
Review of Computability and Complexity
Lecture 2

Purandar Bhaduri
pbhaduri@iitg.ernet.in

Indian Institute of Technology Guwahati

January 1, 2018

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Outline

1 Turing Machines

2 Recursive and Recursively Enumerable Languages

3 Measuring Complexity

4 Relating Complexity Classes

5 Proving Lower Bounds

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Turing Machines
Recursive and Recursively Enumerable Languages

Part I

Turing Machines and Computability

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Turing Machines
Recursive and Recursively Enumerable Languages

Formal Model
Semantics
Church-Turing Thesis

Decision Problems

In this part we will focus on decision problems — problems where
we expect a yes/no answer on an input

Examples: Is x composite? Is a vertex in T reachable from a
vertex in S in the graph G ?

Non-examples: Find the factors of x . Find a path from a
vertex in S to a vertex in T in graph G .

Will find it convenient to think of decision problems as a
set/language, namely, the set of inputs on which the answer is
supposed to be “yes”.

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Turing Machines
Recursive and Recursively Enumerable Languages

Formal Model
Semantics
Church-Turing Thesis

Turing Machine

0 0 t t Output Tape

0 1 1 0 t t

1 0 t 0 0 t

0 0 1 t t

} Work Tapes

Input Tape

finite-state
control

Has a read-only input tape, write-only output tape, and k
read/write work tapes.

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Turing Machines
Recursive and Recursively Enumerable Languages

Formal Model
Semantics
Church-Turing Thesis

Computation

Initially: input stored on input tape, and all other tapes are
blank, with the head pointing to the first cell of each tape and
the finite control in an initial state.

One Step: Based on current state of finite control, and
symbols under the heads on input tape and work-tapes

Change state of finite control
Write new symbols on the cells scanned by heads on work
tape, and output tape
Move tape heads on input tape and work-tapes left or right. If
something was written on output tape, then move its head
right.1

1Moving left of leftmost cell leaves the head position unchanged.
Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Turing Machines
Recursive and Recursively Enumerable Languages

Formal Model
Semantics
Church-Turing Thesis

(Deterministic) Turing Machine
Formal Definition

A TM with k-work-tapes is M = (Q,Σ, Γ, δ, q0, qacc, qrej) where

Q is a finite set of control states

Σ is a finite set of input symbols

Γ ⊇ Σ is a finite set of tape symbols. Also, a blank symbol
t ∈ Γ \ Σ

q0 ∈ Q is the initial state

qacc ∈ Q is the accept state

qrej ∈ Q is the reject state, where qrej 6= qacc

δ : (Q \ {qacc, qrej})× Γk+1 →
Q × {L, S ,R} × (Γ× {L,S ,R})k × (Γ ∪ {ε}) is the transition
function.

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Turing Machines
Recursive and Recursively Enumerable Languages

Formal Model
Semantics
Church-Turing Thesis

Configurations

Configurations or instantaneous discriptions are all the information
needed to capture the “system state” during a computation. This
is the control state, contents of all the work-tapes, and positions of
all heads.

Formally, on input of length n, a configuration
c ∈ Q × {0, . . . n − 1} × (Γ∗{∗}ΓΓ∗)k , where ∗ denotes the
position of a work-tape head.

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Turing Machines
Recursive and Recursively Enumerable Languages

Formal Model
Semantics
Church-Turing Thesis

Computation

c1 ` c2 denotes that TM moves from configuration c1 to c2

in one step.

For example, if δ(q, a, b) = (q′,R, (c , L)) and the input string
is w , then

(q, i , αd ∗ bβ) ` (q′, i + 1, α ∗ dcβ)

provided wi = a.
Formal definition of c1 ` c2 skipped.

c1`∗c2 denotes that the TM moves from c1 to c2 in zero or
more steps. i.e., c1 = c2 or there exist c′1, . . . ,c

′
n such that

c1 = c′1, c2 = c′n and c′i ` c′i+1

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Turing Machines
Recursive and Recursively Enumerable Languages

Formal Model
Semantics
Church-Turing Thesis

Acceptance

An input w is accepted by M (or M answers “yes” on w) if M
reaches an accepting configuration (its control state is qacc) from
the initial configuration (with input w).
In other words, M rejects or does not accept w (i.e., answers
“no”) if either

M reaches a halting configuration with state qrej [explicit
rejection]

M never halts [implicit rejection]

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Turing Machines
Recursive and Recursively Enumerable Languages

Formal Model
Semantics
Church-Turing Thesis

Language Recognition and Function Computation

The language accepted/recognized by M, denoted as L(M), is
the set of inputs w that M accepts.

