝐴 = 𝐵 = 1; 𝐸 = 0 satisfies	𝐼)

Converting	to	CNF

Slides	by	Sayan	Mitra	(mitras@illinois.edu)

𝐵

𝐴

𝐶

𝐷 𝐺

𝐻

𝐼

View	formula	as	a	circuit
1. Give	new	names	to	non-leaf	nodes	
2. For	each	non-leaf	add	conjunction	

of	I/O	clauses
3. Take	conjunction	of	everything	

𝐸 ↔ 𝐴 ∧ 𝐵
≡ ¬ 𝐴 ∧ 𝐵 ∨ 𝐸 ∧ ¬𝐸 ∨ 𝐴 ∧ 𝐵
≡ ¬𝐴 ∨ ¬𝐵 ∨ 𝐸 ∧ ¬𝐸 ∨ 𝐴) ∧ ¬𝐸 ∨ 𝐵
𝐺 ↔ 𝐷 ∧ 𝐸
¬𝐹 ↔ 𝐶
𝐻 ↔ 𝐹 ∧ 𝐸
𝐼 ↔ (𝐻 ∨ 𝐺)

𝐸

𝐹

SMT	formats

Alternative	notations	

• ¬𝐴 ∨ ¬𝐵 ∨ 𝐸 ∧ ¬𝐸 ∨ 𝐴 ∧ ¬𝐸 ∨ 𝐵 ∧ ¬𝐷 ∨ 𝐸

• 𝐴′ ∨ 𝐵′ ∨ 𝐸 𝐸′ ∨ 𝐴 𝐸′ ∨ 𝐵 𝐷′ ∨ 𝐸

• −1	 − 2		5 −5	1 ∧ −5	2 ∧ −4	5 [DIMACS]

Slides	by	Sayan	Mitra	(mitras@illinois.edu)

SAT	solving	algorithms

• Davis	Putnam	Logemann Loveland	(DPLL)	1962
• Davis	Putnam	algorithm	(DP)	1960

Basic	idea:	Given	𝛼 perform	a	sequence	of	
satisfiability	preserving	transformations;	if	this	
ends	with	empty	clause	then	UNSAT	and	if	this	
ends	with	no	clauses	then	SAT

Slides	by	Sayan	Mitra	(mitras@illinois.edu)

The	DP	rules
1. Unit	propagation: If	a	clause	has	a	single	literal	𝑝 then	

– remove	all	instances	of	¬𝑝 from	all	clauses
– remove	all	clauses	with	𝑝

2. Pure	literal: If	a	variable	appears	only	positively	or	negatively	
in	all	clauses	then	delete	all	clauses	containing	that	literal

3. Resolution: Choose	literal	𝑝 (appears	both	positively	and	
negatively)
– Let	P	be	the	set	of	clauses	in	which	𝑝 is	+ve
– Let	N	be	the	set	of	clauses	in	which	𝑝 is	–ve
– Replace	P,	N	with	clauses	obtained	by	resolving	𝑝 in	all	pairs
– For	a	single	pair	 𝑝 ∨ ℓ% ∨ ℓ' …ℓU ; (¬𝑝 ∨ 𝑘% ∨ 𝑘' …𝑘)) resolved	

clause	is	(ℓ% ∨ ℓ' …ℓU ∨ 𝑘% ∨ 𝑘' …𝑘))
– Quadratic	blow-up	in	size	of	formula

Slides	by	Sayan	Mitra	(mitras@illinois.edu)

Some	experimental	results

Slides	by	Sayan	Mitra	(mitras@illinois.edu)
From	talk	by	Clark	Barrett

Example
∅															|	1 ∨ 2Y, 1Y ∨ 2Y, 2 ∨ 3, 3Y ∨ 2, 1 ∨ 4 ⇒	(Pureliteral 4)	
4															|	1 ∨ 2Y, 1Y ∨ 2Y, 2 ∨ 3, 3Y ∨ 2, 1 ∨ 4 ⇒ (Decide 1)
4	1\									|	1 ∨ 2Y, 1Y ∨ 2Y, 2 ∨ 3, 3Y ∨ 2, 1 ∨ 4 ⇒ (Unitprop 2Y)
4	1\	2Y						|	1 ∨ 2Y, 1Y ∨ 2Y, 2 ∨ 3, 3Y ∨ 2, 1 ∨ 4 ⇒ (Unitprop 3)
4	1\	2Y	3		|	1 ∨ 2Y, 1Y ∨ 2Y, 2 ∨ 3, 3Y ∨ 2, 1 ∨ 4 ⇒ (Backtrack)
4	1Y											|	1 ∨ 2Y, 1Y ∨ 2Y, 2 ∨ 3, 3Y ∨ 2, 1 ∨ 4 ⇒ (Unitprop)
4	1Y	2Y	3Y				|	1 ∨ 2Y, 1Y ∨ 2Y, 2 ∨ 3, 3Y ∨ 2, 1 ∨ 4 ⇒ (Fail)

fail
Result:	Unsatisfiable

Slides	by	Sayan	Mitra	(mitras@illinois.edu)

