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Is	there	a	behavior	of	system		S	violating	safety	requirement	R	
within	time	bound	T?	
Yes	->	bug-trace	->	design	improvement
No	->	safety	proof	->	certification	

Certificate

System	S	
requirement	R

Bug	trace	

Algorithm

Safety	verification	problem
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Is	there	a	behavior	of	system		S	violating	safety	requirement	R	
within	time	bound	T?	
Yes	->	bug-trace	->	design	improvement
No	->	safety	proof	->	certification	

Certificate

System	S	
requirement	R

Bug	trace	

Safety	verification	problem

Dry      R
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Certificate

Bug	trace	

Safety	verification	problem

Dry      R
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Recall:	timed	automata

�̇� = 1
�̇� = 1

𝑦 ≤ 5

�̇� = 1
�̇� = 1

𝑦 ≤ 10
𝑥 ≤ 8

𝑦 ≥ 4 ∧ 𝑥 ≥ 6
𝑥 = 0

𝑦 ≥ 3
𝑦 = 0

𝑥 = 0
𝑦 = 0

guard

invariant

reset/affection
dynamic
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Recall:	bouncing	ball

�̇� = 𝑣
�̇� = −𝑔

𝑦, 𝑣 ≥ 0

𝑦 ≤ 0 ∧ 𝑣 ≤ 0
𝑣 = −𝑐𝑣

𝑦 = ℎ
𝑣 = 0

guard

invariant

reset/affection

dynamic:	general	nonlinear	function
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Recall:	bouncing	ball

�̇� = 𝑣
�̇� = −𝑔
�̇� = 1

𝑦, 𝑣 ≥ 0

𝑦 ≤ 0 ∧ 𝑣 ≤ 0 ∧ 𝑡 ≥ 𝜖
𝑣 = −𝑐𝑣 ∧ 𝑡 = 0

𝑦 = ℎ
𝑣 = 0

Avoid	the	Zeno	behavior
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Summary	of	C2E2

• Input:	hyxml file
• Properties:	initial	set	+	unsafe	set
• Simulate	and/or	verification
• Plotter
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Outline
Introduction	and	C2E2	demo

Model-based	sensitivity

• Simulation-driven	verification	algorithm

• Discrepancy	function

• Matrix	measure	and	sensitivity

• More	examples

Next	lecture	on	Thursday:

• New	modeling	questions	with	DryVR
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System	models	and	notations

𝑥7

𝜉(𝑥7, 𝑡):	trajectory

nonlinear	dynamical	model

𝜉(Θ, [0, 𝑇]):	reach	set

Safety	verification	problem	𝜉 Θ, 0, 𝑇 ∩ 𝑈 = ∅?	

time

�̇� 𝑡 = 𝑓 𝑥 𝑡 	
Θ, U ⊆ ℝH
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o Given	start														and	target
o Compute	finite	cover	∪J 𝐵 𝑥J, 𝛿 ⊇ Θ
o Simulate	from	the	center	𝑥7 of	each	cover	to	

get	𝜉 𝑥7, {𝑡O, … , 𝑡Q}
o Bloat simulation	so	that

𝜉 𝑥7, . ⊕ 𝛽 ⊇ 𝜉 𝐵(𝑥7, 𝛿), [0, 𝑇]
o Check	intersection/containment	with	𝑈
o Refine	cover	if	needed	and	repeat	…

How	to	bloat	or	generalize	simulations?

Θ 𝑈

Simulations	to	safety	proofs
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Brief	history
2000 On	Systematic	Simulation	of	Open	

Continuous	Systems
Kapinski et	al.

2006 Verification	using	simulation Girard	and	Pappas

2007 Robust	Test	Generation	and	Coverage	for	
Hybrid	Systems

Julius,	Fainekos,	et	al.

2010 Breach,	a	toolbox	for	verification	and	
parameter	synthesis	of	hybrid	systems.

Donzé

2013 Verification	of	annotated	models	from	
executions.

Duggirala,	Mitra,	
Viswanathan
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Main problem: How to quantify	generalization?