A Turing machine M is said to compute a (partial) function f
if and only if whenever f is defined on input w , M halts with
f (w) written on its output tape.

A function f is said to be computable if there is some Turing
machine M such that M computes f .

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Turing Machines
Recursive and Recursively Enumerable Languages

Formal Model
Semantics
Church-Turing Thesis

Nondeterministic Turing Machine

Deterministic: Given current state, input symbol, and
work-tape symbols, there is only one possibility for the next
state, symbols to be written, and direction in which to move
tape heads

On any input string, the machine has only one “execution”

Non-deterministic: Current state, input symbol and work-tape
symbols do not uniquely determine the next step

Transition Function: δ : (Q \ {qacc, qrej})× Γk+1 →
P(Q × {L,S ,R} × (Γ× {L,S ,R})k × (Γ ∪ {ε})).
Input w is accepted if on some computation, M reaches an
accepting configuration.

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Turing Machines
Recursive and Recursively Enumerable Languages

Formal Model
Semantics
Church-Turing Thesis

Expressive Power

Deterministic and Non-deterministic Turing machines have
the same expressive power: For every non-deterministic
machine N, there is a deterministic TM det(N) such that
L(N) = L(det(N)).

Number of work-tapes don’t affect expressive power: For
every TM M with k-work-tapes, there is a TM single(M) with
1 work-tape that accepts the same language.

Changing tape alphabet does not affect computational power.

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Turing Machines
Recursive and Recursively Enumerable Languages

Formal Model
Semantics
Church-Turing Thesis

Church-Turing Thesis
Why Turing machines?

Alonzo Church Alan Turing

Anything solvable using a mechanical procedure can be solved
using a Turing machine

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Turing Machines
Recursive and Recursively Enumerable Languages

Definitions
Properties

Recursively Enumerable and Recursive Languages

Definition (Recursively Enumerable)

L is recursively enumerable/semi-decidable if there is a TM M such
that L = L(M)

If w 6∈ L then M may not halt on w

Definition (Recursive)

L is recursive/decidable if there is a TM M that halts on all inputs
and L = L(M)

L is undecidable if it is not decidable

Proposition

If L is recursive then L is recursively enumerable.

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Turing Machines
Recursive and Recursively Enumerable Languages

Definitions
Properties

Examples of Recursive and Recursively Enumerable
Languages

Observation

The following statements hold

There are languages L such that L 6∈ RE

Example, Ld = {〈M〉 | 〈M〉 6∈ L(M)}
There is a language L such that L ∈ RE \ REC

Example, Lhalt = {〈M〉 |M halts on ε}
where REC denotes the class of recursive languages and RE
denotes the class of recursively enumerable languages

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Part II

Computational Complexity

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Measuring Time and Space
Robust Complexity Classes
Reachability

Efficiency

How do we measure the efficiency of a computational
solution?

Many possible metrics could be used: running time, memory
requirements, security, amount of communication, use of
shared resource, quality of user interface, maintainability of
code, etc.
We will focus on running time and memory requirements.

Goal: To develop a framework to compare solutions, and
quantify computational difficulty in a platform independent
manner.

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Measuring Time and Space
Robust Complexity Classes
Reachability

Measuring Computational Resources

Computational resources needed to solve a problem depend on
the size of the input

Computing “4+5” is easier than computing
“1298959829494+4128393208157”

Therefore, time and space used by an algorithm/TM are
measured as function of input size

Time/memory requirement of an algorithm could either
measure resource needs on “worst” input or “average” input;
we will focus on worst case analysis here.

