
University of Illinois
at Urbana-Champaign

Lecture	5:	Abstractions	and	
Composition

Sayan	Mitra

Plan

• Invariants	and	reachability
– A	simple	technique	for	safety	verification

• Abstraction
–Motivation	with	discrete	examples
– Forward	simulations	for	hybrid	automata

• Composition

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Invariants
Hybrid	automaton	𝒜 = ⟨𝑋, Θ, 𝐴, 𝐷, 𝑇⟩

Recall, 𝐼 ⊆ 𝑣𝑎𝑙 𝑋 	is	an	invariant if	
𝑅𝑒𝑎𝑐ℎ𝒜 ⊆ 𝐼

A	set	𝐼′ ⊆ 𝑣𝑎𝑙 𝑋 is	inductive	iff
(a) Θ ⊆ 𝐼t

(b) ∀𝒙 →G 𝒙t, 𝒙 ∈ 𝐼t ⇒ 𝒙t ∈ 𝐼′
(c) ∀𝜏 ∈ T	, 𝜏. 𝑓𝑠𝑡𝑎𝑡𝑒	 ∈ 𝐼t ⇒

𝜏. 𝑙𝑠𝑡𝑎𝑡𝑒 ∈ 𝐼′

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

𝑣𝑎𝑙 𝑋

Θ
𝑅𝑒𝑎𝑐ℎ𝒜

𝐼

Θ

𝐼′

𝑥′

𝑥

𝜏

Inductive	invariants
Proposition.	Inductive	sets	are	invariants.

Proof.	Consider	an	inductive	set	𝐼t,	we	will	show	that	𝑅𝑒𝑎𝑐ℎ𝒜 ⊆ 𝐼t.
Pick	any	𝒙 ⊆ 𝑅𝑒𝑎𝑐ℎ𝒜.	There	exists	an	closed	execution	𝛼		with	
𝛼. 𝑙𝑠𝑡𝑎𝑡𝑒 = 𝒙.We	will	do	induction	on	length	of	𝛼.
Base	case.	𝛼 = 𝜏[and	𝜏[is	a	point	trajectory.	Then	by	(a)	𝜏[0 ∈ Θ ⊆
𝐼t.
Inductive	case	1.	𝛼 = 𝛼t𝜏′ and	𝜏t	is	closed.	By	inductive	hypothesis	we	
know,	𝛼t. 𝑙𝑠𝑡𝑎𝑡𝑒 = 𝜏′. 𝑓𝑠𝑡𝑎𝑡𝑒 ∈ 𝐼′.	From	(c),	𝜏t. 𝑙𝑠𝑡𝑎𝑡𝑒 ∈ 𝐼t.
Inductive	case	2.	𝛼 = 𝛼t𝑎′𝜏′ and	𝜏t	is	a	point	traj.	By	inductive	
hypothesis	we	know,	𝛼t. 𝑙𝑠𝑡𝑎𝑡𝑒 ∈ 𝐼′.	From	(b),	𝜏t. 𝑓𝑠𝑡𝑎𝑡𝑒 ∈ 𝐼t.

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Inductive	invariants	2
Is	𝑅𝑒𝑎𝑐ℎ𝒜 an	invariant?	Is	it	an	inductive	
invariant?	

Not	all	invariants	are	inductive

Recall	bouncing	ball	(height	𝑥)

Is	𝑥 ≥ 0 an	inductive	invariant?

𝑥 ≤ ℎ𝑐P� is	an	invariant	but	not	inductive.	Why?
𝑣P − 𝐻𝑐P� − 𝑥 2𝑔 = 0 is	an	inductive	
invariant.	Check	this.

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Loc 1
𝑑 𝑥 = 𝑣
𝑑 𝑣 = −𝑔
𝒙 ≥ 𝟎

bounce
x	=	0	/\ v	<	0

v’	:=	-cv;k:=k+1

x:=	h;k:=0

Summary
If	𝐼 is	an	inductive	invariant	of	𝒜 and	𝐼 ∩ 𝑈 = ∅ the	𝒜 is	
safe	w.r.t 𝑈.

Checking	a	given	inductive	invariant	is	(relatively)	easy	
recall,	 a Θ ⊆ 𝐼t	 b ∀𝒙 →G 𝒙t, 𝒙 ∈ 𝐼t ⇒ 𝒙t ∈ 𝐼′,	 𝐜 ∀𝜏 ∈ T	, 𝜏. 𝑓𝑠𝑡𝑎𝑡𝑒	 ∈ 𝐼t ⇒ 𝜏. 𝑙𝑠𝑡𝑎𝑡𝑒 ∈ 𝐼′

Finding	inductive	invariants	not	so	easy;	requires	iterative	
strengthening.	