• Discrepancy formalizes generalization	:

• Discrepancy is a continuous	function	𝛽
that bounds	the	distance	between	
neighboring trajectories

𝜉 𝑥O, 𝑡 − 𝜉(𝑥V, 𝑡) ≤ 𝛽 𝑥O − 𝑥V , 𝑡 ,

• From a single simulation of
𝜉(𝑥O, 𝑡)	and discrepancy 𝛽 we can
over-approximate	the reachtube

𝑥O

𝑥V
𝜉 𝑥V, 𝑡

𝜉 𝑥O, 𝑡𝛽(‖𝑥O − 𝑥V‖, 𝑡)
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A	simple	example	of	discrepancy	function

• If	𝑓(𝑥)	has	a	Lipschitz	constant	𝐿	:

∀𝑥, 𝑦 ∈ ℝH, 𝑓 𝑥 − 𝑓 𝑦 ≤ 𝐿 𝑥 − 𝑦

Example:	�̇� = −2𝑥,	Lipschitz	constant		𝐿 = 2

• then	a	(bad)	discrepancy	function	is

𝜉 𝑥O, 𝑡 − 𝜉(𝑥V, 𝑡) ≤ 𝑥O − 𝑥V 𝑒]^ = 𝛽 𝑥O − 𝑥V , 𝑡

𝑥O

𝑥V
𝜉 𝑥V, 𝑡

𝜉 𝑥O, 𝑡𝛽(‖𝑥O − 𝑥V‖, 𝑡)
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A	simple	example	of	discrepancy	function

�̇� = −2𝑥,	Lipschitz	constant		𝐿 = 2, 𝛿 = 1

𝑥O

𝑥V
𝜉 𝑥V, 𝑡

𝜉 𝑥O, 𝑡𝛽(‖𝑥O − 𝑥V‖, 𝑡)
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𝛽(‖𝑥O − 𝑥V‖, 𝑡)
𝑥O

𝑥V
𝜉 𝑥V, 𝑡

𝜉 𝑥O, 𝑡

What	is	a	good	discrepancy	?

General:	Applies	to	general	nonlinear	𝑓

Accurate:	Small	error	in	𝛽	

Effective:	Computing	𝛽	is	fast	(in	practice)
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𝜉 𝐵(𝑥7, 𝛿), [0, 𝑇] 		⊆ 		𝜉 𝑥7, . ⊕ 𝛽
reach	set	over-approximated	by	simulation	and	sensitivity

Definition.	𝛽:ℝVH×ℝa7 → ℝa7		defines	a	discrepancy	of	the	
system	if	for	any	two	states	𝑥O and	𝑥V ∈ 𝑋,	for	any	t,	
o |𝜉 𝑥O, 𝑡 − 𝜉 𝑥V, 𝑡 | ≤ 𝛽 𝑥O, 𝑥V, 𝑡 and	
o 𝛽 → 0	as	𝑥O → 𝑥V

−𝜉 𝑥O, 𝑡
−𝑉 𝜉 𝑥O, 𝑡 , 𝜉 𝑥V, 𝑡
−𝛽 𝑥O, 𝑥V, 𝑡

Discrepancy	quantifies	sensitivity
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Computing	discrepancy
𝜉 𝑥O, 𝑡 − 𝜉 𝑥V, 𝑡 ≤ 𝑒]^ 𝑥O − 𝑥V
L:	Lipschitz constant	of	f(.)
�̇� = −2𝑥 Lipschitz constant		𝐿=2

𝜉 𝑥O, 𝑡 − 𝜉 𝑥V, 𝑡 ≤ 𝑒f^ 𝑥O − 𝑥V
𝜇:Matrix measure of	Jacobian 𝐽i

𝜇j A = 	 lim
^→7o	

	𝐼 + 𝑡𝐴 j − 𝐼 j

𝑡
𝜇j = −2	for	above	linear	system
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Matrix	measure	for 𝐴 ∈ ℝH×H

Matrix	measure	[Dahlquist 59]:

𝜇 𝐴 = 	 lim
^→7o

𝐼 + 𝑡𝐴 − 𝐼
𝑡

2-norm:	𝜇(𝐴) = 𝜆tuv
wxwy

V

Matrix	norm

𝐴 = 	max
v|7

𝐴𝑥
𝑥

𝐴 V = 𝜆tuv(𝐴}𝐴)
�



Computing	𝜇

Vector	norm Induced	matrix	norm Matrix	measure
𝑥 O = Σ|𝑥�| 𝐴 O = max

�
ΣJ |𝑎J�| 𝜇O 𝐴 = max

�
(𝑎�� + ΣJ|�	|𝑎J�|	)