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Measuring Time and Space
Robust Complexity Classes
Reachability

Time and Space Bounded Computation

Definition

A Turing machine is said to run in time t(n) if on any input u, all
computations of M on u take at most t(|u|) steps

Definition

A Turing machine is said to use at most space s(n) if on any input
u, all computations of M on u use at most s(|u|) cells of the
work-tapes

Only work-tape cells written on at least once is counted

Work-tape cells can be reused

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Measuring Time and Space
Robust Complexity Classes
Reachability

Time and Space Complexity Classes

Definition

L ∈ DTIME(t(n)) iff there is a deterministic TM M that runs
in time t(n) and L = L(M)

L ∈ NTIME(t(n)) iff there is a non-deterministic TM M that
runs in time t(n) and L = L(M)

L ∈ DSPACE(s(n)) iff there is a deterministic TM M that
uses space s(n) and L = L(M)

L ∈ NSPACE(s(n)) iff there is a non-deterministic TM M that
runs in time s(n) and L = L(M)

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Measuring Time and Space
Robust Complexity Classes
Reachability

Linear Speedup and Compression
Constants don’t matter

Theorem

If L ∈ DTIME(t(n)) (or L ∈ NTIME(t(n))) and c > 0 is any
constant, then L ∈ DTIME(ct(n) + n) (L ∈ NTIME(ct(n) + n),
respectively).

Theorem

If L ∈ DSPACE(s(n)) (or L ∈ NSPACE(s(n))) and c > 0 is any
constant, then L ∈ DSPACE(cs(n)) (L ∈ NSPACE(cs(n)),
respectively).

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Measuring Time and Space
Robust Complexity Classes
Reachability

The Big Oh!

Definition

f (n) = O(g(n)) if there are constants c, n0 such that for
n > n0, f (n) ≤ cg(n). We say g(n) is an asymptotic upper
bound.

f (n) = Ω(g(n)) if there are constants c , n0 such that for
n > n0, f (n) ≥ cg(n). We say g(n) is an asymptotic lower
bound.

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Measuring Time and Space
Robust Complexity Classes
Reachability

Robust Complexity Classes

Complexity bounds for a problem should be platform
independent

Small changes to model (like reducing tapes, or changing
alphabet) should not affect the relevance of the results
Results should be valid even if one considers computational
models other than Turing machines.

Complexity classes should be closed under function
composition

Complexity classes should capture “interesting” real-world
problems

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Measuring Time and Space
Robust Complexity Classes
Reachability

Invariance Thesis

Any effective, mechanistic procedure can be
simulated on a Turing machine using the same
space (if space ≥ log n) and only a polynomial
slowdown (time ≥ n).

Time (or memory) analysis of a
pseudo-code/TM is a reliable indicator of
the running time in any platform (upto a
polynomial slowdown).

Alonzo Church

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Measuring Time and Space
Robust Complexity Classes
Reachability

Common Complexity Classes

L = DSPACE(log n)

Example problems: Multiplication of numbers, Boolean
formula evaluation, reachability in undirected graphs

NL = NSPACE(log n)

Example problems: Reachability in directed graphs

P = ∪kDTIME(nk)

Example problems: Linear programming, convex programming,
Boolean circuit evaluation
Cobham-Edmonds Thesis: P is the collection of all problems
that have “efficient” computational solutions

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Measuring Time and Space
Robust Complexity Classes
Reachability

Common Complexity Classes (continued)

NP = ∪kNTIME(nk)

Example problems: Satisfiability, decision versions of many
optimization problems

PSPACE = ∪kDSPACE(nk)

Example problems: Solving games like Go

EXP = ∪kDTIME(2n
k
)

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Measuring Time and Space
Robust Complexity Classes
Reachability

Invariance Thesis: A Caveat

Invariance theses may not hold! In 1994, Peter Shor gave a
polynomial time algorithm to factor two numbers on a “Quantum
Computer”. No efficient factoring algorithm is know for traditional
computers! However, we haven’t managed to build a “real”
quantum computer yet.

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Measuring Time and Space
Robust Complexity Classes
Reachability

Reachability

Problem

Given a directed graph
G = (V ,E) and sets of
vertices S ,T ⊆ V , are there
vertices s ∈ S and t ∈ T such
that there is a path from s to
t.