This	is	parallel	to	Lyapunov analysis.	Checking	if	a	given	
𝑉: 𝑣𝑎𝑙 𝑋 → 𝑅 is	a	Lyapunov function	is	relatively	easy;	
finding	a	Lypunov function	is	harder.

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Abstractions	and	Simulations

Consider	models	that	have	the	same	external	interface	
(input/output	variables	and	actions)

We	would	like	to	approximate	one	(hybrid)	automaton	
𝐻M with	another	one	𝐻P

𝐻P should	be	“simpler”	and	preserve	some	properties	
of	𝐻M (and	not	others)

Verifying	𝐻P we	can	then	infer	properties	of	𝐻M
Lecture	Slides	by	Sayan	Mitra

mitras@illinois.edu

Finite	state	examples

A0 A1

0

1

1

0

A2 A3

0

1

B02 B13

0

1

C03 0,1

TracesA=	(01)*

TracesB=	01*

TracesC=	{0,1}*

A

B

C
Lecture	Slides	by	Sayan	Mitra

mitras@illinois.edu

Finite	state	examples

A0 A1

0

1

1

0

A2 A3

0

1

B02 B13

0

1

C03 0,1

B	simulates A	and	vice	versa.	
A	and	B	are	bisimilar.	

C	simulates	both	A	and	B.	
C	is	an	abstraction	of	both	A	and	B.

A

B

C
Lecture	Slides	by	Sayan	Mitra

mitras@illinois.edu

How	to	prove	B	simulates	A?	

Show	there	exists	a	simulation	relation	from	states	of	A	to	states	of	
B.	Say,	𝑅	 = 	 ((𝐴0, 𝐵02), (𝐴2, 𝐵02), (𝐴1, 𝐵13), (𝐴3, 𝐵13))

Show	that	for	every	transition	𝐴𝑖 →� 𝐴𝑖′ and	 𝐴𝑖, 𝐵𝑗 ∈ 𝑅 there	
exists	𝐵𝑗′ such	that	
1. 𝐵𝑗 →5 𝐵𝑗′
2. 𝐴𝑖′, 𝐵𝑗′ ∈ 𝑅
3. 𝑇𝑟𝑎𝑐𝑒 𝐵𝑗 →5 𝐵𝑗t = 𝑇𝑟𝑎𝑐𝑒 𝐴𝑖 →� 𝐴𝑖t

A0 A1

0

1

1

0
A2 A3

0

1
A

B02 B13

0

1

B

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Finite	state	examples

A0 A1

0

1

1

0

A2 A3

0

1

B02 B13

0

1

C03
1

Check	that	A	also	simulates	B	and	that	C	
simulates	both	A	and	B.

Therefore,	TracesA =	TracesB ⊆ 𝑇𝑟𝑎𝑐𝑒𝑠Å?

Does	A	simulate	C?

A

B

C

0

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Two	Machines	with	identical	sets	of	Traces	but	
are	not	Bisimilar

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

A	Simulation	Example
• 𝒜 is	an	implementation	of	
ℬ

• Is	there	a	forward	
simulation	from	𝒜 to	ℬ ?

• Consider	the	forward	
simulation	relation

• 𝒜 ∶ 2→�	4	cannot	be	
simulated	by	ℬ from	2’	
although	(2,2’)	are	related.	

1

2’ 3

4

a b

c

1 2

3

4

a

b

c

2

𝒜	

ℬ
a

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Simulations	(Same	actions	related	states)
Forward	simulation	relation	from	𝒜1 to 𝒜2	is	a	relation	R	⊆
𝑣𝑎𝑙 𝑋M ×	𝑣𝑎𝑙(𝑋P) such	that

1. For	every	x1	∈	Θ1 there	exists	x2	∈	Θ2 such	that	x1	R x2
2. For	every	x1	→𝒂𝟏 x1’∈	𝒟 and	x2	such	that	x1	R x2, there	exists	x2’

such	that	
• x2	→𝒂𝟏 x2’	and
• x1’R x2’