𝑥 V = Σ𝑥�V
� 𝐴 V = max

�
𝜆�(𝐴}𝐴)� 𝜇V 𝐴 = max

�

1
2 (𝜆�(𝐴 + 𝐴

}))	

𝑥 � = max
�

𝑥� 𝐴 � = max
J
Σ�|𝑎J�| 𝜇� 𝐴 = max

J
(𝑎JJ + ΣJ|�	|𝑎J�|	)

Table	from:	Reachability	Analysis	of	Nonlinear	Systems	Using	
Matrix	Measures	[Maidens	and	Arcak,	2015]
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Matrix	measures can be used to	
compute	discrepancy

Theorem [Sontag	10]: For any 𝒟 ⊆ ℝH,if the matrix
measure of the Jacobian 𝜇 𝐽 𝑡, 𝑥 ≤ 𝑐 over 𝒟, and all
trajectories starting from the line remains	in	𝒟	then	the	
solutions	satisfies:

𝜉 𝑥O, 𝑡  − 𝜉 𝑥V, 𝑡  ≤ 𝒙𝟏 − 𝒙𝟐 𝑒�^

– That is, 𝑥O − 𝑥V 𝑒�^ is a discrepancy function

– Here 𝐽 is the Jacobian of 𝑓(𝑥)

– This 𝑐 can be negative and is usually much
smaller than the Lipschitz constant

𝑥O

𝑥V
𝑫

𝜉(𝑥O, . )

𝜉(𝑥V, . )
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Strategies	for	computing	𝜇
• Define	𝑦 𝑡 = 𝜉 𝑥O, 𝑡 − 𝜉 𝑥V, 𝑡
• Let	interval	matrix	A	be such	that	for	all	𝑥 ∈ 𝐷, 𝐽i 𝑥 ∈ 𝑨,	
• Then	�̇� 𝑡 = 𝐴 𝑡 𝑦 𝑡 ,	for	some	A t ∈ 𝑨

• This	gives	discrepancy	𝛽 𝑥O − 𝑥V �, 𝑡 = 𝑥O − 𝑥V �𝑒
�∗

� ^,	
where	𝛾∗ = min 𝛾 s.t. 𝐴}𝑀 +𝑀𝐴 ≼ 𝛾𝑀,∀𝐴 ∈ 𝑨 --- (*)

• Solving	(*)
– Fix	𝑀 = 𝐼, 𝛾∗ = 𝜆tuv 𝐴 + 𝐴} + 𝑒𝑟𝑟𝑜𝑟
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Simulation	⊕ 𝛽à Reachtubes
𝒔𝒊𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏(𝒙𝟎	, 𝒉, 𝝐, 𝑻) of	gives	sequence	S7, … , 𝑆Q:
𝑑𝑖𝑎 𝑆J ≤ 𝜖	&	at	any	time	𝑡 ∈ [𝑖ℎ, 𝑖 + 1 ℎ],	solution	
𝜉 𝑥7, 𝑡 ∈ 𝑆J.

𝑆7, … , 𝑆Q, 𝜖O ← 𝑣𝑎𝑙𝑆𝑖𝑚(𝑥7, 𝑇, 𝑓)
For	each	𝑖 ∈ [𝑘], 𝜖V ← sup

^∈}®,v,v¯∈°±(v²)
𝛽 𝑥O, 𝑥V, 𝑡

𝑅J ← 𝐵´� 𝑆J
Example	1:	�̇� = O

V
𝑣V + 𝑤V ; �̇� = −𝑣

• 𝐽i(𝑣, 𝑤) = 	
𝑣 𝑤
−1 0

• 𝛾∗ = 1.0178	 upper-bound	on	eigen values	of	the	
symmetric	part		of	𝐽i 𝑣, 𝑤 over	𝑫 = −2,−1 ×[2,3]

• 𝜉 𝑥O, 𝑡 − 𝜉 𝑥V, 𝑡 ≤ 𝑥O − 𝑥V 𝑒O.7O¸¹^ while	𝑥 ∈ 𝑫
• Uniform	in	all	directions

Example	2:	�̇� = 	 0 3
−1 0 𝑥;	Eigenvalues	± 3� 	𝑖
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Hybrid	models