Solution

Set Marked := ∅
Queue Q := S

Marked := Marked ∪ S

while Q is not empty do
t := Q.dequeue()

if t ∈ T return ‘‘yes’’

for each (t,u) ∈ E

if u 6∈ Marked

Marked := Marked ∪ {u}
Q := enqueue(Q,u)

return ‘‘no’’

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Measuring Time and Space
Robust Complexity Classes
Reachability

Complexity Analysis of Reachability

Breadth first search solves the Reachability problem. Breadth first
search runs in linear time, and uses linear memory. Hence

Reachability ∈ P

Reachability ∈ PSPACE

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Measuring Time and Space
Robust Complexity Classes
Reachability

Reachability ∈ NL

Suppose input to the Reachability problem is G = (V ,E), S , and
T and suppose | V |= m.

current := choose from S

pathlength :=0

while current 6∈ T and pathlength < m do
next := choose from {v ∈ V | (current, v) ∈ E}
current := next

pathlength := pathlength + 1

if current ∈ T return ‘‘yes’’

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Relating Space and Time
Determinism and Nondeterminism

Time to Space

Proposition

DTIME(t(n)) ⊆ DSPACE(t(n)) and
NTIME(t(n)) ⊆ NSPACE(t(n))

Proof.

You can write in at most t(n) cells in t(n) steps. �

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Relating Space and Time
Determinism and Nondeterminism

Space to Time

Proposition

DSPACE(s(n)) ⊆ DTIME(n · 2O(s(n))) and
NSPACE(s(n)) ⊆ NTIME(n · 2O(s(n))) a

aProvided s(n) is a proper complexity function.

Proof.

If M uses at most s(n) space, then it has n · 2O(s(n))

configurations.

A configuration has state + input head position + work-tape
contents

If M accepts w of length n, it does so within n · 2O(s(n)) steps

Any computation longer than n · 2O(s(n)) is cycling. �

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Relating Space and Time
Determinism and Nondeterminism

Consequences

L ⊆ P ⊆ PSPACE ⊆ EXP
NL ⊆ NP ⊆ NPSPACE ⊆ NEXP

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Relating Space and Time
Determinism and Nondeterminism

Deterministic Classes to Nondeterministic Classes

Proposition

DTIME(t(n)) ⊆ NTIME(t(n)) and
DSPACE(s(n)) ⊆ NSPACE(s(n)).

Proof.

Because deterministic Turing machines are special nondeterministic
Turing machines, namely, those that have exactly one transition
from every configuration. �

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Relating Space and Time
Determinism and Nondeterminism

Nondeterministic Classes to Deterministic Classes

Proposition

NTIME(t(n)) ⊆ DTIME(2t(n))

Theorem (Savitch)

NSPACE(s(n)) ⊆ DSPACE((s(n))2), provided s(n) ≥ log n.

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Relating Space and Time
Determinism and Nondeterminism

Combining everything . . .

L NL P NP
PSPACE

=
NPSPACE

EXP

Relationship between Complexity Classes. → indicates containment,

though whether it is strict is unknown.

In addition . . .

L 6= PSPACE and NL 6= PSPACE due to space hierarchy theorem,
and P 6= EXP due to time hierarchy theorem.

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Reductions, Hardness, and Completeness
Reachability Revisited

Comparing Computational Problems
First Ideas

Problem A is at most as hard as problem B, if an algorithmic
solution for B (with some resource bounds) can be used to obtain
an algorithmic solution to solve A (with similar resource bounds)

Checking an invariant property for a program (with Boolean
variables) is no harder than solving the reachability problem
on directed graphs.

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Reductions, Hardness, and Completeness
Reachability Revisited

Many-one Reductions: Informal View
Capturing the Relative Difficulty of Problems

A reduction from A to B is a function f such that for any input x ,
solving A on x is the same as solving B on f (x).

Algorithm for Problem A

Reduction f
Algorithm for

Problem B

w f (w)
yes

no

Thus, A is no harder than B.

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Reductions, Hardness, and Completeness
Reachability Revisited

Logspace Reductions

Definition

A logspace reduction from A to B is a logspace computable
function f : Σ∗ → Σ∗ such that

u ∈ A iff f (u) ∈ B

A is said to be logspace reducible to B and is denoted by A ≤L B.