3. For	every	𝝉𝟏 ∈	𝒯M and	x2	such	that	𝜏M. 𝑓𝑠𝑡𝑎𝑡𝑒 R x2, there	exists	𝜏P ∈
𝒯P that	
• x2 =	𝜏P. 𝑓𝑠𝑡𝑎𝑡𝑒 and
• x1’R 𝜏P. 𝑙𝑠𝑡𝑎𝑡𝑒
• 𝜏P. dom = 𝜏M. 𝑑𝑜𝑚

Theorem.	If	there	exists	a	forward	simulation	relation	from	
hybrid	automaton	𝒜1 to	𝒜2 then		for	every	execution	of	𝒜1	
there	exists	a	corresponding	execution	of	𝒜P.Lecture	Slides	by	Sayan	Mitra

mitras@illinois.edu

Simulation	relations	for	hybrid	automata
• Recall	condition	3	in	definition	of	simulation	relation:	𝑇𝑟𝑎𝑐𝑒 𝐵𝑗 →5 𝐵𝑗t =

𝑇𝑟𝑎𝑐𝑒 𝐴𝑖 →� 𝐴𝑖t

• Hybrid	automata	have	transitions	and	trajectories	

• Different	types	of	simulation	depending	on	different	notions	for	“Trace”	
– Match	for	all	variable	values,	action	names,	and	time	duration	of	trajectories	

(abstraction)

– Match	variables	but	not	time	(time	abstract	simulation)

– Match	a	subset	(external)	of	variables	and	actions	(trace	inclusion)	

– Match	single	action/trajectory	of	A	with	a	sequence	of	actions	and	trajectories	of	B
Lecture	Slides	by	Sayan	Mitra

mitras@illinois.edu

Timer	simulates	Ball	(w.r.t.	timing	of	bounce	
actions)	

Automaton	Ball(c,v0,g)
variables:	
x:	Reals	:=	0	
v:	Reals	:=	v0

actions:	bounce
transitions:
bounce
pre	x	=	0	/\ v	<	0
eff v	:=	-cv

trajectories:
evolve	d(x)	=	v;	d(v)	=	-g
invariant	𝒙 ≥ 𝟎

Automaton	Timer(c,	v0,	g)
variables:	analog	
timer:	Reals	:=	2𝑣[/𝑔,
n:Naturals=0;
actions:	bounce
transitions:
bounce
pre	timer	=	0
eff	n:=n+1;	timer	:= P+á

ì�9

trajectories:
evolve	d(timer)	=	-1
invariant	timer	≥ 0

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Some	nice	properties	of	Forward	
Simulation

Let	𝒜,ℬ, and	𝒞 be	comparable TAs. If	R1 is	a	forward	simulation	
from	𝒜 to	ℬ and	R2 is	a	forward	simulation	from	ℬ to	𝒞,	then	
R1 ∘ R2 is	a	forward	simulation	from	𝒜 to	𝒞
𝒜 implements	𝒞
The	implementation	relation	is	a	preorder	of	the	set	of	all	
(comparable)	hybrid	automata

(A	preorder	is	a	reflexive	and	transitive	relation)
If	R	is	a	forward	simulation	from	𝒜 to	ℬ and	R-1	is	a	forward	
simulation	from	 ℬ to	𝒜 then	R	is	called	a	bisimulation and	ℬ
are	𝒜 bisimilar
Bisimilarity is	an	equivalence	relation

(reflexive,	transitive,	and	symmetric)Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Remark	on	Simulations	and	Stability

Stability	not	preserved	by	ordinary	simulations	
and	bisimulations [Prabhakar,	et.	al	15]

time time
Stability	Preserving	Simulations	and	Bisimulations for	Hybrid	Systems,	Prabhakar,	Dullerud,	
Viswanathan	IEEE	Trans.	Automatic	Control	2015

Lecture	Slides	by Sayan	Mitra
mitras@illinois.edu

Backward	Simulations
Backward	simulation	relation	from	𝒜1 to 𝒜2	is	a	relation	R	⊆
	𝑄M×	𝑄P such	that

1. If	x1	∈	Θ1 and	x1	R x2	then	x2	∈	Θ2 such	that
2. If	x’1	R x’2	and	x1—aà x1’	then	

• x2	–𝜷à x2’	and
• x1	R x2
• Trace(𝜷)	=	a1

3. For	every	𝝉∈	𝒯 and	x2	∈	Q2	 such	that	x1’R x2’, there	exists	x2 such	that	
• x2	–𝜷à x2’	and
• x1	R x2
• Trace(𝜷)	=	𝝉

Theorem.	If	there	exists	a	backward	simulation	relation	from	𝒜1 to	
𝒜2 then		ClosedTraces1	⊆ ClosedTraces2