𝑓O 𝑓V 𝑓»

𝑓¼ 𝑓½ 𝑓¾

𝑓 𝑓¹ 𝑓¿
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Hybrid	Reachtubes

Track	&	propagate	𝑚𝑎𝑦	and	𝑚𝑢𝑠𝑡	fragments	of	reachtube

𝒕𝒂𝒈𝑹𝒆𝒈𝒊𝒐𝒏 𝑹, 𝑷 = 	Æ
𝑚𝑢𝑠𝑡 𝑅 ⊆ 𝑃
𝑚𝑎𝑦 𝑅 ∩ 𝑃 ≠ ∅
𝑛𝑜𝑡 𝑅 ∩ 𝑃 = ∅

	

𝒊𝒏𝒗𝒂𝒓𝒊𝒂𝒏𝒕𝑷𝒓𝒆𝒇𝒊𝒙(𝝍, 𝑺) =
〈𝑅7, 𝑡𝑎𝑔7, … , 𝑅t, 𝑡𝑎𝑔t〉 ,	such	that	either	
𝑡𝑎𝑔J = 𝑚𝑢𝑠𝑡	if	all	the	𝑅�Ñ𝑠	before	it	are	must
𝑡𝑎𝑔J = 𝑚𝑎𝑦 if	all	the	𝑅�Ñ𝑠	before	it	are	at	least	may	

and	at	least	one	of	them	is	not	must
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Theorem. (Soundness).	If	Algorithm	returns	safe	or	unsafe,	then	𝐴 is	safe	or	
unsafe.	

Definition Given	HA	𝐴	 = 〈𝑉, 𝐿𝑜𝑐, 𝐴, 𝐷, 𝑇	〉,	an	𝝐-perturbation	of	A	is	a	new	
HA	𝐴′ that	is	identical	except,	ΘÑ = 𝐵´(Θ),	∀	ℓ ∈ 𝐿𝑜𝑐, 𝐼𝑛𝑣Ñ = 𝐵´(𝐼𝑛𝑣) (b)	a	
∈ A,	𝐺𝑢𝑎𝑟𝑑u = 𝐵´(𝐺𝑢𝑎𝑟𝑑u).

A	is	robustly	safe	iff ∃𝜖 > 0,	such	that	A’	is	safe	for	𝑈´ upto	time	bound	T,	and	
transition	bound	N.	Robustly	unsafe	iff ∃	𝜖 < 0 such	that	𝐴′ is	safe	for	𝑈´.

Theorem. (Relative	Completeness) Algorithm	always	terminates	whenever	
the	A	is	either	robustly	safe	or	robustly	unsafe.

Guarantees	for	bounded	invariance	
verification	using	discreapancy
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static-dynamic	analysis	of	
nonlinear	hybrid	models	

Compare	execute	check	engine
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Powertrain	control	verification	benchmark

Simulink	model	from	[Jin et	al.	HSCC	2014]	
Highly	nonlinear	polynomial	differential	equations;	discrete	
mode	switches

C2E2	first	to	verify	properties,	e.g.,	that	the	air-fuel	ratio
remains	within	a	given	range	for	a	set	of	driver

[CAV	15]	Duggirala,	Fan,	Mitra,	Viswanathan:	Meeting	a	Powertrain	Verification	
Challenge. Slides	by	Sayan	Mitra	(mitras@illinois.edu)



Model	2

Continuous-
Time	Plant	
+
Discrete-Time	
Controller

Transport	delay	
→first	order	filter

2nd order	effects	
→first	order	filter

Look	up	table	
→polynomial	fits
…	

Make	controller	
continuous-
time

Polynomialize

Compose	plant	
with	controller

Benchmark	Simulink	models
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Variable Description