Modeling	for	SAT

Input:
𝒜 = 𝑄,𝑄8, 𝑇 ⊆ 𝑄×𝑄 , Invariant	𝐼 or	unsafe	set	𝑈

Output:
𝐼 is	(not)	an	invariant	of	𝒜
𝑈 is	(not)	reachable	from	𝑄8
𝑈 is	(not)	reachable	from	𝑄8 in	𝑛 steps

Slides	by	Sayan	Mitra	(mitras@illinois.edu)

Modeling	for	SAT	(2)
𝒜 = 𝑄,𝑄8, 𝑇 ⊆ 𝑄×𝑄 , Invariant	𝐼 or	unsafe	set	𝑈
Assume	𝑄 is	finite
Select	𝑘 such	that	 𝑄 ≤ 2b
Define	state	variables	X = 	 𝑥%, 𝑥', … , 𝑥b , 𝑡𝑦𝑝𝑒 𝑥g = 0,1
Then,	𝑄 = 𝑣𝑎𝑙(𝑋)
𝑄8 	⟼ 𝐹;<(𝑋) a	formula	encoding	initial	set	
𝑈	 ⟼ 𝐹A(𝑋) a	formula	encoding	unsafe	set	
Define	additional	vars 𝑌 = 	 𝑦%, 𝑦', … , 𝑦b , 𝑡𝑦𝑝𝑒 𝑦g = 0,1
𝑇	 ⟼ 𝐹>(𝑋, 𝑌) a	formula	encoding	transition	relation

Slides	by	Sayan	Mitra	(mitras@illinois.edu)

Bounded	model	checking
𝑄8 	⟼ 𝐹;<(𝑋) a	formula	encoding	initial	set	
𝑈	 ⟼ 𝐹A(𝑋) a	formula	encoding	unsafe	set	
𝑇	 ⟼ 𝐹>(𝑋, 𝑌) a	formula	encoding	transition	relation
We	need	𝑛 + 1 copies	of	variables:	𝑋8 = 𝑥8%, 𝑥8', … 𝑥8b , 𝑋% =
𝑥%%, 𝑥%', … 𝑥%b , … , 𝑋)

Q.	𝑈 is	(not)	reachable	from	𝑄8 in	𝑛 steps:
𝐹;< 𝑋8 ∧ 𝐹> 𝑋8, 𝑋% ∧ 𝐹> 𝑋%, 𝑋' ∧ 𝐹> 𝑋', 𝑋- ∧ ⋯∧
𝐹> 𝑋)@%, 𝑋) ∧ 𝐹A(𝑋))
SAT	iff 𝑈 is	reachable	(UNSAT	iff not	reachable)

Slides	by	Sayan	Mitra	(mitras@illinois.edu)

FROM	SAT	TO	SMT	
Tutorial	1

Slides	by	Sayan	Mitra	(mitras@illinois.edu)

Architecture	of	SMT	Solvers

Question:	Input	𝛼(𝑥) formula	in	some	set	of	
logical	theories,	∃𝑥, 𝑥 ⊨ 𝛼?	

Slides	by	Sayan	Mitra	(mitras@illinois.edu)

Theories

Arithmetic,	Arrays,	UF,	Bit	
vectors,	…

Core DPLL

Decision	procedures	ideally:	
incremental,	backtrackable,	

conflict	generating

assertions

boolean
skeleton	of	
problem

CNF	formula	in	
theory	of	Arrays

solution/	CE

Theories	and	terminology
• Signature	:	function	symbol,	predicate	

symbol,	arity,	set	of	variables
• 𝑇𝑒𝑟𝑚𝑠 Σ, 𝑉 :

– 𝑣 𝑓 𝑡8,.., 𝑡b
– ground	terms	

• Atomic	formula	𝐴𝐹 Σ, 𝑉 :
– T,F, 𝑝 𝑡8, . . , 𝑡b
– literal:	AF	or	its	negation

• 𝑄𝐹𝐹 Σ, 𝑉 : 𝜙, ¬𝜙, 𝜙% ∧ 𝜙', 𝜙% ∨
𝜙', 𝜙% → 𝜙',	where	𝜙, 𝜙% ∈ 𝐴𝐹

• 𝐹𝑂𝐹 Σ, 𝑉 :
– QFF	under	universal	and	existential	

quantifiers
– Free	and	bound	variables

• Sentence:	FOF	with	no	free	variables
• 𝑇ℎ𝑒𝑜𝑟𝑦 Σ, 𝑉 : set	of	all	sentences

Slides	by	Sayan	Mitra	(mitras@illinois.edu)

• Σ�:= 0, + , Σ�: = < , 𝑎𝑟𝑖𝑡𝑦 0 :=
0, 𝑎𝑟𝑖𝑡𝑦 + := 2, 𝑎𝑟𝑖𝑡𝑦 < :=
2, 𝑉:= {𝑥, 𝑦, 𝑧}

• Terms:	
𝑥, 𝑦, 𝑧, 0, + 𝑥, 𝑦 , +(+ 𝑥, 𝑦 , 0)

• AF:	
𝑥 < 𝑦,+ 𝑥, 𝑦 = +(𝑦, 𝑥)

• QFF:	
+ 𝑥, 𝑦 = 0 ∧ 𝑥 > 𝑦

• FOF:	∀𝑥, ∃𝑦:	+ 𝑥, 𝑦 = 0 ∧ 𝑥 > 𝑦

Decision	procedures

Models	give	meaning	to	symbols	and	formula

A	model	𝑀 for	Σ, 𝑉 defines	a	domain,	gives	
interpretation	to	all	symbols	and	assignment	to	all	the	
variables

Given	a	theory	T	a	theory	solver	(decision	procedure)	
takes	as	input	a	set	of	literals	Φ and	determines	
whether	Φ is	𝑇-satisfiable,	i.e.,	does	there	exist	a	
model	𝑀, such	that	𝑀 ⊨ Φ?

