

Lecture 7: Stability Verification

Sayan Mitra

Recall Stability

- Time invariant autonomous systems (closed systems, systems without inputs)
- $\dot{x}(t) = f(x(t)), x_0 \in \mathbb{R}^n, t_0 = 0$ -(1)
- $\xi(t)$ is the solution
- $|\xi(t)|$ norm
- $x^* \in \mathbb{R}^n$ is an **equilibrium point** if $f(x^*) = 0$.
- For analysis we will assume 0 to be an equilibrium point of (1) with out loss of generality

Lyapunov stability

Lyapunov stability: The system (1) is said to be **Lyapunov stable** (at the origin) if for every $\varepsilon > 0$ there exists $\delta_{\varepsilon} > 0$ such that for every if $|\xi(0)| \leq \delta_{\varepsilon}$ then for all $t \geq 0$, $|\xi(t)| \leq \varepsilon$.

Asymptotically stability

The system (1) is said to be **Asymptotically stable** (at the origin) if it is Lyapunov stable and there exists $\delta_2 > 0$ such that for every if $|\xi(0)| \leq \delta_2$ then $t \to \infty, |\xi(t)| \to \mathbf{0}$. If the property holds for any δ_2 then **Globally Asymptotically Stable**

Defining stability of hybrid systems

Pre G_{12} Eff $x \coloneqq R_{12}(x)$

- Hybrid automaton: $\mathbf{A} = \langle V, A, D, T \rangle$ - $V = X \cup \{\ell\}$
- Execution $\alpha = \tau_0 a_1 \tau_1 a_2 \dots$
- Notation $\alpha(t)$: denotes the valuation β . lstate where β is the longest prefix with β . ltime = t
- $|\alpha(t)|$: norm of the continuous state X
- **A** is **Lyapunov stable** (at the origin) if for every $\varepsilon > 0$ there exists $\delta_{\varepsilon} > 0$ such that for every if $|\alpha(0)| \leq \delta_{\varepsilon}$ then for all $t \geq 0$, $|\alpha(t)| \leq \varepsilon$.
- **Asymptotically stable** if it is Lyapunov stable and there exists $\delta_2 > 0$ such that for every if $|\alpha(0)| \leq \delta_2$ then $t \to \infty$, $|\alpha(t)| \to 0$.

Question: Stability Verification

- If each mode is asymptotically stable then is A also asymptotically stable?
- No

Common Lyapunov Function

- If there exists positive definite continuously differentiable function $V: \mathbb{R}^n \to \mathbb{R}$ and a positive definite function $W: \mathbb{R}^n \to \mathbb{R}$ such that for each mode i, $\frac{\partial V}{\partial t} f_i(x) < -W(x)$ for all $x \neq 0$ then V is called a common Lyapunov function for A.
- V is called a common Lyapunov function
- Theorem. A is GUAS if there exists a common Lyapunov function.

Multiple Lyapunov Functions

- In the absence of a common lyapunov function the stability verification has to rely of the discrete transitions.
- The following theorem gives such a stability in terms of multiple Lyapunov function.
- **Theorem** [Branicky] If there exists a family of positive definite continuously differentiable **Lyapunov** functions $V_i \colon \mathbb{R}^n \to \mathbb{R}$ and a positive definite function $W_i \colon \mathbb{R}^n \to \mathbb{R}$ such that for any execution α and for any time t_1 t_2 $\alpha(t_1)$. $\ell = \alpha(t_2)$. $\ell = i$ and for all time $t \in (t_1, t_2)$, $\alpha(t)$. $\ell \neq i$

$$-V_i(\alpha(t_2).x) - V_i(\alpha(t_1).x) \le -W_i(\alpha(t_1).x)$$

Stability Under Slow Switching

- Average Dwell Time (ADT) characterizes rate of mode switches
- Definition: H has ADT T if there exists a constant N_0 such that for every execution α ,

$$N(\alpha) \le N_0 + duration(\alpha)/T$$
.

 $N(\alpha)$: number of mode switches in α

• Theorem [HM`99] H is asymptotically stable if its modes have a set of Lyapunov functions (μ_{total}) and $\Delta DT(H) > \log \mu/\lambda_0$.

Remarks about ADT theorem assumptions

- 1. If f_i is globally asymptotically stable, then there exists a Lyapunov function V_i that satisfies $\frac{\partial V_i}{\partial x} \leq -2\lambda_i V_i(x)$ for appropriately chosen $\lambda_i > 0$
- 2. If the set of modes is finite, choose λ_0 independent of i
- 3. The other assumption restricts the maximum increase in the value of the current Lyapunov functions over any mode switch, by a factor of μ .
- 4. We will also assume that there exist strictly increasing functions β_1 and β_2 such that $\beta_1(|x|) \le V_i(x) \le \beta_2(|x|)$

Proof sketch

Suppose α is any execution of A.

Let $T = \alpha$. ltime and $t_1, ..., t_{N(\alpha)}$ be instants of mode switches in α .

We will find an upper-bound on the value of $V_{\alpha(T),l}(\alpha(T),x)$

Define
$$W(t) = e^{2\lambda_0 t} V_{\alpha(t),l}(\alpha(t), x)$$

W is non-increasing between mode switches $\left[\frac{\partial V_i}{\partial x} \le -2\lambda_0 V_i(x)\right]$

That is,
$$W(t_{i+1}^-) \leq W(t_i^-)$$

$$W(t_{i+1}) \le \mu W(t_{i+1}^-) \le \mu W(t_i)$$

Iterating this $N(\alpha)$ times: $W(T) \le \mu^{N(\alpha)}W(0)$

$$e^{2\lambda_0 T} V_{\alpha(T),l}(\alpha(T),x) \le \mu^{N(\alpha)} V_{\alpha(0),l}(\alpha(0),x)$$

$$V_{\alpha(T),l}(\alpha(T),x) \le \mu^{N(\alpha)} e^{-2\lambda_0 T} V_{\alpha(0),l}(\alpha(0),x) = e^{-2\lambda_0 T + N(\alpha) \log \mu} V_{\alpha(0),l}(\alpha(0),x)$$

If α has ADT τ_a then, recall, $N(\alpha) \leq N_0 + T/\tau_a$ and $V_{\alpha(T).l}(\alpha(T).x) \leq e^{-2\lambda_0 T + (N_0 + T/\tau_a)\log \mu} V_{\alpha(0).l}(\alpha(0).x) \leq C e^{T(-2\lambda_0 + \log \mu/\tau_a)}$

If $\tau_a > \log \mu / 2\lambda_0$ then second term converges to 0 as $T \to \infty$ then from assumption 4 it follows that α converges to 0.

Further reading

- Verification of dwell time
- Abstractions for stability proofs