𝜃JH Throttle angle

𝑝 Intake	manifold	pressure

𝜆 Air/Fuel ratio

𝑝Ú Intake	manifold pressure	
estimate

𝑖 Integrator	state,	control	variable

Polynomial	hybrid	automaton
startup
�̇� = 𝒇𝒔 𝒙

normal
�̇� = 𝒇𝒏 𝒙

sensor_fail
�̇� = 𝒇𝒔𝒇 𝒙

power
�̇� = 𝒇𝒑 𝒙

𝑡𝑖𝑚𝑒𝑟 = 𝑇Ü

𝜃JH ≤ 50Ý

𝜃JH ≥ 70Ý𝑠𝑒𝑛𝑠𝑜𝑟𝐹𝑎𝑖𝑙

θ̇ = 10(θàá − θ)

ṗ = cO(2θ cV7pV + cVOp + cVV − cOV(cV + c»ωp + c¼ωpV + c½ωpV))	

	λ̇ = cV¾(cO½ + cO¾cV½Fæ + cO¸cV½V FæV + cO¹mæ̇ + cO¿mæ̇ cV½Fæ − λ)

pç̇ = cO 2cV»θ cV7pV + cVOp + cVV − cV + c»ωp + c¼ωpV + c½ωpV
	

ı̇ = cO¼(cV¼λ − cOO) Slides	by	Sayan	Mitra	(mitras@illinois.edu)



Refinements	in	action:	air-fuel	ratio	range

Requirement:	Air-Fuel	ratio	𝜆	contained	in	interval	
0.9𝜆êÚi, 1.02𝜆êÚi for	different	initial	conditions	&throttle	inputs
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An	auto-pass	controller

𝑠v	𝑣v	𝑎v

𝜔 𝑠v

Given	a	controller	and	a	safe	
separation	requirement,	we	would	
like	to	check	that	the	system	is	safe	
with	respect	to	
a) range	of	initial	relative	positions
b) range	of	possible	speeds
c) range	road	friction	conditions
d) possible	behaviors	of	“other”	car
e) range	of	design	parameters

reach	
threshold	
dist.	d

switch	to	
left overtake

switch	to	
right

gain	
threshold	
dist.	d

abort
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C2E2:	Tool	for	nonlinear	hybrid	system	verification
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An	auto-pass	controller



Debugging	systems	with	high-
fidelity	models



Homework	problem
Mode:Const_Const
Flow:

Inv: 𝑡 ≤ 1

�̇�O = 𝑣O
�̇�O = 0
�̇�V = 𝑣V
�̇�V = 0
�̇� 			= 1

Mode:Brake_Const
Flow:

Inv: sO − sV ≥ 10

�̇�O = 𝑣O
�̇�O = −2𝑣O
�̇�V = 𝑣V
�̇�V = 0
�̇� 			= 1

Mode:Brake_Const
Flow:

Inv:𝑡 ≤ 0.4

�̇�O = 𝑣O
�̇�O = −2𝑣O
�̇�V = 𝑣V
�̇�V = 0
�̇� 			= 1

Mode:Brake_Brake
Flow:

Inv:sO − sV ≥ 0

�̇�O = 𝑣O
�̇�O = −2𝑣O
�̇�V = 𝑣V
�̇�V = −3𝑣V
�̇� 			= 1

Guard:	𝑡 ≥ 𝑐O

Guard:	sO − sV ≤ 𝑐»
Reset:		𝑡 = 0

Guard:	𝑡 ≥ 𝑐V

Reaction	time

Initial	Set

Time	Bound:	10s

Unsafe	Set



C2E2	Architecture	



More	features

• Log	file	to	debug
• Plotted	pictures	are	saved	in	the	work-dir
folder

• Command	line	version



What	we	don’t	know

• Sample	efficiency	of	the	algorithms
– Towards	that	[Girard	Pappas	2006]
– [Fan	et	al.	EmSoft 2016]	[Liberzon Mitra	2016]

• Unbounded	initial	set	and	time	horizon
• How	to	verify	open	models?

– �̇� 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡 , 𝑥7 ∈ Θ	𝑢 ∈ 	𝒰
– Ongoing	work	with	𝒰 = {𝑢O, . . , 𝑢Q}

• More	general	models	with	uncertainty
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Hybrid	models

𝑓O 𝑓V 𝑓»

𝑓¼ 𝑓½ 𝑓¾

𝑓 𝑓¹ 𝑓¿
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Models	closer	to	reality

𝑓O 𝑓V ?

? 𝑓½ ?

? ? ?

?

?