Slides	by	Sayan	Mitra	(mitras@illinois.edu)

Example	theories
Uninterpreted	functions	(UF)	
Σ� = 𝑓, 𝑔, . . , Σ� = = , 𝑉 = 𝑥g
𝑥% ≠ 𝑥' ∧ 𝑥- ≠ 𝑥' ∧ 𝑓 𝑥- = 𝑓(𝑥')
Arithmetic	
Σ� = <,>,≤,≥,=
Difference	logic
Σ� = − , Σ� = <,>,≤,≥,=
𝑥% − 𝑥' > 𝑘
Linear	arithmetic:	 7𝑥% − 3𝑥' + 6𝑥- ≤ 10
Nonlinear	arithmetic:	7𝑥%' − 3𝑥'𝑥% + 6𝑥-- ≤ 1
Arrays
Bit	vectors

Slides	by	Sayan	Mitra	(mitras@illinois.edu)

A	decision	procedure	for	UF

Rules:	
1. Put	all	variables	and	function	

instances	in	their	own	classes
2. if	𝑡g = 𝑡� is	the	predicate	then	merge	

the	containing	classes;	repeat
3. If	𝑡g and	𝑡� are	in	the	same	class,	then	

merge	𝐹 𝑡g and	𝐹(𝑡�);	repeat
4. If	𝑡g ≠ 𝑡� is	in	Φ such	that	𝑡g and	𝑡�

are	in	the	same	class	then	return	
UNSAT	else	return	SAT

Slides	by	Sayan	Mitra	(mitras@illinois.edu)

Φ ≔ 𝑥% = 𝑥' ∧ 𝑥' = 𝑥- ∧ 𝑥� = 𝑥� ∧ 𝑥� ≠ 𝑥% ∧ 𝐹 𝑥% ≠ 𝐹 𝑥-

{𝑥%}{𝑥'} {𝑥-} {𝑥�} 𝑥� 𝐹(𝑥% }{𝐹 𝑥- }
{𝑥%, 𝑥'} {𝑥-} {𝑥�, 𝑥�} 𝐹(𝑥% }{𝐹 𝑥- }
{𝑥%, 𝑥', 𝑥-} {𝑥�, 𝑥�} 𝐹(𝑥% }{𝐹 𝑥- }
{𝑥%, 𝑥', 𝑥-} 𝑥�, 𝑥� 𝐹(𝑥% , 𝐹 𝑥- }
UNSAT

Back	to	SMT

Two	approaches
• Eager:	Translate	to	equisatisfiable
propositional	formula

• Lazy:	Abstract	to	propositional	form,	feed	to	
DPLL,	refine

Slides	by	Sayan	Mitra	(mitras@illinois.edu)

SMT	solver	example

Φ ≔ 𝑔 𝑎 = 𝑐 ∧ 𝑓 𝑔 𝑎 ≠ 𝑓 𝑐 ∨ 𝑔 𝑎 = 𝑑 ∧ 𝑐 ≠ 𝑑

Send	{1, 2Y ∨ 3, 4Y} to	SAT
SAT	solver	returns	model	{1, 2Y, 4Y}
UF-solver	finds	concretization	of	{1, 2Y, 4Y} UNSAT
Send	{1, 2Y ∨ 3, 4Y, ¬(1 ∧ 2Y ∧ 4Y)} to	SAT
Send	{1, 2Y ∨ 3, 4Y, 1Y ∨ 2 ∨ 4)} to	SAT
SAT	solver	returns	model	{1,3, 4Y}
UF-solver	finds	concretization	of	{1,3, 4Y} UNSAT
Send	{1, 2Y ∨ 3, 4Y, 1Y ∨ 2 ∨ 4, 1Y ∨ 3Y ∨ 4} to	SAT
SAT	solver	returns	UNSAT;	Original	formula	is	UNSAT	in	UF

Slides	by	Sayan	Mitra	(mitras@illinois.edu)

1 2Y 3 4Y

Summary

This	was	just	an	introduction	to	SMT	solvers

Modern	solvers	Z3,	CVC4,	Chaff,	have	been	used	to	solve	
practical	verification	problems

Many,	many	tools	use	SAT	solvers	for	verification,	synthesis,	
symbolic	simulation,	etc.

SMT	competitions:	
http://www.satcompetition.org/

Slides	by	Sayan	Mitra	(mitras@illinois.edu)