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Reductions, Hardness, and Completeness
Reachability Revisited

Properties of Reductions

Proposition

If A ≤L B then A ≤L B.

Proposition

If A ≤L B and B ≤L C then A ≤L C .

Proposition

If A ≤L B and B ∈ C then A ∈ C, where
C ∈ {L,NL,P,NP,PSPACE,EXP}

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Reductions, Hardness, and Completeness
Reachability Revisited

Hardness and Completeness
Hardest Problems in a Class

Intuition

The most difficult problem in a collection of problems C is a
problem that is at least as difficult as every other problem in C.

Definition

Let C ∈ {L,NL,P,NP,PSPACE,EXP}
L is said to be C-hard iff for every L′ ∈ C, L′ ≤L L

L is said to be C-complete iff L ∈ C and L is C-hard

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Reductions, Hardness, and Completeness
Reachability Revisited

Hardness as a way to argue optimality

Suppose L is C1-hard, and suppose we believe C1 to be not
contained in C2. Then it is unlikely that L belongs to C2.

Justification: Suppose (for contradiction) L ∈ C2. Consider an
arbitrary problem A ∈ C1. Since L is C1-hard, A ≤L L.
Further, since L ∈ C2, A ∈ C2. Therefore, C1 ⊆ C2, which we
believe to be unlikely.

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Reductions, Hardness, and Completeness
Reachability Revisited

Reachability is NL-hard

Let L be some problem in NL and M be a NL algorithm solving L.
Need to show that L ≤L Reachability.

Goal: Construct a function f computable in L such that for
any input w , f (w) = (G ,S ,T) with the property that w ∈ L
iff some vertex in T is reachable from a vertex in S in graph
G .

Reduction: G is the “configuration graph” of M on input w ,
i.e., vertices are configurations of M on input of length |w |,
and there is an edge from c1 to c2 iff c1 ` c2.S = {c0},
where c0 is the initial configuration with input w , and T is
the set of accepting configurations.

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Reductions, Hardness, and Completeness
Reachability Revisited

Reachability is NL-hard
Correctness of reduction

If w ∈ L then w is accepted by M. There is a computation
c0`∗c1, where c1 is accepting. Thus, there is a path from c0

(∈ S) to c1 (∈ T) in the configuration graph.

Suppose there is a path from c0 to some c1 ∈ T in G then by
definition of G c0`∗c1. Thus, M accepts w , and so w ∈ L.

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Reductions, Hardness, and Completeness
Reachability Revisited

Reachability is NL-hard
Reduction computable in L

Each configuration of M is a string of length O(log n)
(|w | = n). Thus, the set of vertices of G can be output using
log space by enumerating all such strings.

Accepting configurations (= T) are all configurations with
state qacc. Thus, they can be enumerated using log space.
The initial configuration (= S) is fixed string that can be
written out without using any memory.

Finally, the set of edges can be output as follows. Each pair of
configurations is listed; such pairs are of length O(log n) and
so can be stored on the work tape. For each pair, the machine
will read the string encoding this pair, and check if they
correspond to one step of M. If so the pair is output.

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

Measuring Complexity
Relating Complexity Classes

Proving Lower Bounds

Reductions, Hardness, and Completeness
Reachability Revisited

References

Michael Sipser, Introduction to the Theory of Computation.
Third Edition, Cengage Learning, 2012.

Mahesh Viswanathan and Sayan Mitra, Lecture Slides on
“Turing Machines, Languages and Decidability” and
“Complexity Classes” from the course ECE/CS 584:
Embedded and Cyber-Physical Systems Verification at UIUC,
Fall 2004.

Purandar Bhaduri Modeling and Verification of Cyber-Physical Systems

	Turing Machines and Computability
	Turing Machines
	Formal Model
	Semantics
	Church-Turing Thesis

	Recursive and Recursively Enumerable Languages
	Definitions
	Properties

	Computational Complexity
	Measuring Complexity
	Measuring Time and Space
	Robust Complexity Classes
	Reachability

	Relating Complexity Classes
	Relating Space and Time
	Determinism and Nondeterminism

	Proving Lower Bounds
	Reductions, Hardness, and Completeness
	Reachability Revisited