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

University of Illinois
at Urbana-Champaign

COMPOSITION

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Composition	of	Hybrid	Automata
The	parallel	composition operation	on	automata	
enable	us	to	construct	larger	and	more	complex	
models	from	simpler	automata	modules

𝒜1 to	𝒜2 are	compatible if	X1 ∩	X2 =	H1 ∩	A2 =	H2
∩	A1 =	∅

Variable	names	are	disjoint;	Action	names	of	one	
are	disjoint	with	the	internal	action	names	of	the	
other

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Modeling	a	Simple	Failure	Detector	
System

• Periodic	send
• Channel
• Timeout

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Send Channel Failure	
Detector

Send(m) recv(m)

fail detect

Composition
• For	compatible	𝒜1 and	𝒜2	their	composition	𝒜1 ||	𝒜2 is	the	structure	𝓐=	

𝑋, 𝑄, Θ, 𝐸,𝐻, 𝒟,𝒯
• 𝑋 = 𝑋1	 ∪ 𝑋2 (disjoint	union)
• 𝑄 ⊆ 𝑣𝑎𝑙(𝑋)
• Θ = 	𝒙 ∈ 𝑄 	∀	𝑖	 ∈ 1,2 : 	𝒙. 𝑋𝑖 ∈ Θ𝑖}
• H	=	H1 ∪	H2 (disjoint	union)	
• E	=	E1 ∪	E2		and		A=	E	∪	H
• 𝒙, 𝑎, 𝒙′ ∈ 	𝒟 iff

– 𝑎 ∈ 𝐻1 and	(𝒙. 𝑋1, 𝑎, 𝒙′. 𝑋1) ∈ 	𝒟1 and	𝒙. 𝑋2 = 𝒙. 𝑋2
– 𝑎 ∈ 𝐻2 and	(𝒙. 𝑋2, 𝑎, 𝒙′. 𝑋2) ∈ 	𝒟2 and	𝒙. 𝑋1 = 𝒙. 𝑋1
– Else,	(𝒙. 𝑋1, 𝑎, 𝒙′. 𝑋1) ∈ 	𝒟1 and	(𝒙. 𝑋2, 𝑎, 𝒙′. 𝑋2) ∈ 	𝒟2

• 𝒯:	set	of	trajectories for	X
– 𝜏 ∈ 	𝒯 iff		∀	𝑖	 ∈ 1,2 ,		𝜏.Xi	∈ 𝒯i

Theorem	.	𝓐 is	also	a	hybrid	automaton.

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Example:	Send	||	TimedChannel
Automaton	PeriodicSend(u,	M)

variables:	internal	clock:	Reals	:=	0
actions:	external	send(m:M)
transitions:

send(m)
pre	clock	=	u
eff clock	:=	0

trajectories:
evolve	d(clock)	=	1
stop	when	clock=u

Automaton	Channel(b,M)
variables:	internal	

queue:	Queue[M,Reals]	:=	{}
clock1:	Reals	:=	0

actions:	external	send(m:M),	receive(m:M)
transitions:

send(m)
pre	true
eff queue	:=	append(<m,	clock1+b>,	queue)
receive(m)
pre	head(queue)[1]	=	m
eff queue	:=	queue.tail

trajectories:
evolve	d(clock1)	=	1
stop	when	∃	m,	d,	<m,d>	∈	queue	

/\ clock=d
Lecture	Slides	by	Sayan	Mitra

mitras@illinois.edu

Composed	Automaton
Automaton	SC(b,u)
variables:	internal	queue:	Queue[M,Reals]	:=	{}

clock_s,	clock_c:	Reals	:=	0
actions:	external	send(m:M),	receive(m:M)
transitions:

send(m)
pre	clock_s =	u
eff queue	:=	append(<m,	clock_c+b>,	queue);	clock_s :=	0
receive(m)
pre	head(queue)[1]	=	m
eff queue	:=	queue.tail

trajectories:
evolve	d(clock_c)	=	1;	d(clock_s)	=	1
stop	when	

(∃	m,	d,	<m,d>	∈	queue	/\ clock_c=d)	
\/	(clock_s=u)

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Modeling	a	Simple	Failure	Detector	
System

• Periodic	send	||	Channel
• Periodic	send	||	Channel	||	Timeout

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Send Channel Failure	
Detector