?
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https://github.com/qibolun/DryVR

“All	models	are	wrong,	some	are	useful”

Gain	serenity	to	accept	models	as	they	are

Dry    R
Slides	by	Sayan	Mitra	(mitras@illinois.edu)



A	new	view	of	knowledge	in	hybrid	models

Complete	information	
of	switching	structure

Executable	access	to	
mode	dynamics

+ =

DryVR’s Executable	
hybrid	model

Transitions	are	time-
triggered,	possibly	

nondeterministic:	one-
clock	timed	automaton
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A	new	view	of	knowledge	in	hybrid	models

Formal	reasoning	
simulation,	composition

Statistical	reasoning
sensitivity	analysis

+ =

DryVR’s formal	
probabilistic		guarantees	

Slides	by	Sayan	Mitra	(mitras@illinois.edu)



DryVR model	for	Automatic	
Emergency	Breaking

1 2 3

white	
brakes

blue	
brakes

red	
brakes

[𝑡O, 𝑡V] [𝑡O, 𝑡V]
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DryVR model	for	auto-pass

1

2 3 4

7

5 6

Accelerate
Accelerate

Decelerate
Accelerate

Turn_Right
Accelerate

Accelerate
cruise

Turn_Right
cruise
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Composition	for	unbounded	time	
analysis

47

If			𝑹𝒆𝒂𝒄𝒉|𝑩	 ⊆ 	𝑹𝒆𝒂𝒄𝒉|𝑨 then	

𝐺O ∘ 𝐺V

…

𝐺O ∘ 𝐺VJ𝐺O 𝐺V∘ =

A B …



Composition	for	unbounded	time	
analysis

48

𝑅𝑒𝑎𝑐ℎ ⊇ 	𝑅𝑒𝑎𝑐ℎ

If			𝑅𝑒𝑎𝑐ℎ|𝐵	 ⊆ 	𝑅𝑒𝑎𝑐ℎ|𝐴 then	

A B

𝐺O ∘ 𝐺V

…

𝐺O ∘ 𝐺VJ



Reasoning	about	behavior	
containment	

49

Trace	containment	𝐺O ≼ 𝐺V
Trajectory	containment	𝒯ℒO ≼ 𝒯ℒV	

If	ΘO ⊆ ΘV, 𝐺O ≼ 𝐺V, 𝒯ℒO ≼ 𝒯ℒV,	then	

𝐺O 𝐺V≼

𝑅𝑒𝑎𝑐ℎ ⊆ 		𝑅𝑒𝑎𝑐ℎ



Learning	discrepancy	from	black-box

Assume	a	form	of	the	discrepancy	

Global	exponential	discrepancy	
𝛽 𝑥O, 𝑥V, 𝑡 = 𝑥O − 𝑥V 𝐾𝑒ó^

Others	piece-wise	exponential,	polynomial

For	any	pair	of	trajectories	𝜏O and	𝜏V in	mode	☐
∀𝑡 ∈ 0, 𝑇 , 𝜏O 𝑡 − 𝜏V 𝑡
≤ 𝜏O 0 − 𝜏V 0 𝐾𝑒ó^

∀𝑡, ln
𝜏O 𝑡 − 𝜏V(𝑡)
𝜏O 0 − 𝜏V(0)

≤ 𝛾𝑡 + ln𝐾

Familiar	problem	of	learning	linear	separators



Learning	linear	separators
For	a	subset	Γ ⊆ ℝ×ℝ,	a	linear	separator	is	a	pair	 𝑎, 𝑏 ∈
ℝV such	that	∀ 𝑥, 𝑦 ∈ Γ, 𝑥 ≤ 𝑎𝑦 + 𝑏

Algorithm:

1.	Draw	𝑘 pairs	 𝑥O, 𝑦O , … , (𝑥Q, 𝑦Q) from	Γ according	to	𝒟.

2.	Find	 𝑎, 𝑏 ∈ ℝV s.t. 𝑥J ≤ 𝑎𝑦J + 𝑏 for	all	𝑖 ∈ {1,… , 𝑘}.	

Proposition	[Valiant	84]:	Let	𝜖, 𝛿 ∈ ℝx. If	𝑘 ≥ O
´
ln O

÷
then	

with	probability	1 − 𝛿,	the	above	algorithm	finds	(𝑎, 𝑏)
such	that	𝑒𝑟𝑟𝒟 𝑎, 𝑏 = 𝒟( 𝑥, 𝑦 ∈ Γ	 	𝑥 > 𝑎𝑦 + 𝑏}) < 𝜖.