Send(m) recv(m)

fail detect

Time	bounded	channel	&	Simple	
Failure	Detector

Automaton	Timeout(u,M)
variables:	internal	suspected:	Boolean	:=	F,	

clock:	Reals	:=	0
actions:	external	receive(m:M),	timeout
transitions:

receive(m)
pre	true
eff clock	:=	0;	suspected	:=	false;
timeout
pre	~suspected	/\ clock	=	u
eff suspected	:=	true

trajectories:
evolve	d(clock)	=	1
stop	when	clock	=	u	/\ ~suspected

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

General	composition

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

𝒜M
𝑥M,𝑚𝑜𝑑𝑒M

𝒜P
𝑥P,𝑚𝑜𝑑𝑒P

𝑎M

𝑣𝑎𝑟M

𝑎P

𝑢M 𝑖𝑛𝑝𝑢𝑡M

𝒜P||𝒜M
𝑥M, 𝑥P,

𝑚𝑜𝑑𝑒M,, 𝑚𝑜𝑑𝑒P

𝑦P

𝑣𝑎𝑟M, 𝑦P𝑢M, 𝑢P

𝑎M, 𝑎P
𝑖𝑛𝑝𝑢𝑡M

Time	bounded	channel	&	Simple	
Failure	Detector

Automaton	Timeout(u,M)
variables:	suspected:	Boolean	:=	F,	

clock:	Reals	:=	0
actions:	external	receive(m:M),	

timeout
transitions:

receive(m)
pre	true
eff clock	:=	0;	suspected	:=	false;
timeout
pre	~suspected	/\ clock	=	u
eff suspected	:=	true

trajectories:
evolve	d(clock)	=	1
stop	when	clock	=	u	/\ ~suspected

Automaton	Channel(b,M)
variables:	queue:	Queue[M,Reals]	:=	{}

clock:	Reals	:=	0
actions:	external	send(m:M),	receive(m:M)
transitions:

send(m)
pre	true
eff queue	:=	append(<m,	clock+b>,	queue)
receive(m)
pre	head(queue)[1]	=	m
eff queue	:=	queue.tail

trajectories:
evolve	d(clock)	=	1
stop	when	∃	m,	d,	<m,d>	∈	queue	

/\ clock=d
Lecture	Slides	by	Sayan	Mitra

mitras@illinois.edu

Some	properties	about	composed	
automata

• Let	𝓐=	𝒜1 ||	𝒜2 and	let	α be	an	execution	
fragment	of	𝓐.	
– Then	αi =	α|(Ai,	Xi)	is	an	execution	fragment	of	𝒜i
– α is	time-bounded	iff both	α1	and	α2	 are	time-
bounded

– α is	admissible	iff both	α1	and	α2	 are	admissible
– α is	closed	iff both	α1	and	α2	 are	closed
– α is	non-Zeno	iff both	α1	and	α2	 are	non-Zeno
– α is	an	execution	iff both	α1	and	α2	 are	executions

• Traces𝓐 = 	𝜷	 	𝜷|	Ei ϵ Traces 𝒜i }
• See	examples	in	the	TIOA	monograph

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Substitutivity
• Theorem.	Suppose	𝒜1 ,	𝒜2	and		ℬ have	the	same	external	

interface	and	𝒜1 ,	𝒜2	are	compatible	with	ℬ.	If	𝒜1 implemens	
𝒜2	then	𝒜1|| ℬ implements	𝒜2	|| ℬ

• Proof	sketch.
• Define	the	simulation	relation:

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Substutivity
• Theorem.	Suppose	𝒜1𝒜2	 ℬ1 and	ℬ2 are	HAs	
and	𝒜1𝒜2	have	the	same	external	actions	and	
ℬ1 ℬ2 have	the	same	external	actions	and	𝒜1𝒜2	
is	compatible	with	each	of	ℬ1	and	ℬ2

• If	𝒜1 implements	𝒜P and	ℬM implements	ℬ2
then	𝒜1 || ℬ1 implements	𝒜2||ℬ2 .	

• Proof.	𝒜1 || ℬ1 implements	𝒜2||ℬ1
𝒜2||ℬ1 implements	𝒜2||ℬ2
By	transitivity	of	implementation	relation	
𝒜1 || ℬ1 implements	𝒜2||ℬ2

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

• Theorem.	𝒜1 || ℬ2 implements	𝒜2||ℬ2 and	
ℬ1 implements	ℬ2 then	𝒜1 || ℬ1
implements	𝒜2||ℬ2.

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Summary

• Implementation	Relation
– Forward	and	Backward	simulations

• Composition
• Substitutivity

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