Experience:	96%	accuracy	for	10	trajectories,	>99.9%	for	20



DryVR

Complete	information	
of	switching	structure

Executable	access	to	
mode	dynamics

+ =

DryVR’s Executable	
hybrid	model

Model	file	specifies	
vertices,	edges,	labels

Simulate	function	takes	
as	input	mode,	initial		
state,	and	time	horizon

Slides	by	Sayan	Mitra	(mitras@illinois.edu)



Reachability	analysis

time

Reach	set	of	
positions

1

2 3 4

7

5 6

Accelerate
Accelerate

Decelerate
Accelerate

Turn_Right
Accelerate

Accelerate
cruise

Turn_Right
cruise



Automotive	maneuvers

54
time

Reach	set	of	
positions

https://github.com/qibolun/DryVR

Model
Time	
horizo

n
Unsafe	set #	

Refinement Safe Run	
time

Auto-passing
50 Collision 4 ✔ 208s

50 Collision 5 ✘ 152s

Lane-merge
50 Collision 0 ✔ 55s

50 Collision 0 ✘ 38s

Lane-merge-
highway

50 Collision 4 ✔ 197s

50 Collision 0 ✘ 21s

Powertrain 80 Air/Fuel	out	
of	bound 2 ✔ 217s

Automatic	
transmission 50 Engine	speed	

too	high 2 ✔ 109s



Case	studies:	Engine	control

55

Model
Time	
horizo

n
Unsafe	set #	

Refinement Safe Run	
time

Auto-passing
50 Collision 4 ✔ 208s

50 Collision 5 ✘ 152s

Lane-merge
50 Collision 0 ✔ 55s

50 Collision 0 ✘ 38s

Lane-merge-
highway

50 Collision 4 ✔ 197s

50 Collision 0 ✘ 21s

Powertrain 80 Air/Fuel	out	
of	bound 2 ✔ 217s

Automatic	
transmission 50 Engine	speed	

too	high 2 ✔ 109s

Power

Start
up

Sensor
fail Normal

[Jin et	al.	HSCC	14]

https://github.com/qibolun/DryVR



Case	studies:	transmission	
control

56

Gear
1

Gear
2

Gear
3

Gear
4

Gear
5

Model
Time	
horizo

n
Unsafe	set #	

Refinement Safe Run	
time

Auto-passing
50 Collision 4 ✔ 208s

50 Collision 5 ✘ 152s

Lane-merge
50 Collision 0 ✔ 55s

50 Collision 0 ✘ 38s

Lane-merge-
highway

50 Collision 4 ✔ 197s

50 Collision 0 ✘ 21s

Powertrain 80 Air/Fuel	out	
of	bound 2 ✔ 217s

Automatic	
transmission 50 Engine	speed	

too	high 2 ✔ 109s

https://github.com/qibolun/DryVR



Automated	Risk	/	ASIL	Analysis

Risk	=	Probability	x	Severity



Conclusion

A	fresh	perspective	(DryVR’s model)	on	modeling	hybrid	
systems

• white	box	transition	graph	+	black	box	simulator
• Case	studies	ADAS	/	AV

Enables	types	of	static-dynamic	analysis	
• Black-box	=>	discrepancy	functions	with	probabilistic	
guarantees

• Bounded	verification	[Sound	and	relatively	complete]
• Proof	rules	for	sequential	composition	for	unbounded	time	
verification	and	behavior	containment

Future:	More	expressive	white	boxes,	synthesis,	
monitoring,	

+ =

…

≼



Conclusions

Simulation	data	+	sensitivity	from	models	=>	algorithms	=>	
sound	&	complete	invariance	verification

Try	C2E2	and	DryVR give	feedback,	built	on!
Examples	available:	Satellites	to	transistors

Several	open	questions	about	handling	models	with	
uncertainty	and	precise	characterization	of	efficiency	

This	work	is	supported	by	grants	form	the	United	States	National	Science	
Foundation	(NSF)
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